CN106116533A - 高孔隙率氧化铝基陶瓷型芯的制备方法 - Google Patents

高孔隙率氧化铝基陶瓷型芯的制备方法 Download PDF

Info

Publication number
CN106116533A
CN106116533A CN201610463226.4A CN201610463226A CN106116533A CN 106116533 A CN106116533 A CN 106116533A CN 201610463226 A CN201610463226 A CN 201610463226A CN 106116533 A CN106116533 A CN 106116533A
Authority
CN
China
Prior art keywords
core
powder
ceramic core
plasticizer
compacting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610463226.4A
Other languages
English (en)
Inventor
李飞
王飞
陈晓燕
何博
孙宝德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201610463226.4A priority Critical patent/CN106116533A/zh
Publication of CN106116533A publication Critical patent/CN106116533A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase

Abstract

一种高孔隙率氧化铝基陶瓷型芯的制备方法,将由α‐Al2O3粉、α‐Al2O3空心球、TiO2粉和增塑剂组成的型芯浆料压制烧结后得到的型芯浸泡于硅酸乙酯水解液中,得到高孔隙率氧化铝基陶瓷型芯,制备得到的型芯具有较高的脱芯效率。

Description

高孔隙率氧化铝基陶瓷型芯的制备方法
技术领域
本发明涉及一种陶瓷制备领域的技术,具体涉及一种孔隙率在44.7%以上的凝胶注氧化铝基陶瓷型芯的制备方法。
背景技术
近年来,熔模精密铸造技术越来越多地应用于各种高性能高温合金空心叶片,如航空发动机的等轴晶、柱状晶和单晶空心叶片以及燃气轮机用高温合金空心叶片等的制造,而叶片的空心结构的形成有赖于高性能的陶瓷型芯。在种类众多的陶瓷型芯中,氧化铝和氧化硅基陶瓷型芯占据着主流的地位。与氧化硅基陶瓷型芯相比,氧化铝基陶瓷型芯的高温力学性能、抗高温蠕变性能更优良,更适于单晶空心叶片的精密成形。然而,由于氧化铝基陶瓷型芯不易溶于碱液中,因此其脱芯的难题一直是限制其工程化应用的主要瓶颈。
就陶瓷型芯本身而言,提高脱芯性能的主要措施是在保证强度的前提下,增加其孔隙率,以增加脱芯的碱液与陶瓷型芯的接触面积,加快脱芯进程。国内的北京航空材料研究院开发的AC‐2型氧化铝基陶瓷型芯的基本配方是99wt.%的电熔刚玉加1wt.%的矿化剂,采用热压注工艺制备素坯,再经高温烧结获得,孔隙率达到37%,对于具有狭小、复杂型腔结构的空心叶片,陶瓷型芯的脱芯效率往往不能满足要求。
发明内容
本发明的目的是针对现有技术存在的不足,提供一种高孔隙率氧化铝基陶瓷型芯的制备方法,以提高氧化铝基陶瓷型芯的脱芯效率,最高可达100%脱芯率。
本发明是通过以下技术方案实现的:
本发明涉及一种高孔隙率氧化铝基陶瓷型芯的制备方法,将由α‐Al2O3粉、α‐Al2O3空心球、TiO2粉和增塑剂组成的型芯浆料压制烧结后得到的型芯浸泡于硅酸乙酯水解液中,得到高孔隙率氧化铝基陶瓷型芯。
所述的α‐Al2O3粉是在空气中经1450℃煅烧过的α‐Al2O3粉,粒度分布1‐30μm,纯度大于99.9wt.%。
所述的α‐Al2O3空心球是在空气中经1450℃煅烧过的α‐Al2O3空心球,粒度20‐200μm,纯度大于99wt.%。
所述的增塑剂,包括半精炼石蜡、蜂蜡和聚乙烯,其重量百分比配方优选为:半精炼石蜡的重量百分比为92%、蜂蜡为6%、聚乙烯为2%。
所述的硅酸乙酯水解液,包括:硅酸乙酯、无水乙醇、异丙醇、丙二醇甲醚、酸性硅溶胶以及盐酸,其重量百分比优选为:硅酸乙酯31.3%、无水乙醇25%、异丙醇1.5%、丙二醇甲醚13%、酸性硅溶胶25.8%以及20%质量浓度的盐酸0.4%。
所述方法具体包括以下步骤:
1)型芯浆料制备:将20‐60wt.%的α‐Al2O3粉、39‐79wt.%的α‐Al2O3空心球和1wt.%的TiO2粉加入到V型混料机中,强制搅拌干混2‐5h,得到陶瓷芯料;将占芯料15‐25wt.%的增塑剂加入到真空和蜡釜中,加热到120℃,待增塑剂完全熔化后,再将经120℃烘干12h的陶瓷芯料加入到真空和蜡釜中,在抽真空的条件下搅拌混合12h,获得型芯浆料。
2)型芯压制:将型芯浆料在压芯机上进行压制,压制温度为100‐120℃,压力为2‐4MPa,保压时间20‐30s。
3)型芯烧结:将压制的陶瓷型芯素坯置于陶瓷匣钵的轻质氧化镁粉中,在型芯烧结炉中进行烧结,优化的烧结温度为:200℃、500℃、1000℃下保温2h,然后升至1650℃保温2h,随炉冷却至室温后出炉,升温速度为60℃/h。
4)型芯修型:将烧结好的陶瓷型芯进行表面吹粉清理后,用型芯量具进行检测后修型。
5)型芯强化:将型芯放入装有硅酸乙酯水解液的容器中,然后将容器置于负压环境中,使硅酸乙酯水解液能够渗透到型芯的空隙当中,浸泡时间保持2h,然后摆放在架子上晾干24h,最后于150℃下干燥2‐3h,获得最终产品。
技术效果
与现有技术相比,本发明技术效果包括:
1)本发明添加的α‐Al2O3空心球,其球形结构有利于提高浆料在压制成陶瓷型芯时的流动性,提高了陶瓷浆料在模具中充型的均匀性。
2)本发明添加的α‐Al2O3空心球,既作为陶瓷型芯中的陶瓷骨料,降低了陶瓷型芯的烧结收缩率,又大幅度提高了陶瓷型芯孔隙率,大大提高了陶瓷型芯的脱芯性能。
具体实施方式
下述实施例中的α‐Al2O3粉是由工业氧化铝中的γ‐Al2O3粉在空气中经1450℃煅烧后,进一步磨细至1‐30μm而获得,纯度大于99.9wt.%。
下述实施例中的α‐Al2O3空心球是在空气中经1450℃煅烧过的α‐Al2O3空心球,粒度低于200μm,纯度大于99wt.%。
下述实施例中的增塑剂的组分及质量百分比含量为:半精炼石蜡的重量百分比为92%,蜂蜡为6%,聚乙烯为2%。
下述实施例中的型芯烧结温度为:200℃、500℃、1000℃下保温2h,然后升至1650℃保温2h,随炉冷却至室温后出炉,升温速度为60℃/h。
下述实施例中的硅酸乙酯水解液的组分及质量百分比含量为:硅酸乙酯31.3%,无水乙醇25%,异丙醇1.5%,丙二醇甲醚13%,酸性硅溶胶25.8%,盐酸(20%质量浓度)0.4%。以上成分经搅拌机混合而成。
实施例1
1)型芯浆料制备:将20wt.%的α‐Al2O3粉、79wt.%的α‐Al2O3空心球和1wt.%的TiO2粉加入到V型混料机中,强制搅拌干混2h,得到陶瓷芯料;将占芯料15wt.%的增塑剂加入到真空和蜡釜中,加热到120℃,待增塑剂完全熔化后,再将经120℃烘干12h的陶瓷芯料加入到真空和蜡釜中,在抽真空的条件下搅拌混合12h,获得型芯浆料。
2)型芯压制:将型芯浆料在压芯机上进行压制,压制温度为120℃,压力为2MPa,保压时间30s。
3)型芯烧结:将压制的陶瓷型芯素坯置于陶瓷匣钵的轻质氧化镁粉中,在型芯烧结炉中进行烧结。
4)型芯修型:将烧结好的陶瓷型芯进行表面吹粉清理后,用型芯量具进行检测后修型。
5)型芯强化:将型芯放入装有硅酸乙酯水解液的容器中,然后将容器置于负压环境中,使硅酸乙酯水解液能够渗透到型芯的空隙当中,浸泡时间保持2h,然后摆放在架子上晾干24h,最后于150℃下干燥2h,获得最终产品。
经检测,添加氧化铝空心球的陶瓷型芯的孔隙率为49.8%,而仅以α‐Al2O3粉制备的陶瓷型芯的孔隙率仅为19.7%;经在脱芯液(KOH水溶液)浓度60wt.%、压力2.8MPa、温度360℃的脱芯釜中进行8h的脱芯试验,添加氧化铝空心球的陶瓷型芯成型的空心叶片脱芯率达到100%,而以α‐Al2O3粉制备的陶瓷型芯成型的空心叶片的脱芯率仅为12.6%。
实施例2
1)型芯浆料制备:将50wt.%的α‐Al2O3粉、49wt.%的α‐Al2O3空心球和1wt.%的TiO2粉加入到V型混料机中,强制搅拌干混3.5h,得到陶瓷芯料;将占芯料20wt.%的增塑剂加入到真空和蜡釜中,加热到120℃,待增塑剂完全熔化后,再将经120℃烘干12h的陶瓷芯料加入到真空和蜡釜中,在抽真空的条件下搅拌混合12h,获得型芯浆料。
2)型芯压制:将型芯浆料在压芯机上进行压制,压制温度为110℃,压力为2MPa,保压时间25s。
3)型芯烧结:将压制的陶瓷型芯素坯置于陶瓷匣钵的轻质氧化镁粉中,在型芯烧结炉中进行烧结。
4)型芯修型:将烧结好的陶瓷型芯进行表面吹粉清理后,用型芯量具进行检测后修型。
5)型芯强化:将型芯放入装有硅酸乙酯水解液的容器中,然后将容器置于负压环境中,使硅酸乙酯水解液能够渗透到型芯的空隙当中,浸泡时间保持2h,然后摆放在架子上晾干24h,最后于150℃下干燥2.5h,获得最终产品。
经检测,添加氧化铝空心球的陶瓷型芯的孔隙率为44.7%,而仅以α‐Al2O3粉制备的陶瓷型芯的孔隙率仅为19.7%;经在脱芯液(KOH水溶液)浓度60wt.%、压力2.8MPa、温度360℃的脱芯釜中进行8h的脱芯试验,添加氧化铝空心球的陶瓷型芯成型的空心叶片脱芯率达到94.3%,而以α‐Al2O3粉制备的陶瓷型芯成型的空心叶片的脱芯率仅为12.6%。
实施例3
1)型芯浆料制备:将60wt.%的α‐Al2O3粉、39wt.%的α‐Al2O3空心球和1wt.%的TiO2粉加入到V型混料机中,强制搅拌干混2h,得到陶瓷芯料;将占芯料15wt.%的增塑剂加入到真空和蜡釜中,加热到120℃,待增塑剂完全熔化后,再将经120℃烘干12h的陶瓷芯料加入到真空和蜡釜中,在抽真空的条件下搅拌混合12h,获得型芯浆料。
2)型芯压制:将型芯浆料在压芯机上进行压制,压制温度为100℃,压力为4MPa,保压时间20s。
3)型芯烧结:将压制的陶瓷型芯素坯置于陶瓷匣钵的轻质氧化镁粉中,在型芯烧结炉中进行烧结。
4)型芯修型:将烧结好的陶瓷型芯进行表面吹粉清理后,用型芯量具进行检测后修型。
5)型芯强化:将型芯放入装有硅酸乙酯水解液的容器中,然后将容器置于负压环境中,使硅酸乙酯水解液能够渗透到型芯的空隙当中,浸泡时间保持2h,然后摆放在架子上晾干24h,最后于150℃下干燥3h,获得最终产品。
经检测,添加氧化铝空心球的陶瓷型芯的孔隙率为49.8%,而仅以α‐Al2O3粉制备的陶瓷型芯的孔隙率仅为19.7%;经在脱芯液(KOH水溶液)浓度60wt.%、压力2.8MPa、温度360℃的脱芯釜中进行8h的脱芯试验,添加氧化铝空心球的陶瓷型芯成型的空心叶片脱芯率达到92.5%,而以α‐Al2O3粉制备的陶瓷型芯成型的空心叶片的脱芯率仅为12.6%。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (9)

1.一种高孔隙率氧化铝基陶瓷型芯的制备方法,其特征在于,将由α‐Al2O3粉、α‐Al2O3空心球、TiO2粉和增塑剂组成的型芯浆料压制烧结后得到的型芯浸泡于硅酸乙酯水解液中,得到高孔隙率氧化铝基陶瓷型芯;
所述的增塑剂,包括半精炼石蜡、蜂蜡和聚乙烯;
所述的硅酸乙酯水解液,包括:硅酸乙酯、无水乙醇、异丙醇、丙二醇甲醚、酸性硅溶胶以及盐酸。
2.根据权利要求1所述的方法,其特征是,所述的α‐Al2O3粉是在空气中经1450℃煅烧过的α‐Al2O3粉,粒度分布1‐30μm,纯度大于99.9wt.%。
3.根据权利要求1所述的方法,其特征是,所述的α‐Al2O3空心球是在空气中经1450℃煅烧过的α‐Al2O3空心球,粒度20‐200μm,纯度大于99wt.%。
4.根据权利要求1所述的方法,其特征是,所述的增塑剂的重量百分比配方为:半精炼石蜡的重量百分比为92%、蜂蜡为6%、聚乙烯为2%。
5.根据权利要求1所述的方法,其特征是,所述的硅酸乙酯水解液的重量百分比优选为:硅酸乙酯31.3%、无水乙醇25%、异丙醇1.5%、丙二醇甲醚13%、酸性硅溶胶25.8%以及20%质量浓度的盐酸0.4%。
6.根据权利要求1所述的方法,其特征是,所述的型芯浆料,具体通过以下方式制备得到:将20‐60wt.%的α‐Al2O3粉、39‐79wt.%的α‐Al2O3空心球和1wt.%的TiO2粉加入到V型混料机中,强制搅拌干混2‐5h,得到陶瓷芯料;将占芯料15‐25wt.%的增塑剂加入到真空和蜡釜中,加热到120℃,待增塑剂完全熔化后,再将经120℃烘干12h的陶瓷芯料加入到真空和蜡釜中,在抽真空的条件下搅拌混合12h,获得型芯浆料。
7.根据权利要求1所述的方法,其特征是,所述的压制是指:将型芯浆料在压芯机上进行压制,压制温度为100‐120℃,压力为2‐4MPa,保压时间20‐30s。
8.根据权利要求1所述的方法,其特征是,所述的烧结是指:将压制的陶瓷型芯素坯置于陶瓷匣钵的轻质氧化镁粉中,在型芯烧结炉中进行烧结,烧结温度为:200℃、500℃、1000℃下保温2h,然后升至1650℃保温2h,随炉冷却至室温后出炉,升温速度为60℃/h。
9.根据权利要求1所述的方法,其特征是,所述的浸泡是指:将型芯放入装有硅酸乙酯水解液的容器中,然后将容器置于负压环境中,使硅酸乙酯水解液能够渗透到型芯的空隙当中,浸泡时间保持2h,然后摆放在架子上晾干24h,最后于150℃下干燥2‐3h,获得最终产品。
CN201610463226.4A 2016-06-23 2016-06-23 高孔隙率氧化铝基陶瓷型芯的制备方法 Pending CN106116533A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610463226.4A CN106116533A (zh) 2016-06-23 2016-06-23 高孔隙率氧化铝基陶瓷型芯的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610463226.4A CN106116533A (zh) 2016-06-23 2016-06-23 高孔隙率氧化铝基陶瓷型芯的制备方法

Publications (1)

Publication Number Publication Date
CN106116533A true CN106116533A (zh) 2016-11-16

Family

ID=57269316

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610463226.4A Pending CN106116533A (zh) 2016-06-23 2016-06-23 高孔隙率氧化铝基陶瓷型芯的制备方法

Country Status (1)

Country Link
CN (1) CN106116533A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467445A (zh) * 2018-11-27 2019-03-15 中航装甲科技有限公司 一种石墨烯增强石蜡基增塑剂材料及其制备方法
CN109759539A (zh) * 2019-02-28 2019-05-17 上海万泽精密铸造有限公司 一种用于熔模铸造型壳的复合粘结剂及其制备方法
CN110128159A (zh) * 2019-06-01 2019-08-16 安徽齐鑫新材料科技有限公司 一种稀土氧化物铝基陶瓷芯的制备方法
CN110465627A (zh) * 2019-09-16 2019-11-19 郑州航空工业管理学院 一种用于空心涡轮叶片精密铸造的表层致密内部疏松陶瓷型芯制造方法
CN110590387A (zh) * 2019-10-22 2019-12-20 嘉兴凤翼特种材料科技有限公司 一种无机纤维复合硅基陶瓷型芯及其制备方法
CN110773700A (zh) * 2019-10-30 2020-02-11 武汉因泰莱激光科技有限公司 一种空心叶片易脱除氧化铝陶瓷型芯及其制备方法
CN112047726A (zh) * 2020-09-02 2020-12-08 上海交通大学 定向凝固用莫来石晶须增强铝基陶瓷型芯制备方法
CN112062547A (zh) * 2020-09-02 2020-12-11 上海交通大学 氮化铝/氧化铝复合陶瓷型芯及其制备方法
CN112239369A (zh) * 2020-10-20 2021-01-19 西安工程大学 一种梯度空心陶瓷型芯及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994964A (zh) * 2006-12-29 2007-07-11 辽宁省轻工科学研究院 采用氧化铝空心球的复合氧化铝陶瓷型芯材料及成型制备工艺
CN102093040A (zh) * 2010-12-07 2011-06-15 山东理工大学 水泵叶轮用复合陶瓷型芯及其制法
CN102491779A (zh) * 2011-12-16 2012-06-13 沈阳黎明航空发动机(集团)有限责任公司 一种改善氧化铝陶瓷型芯孔隙率的方法
CN103231021A (zh) * 2011-12-13 2013-08-07 丹阳市精密合金厂有限公司 一种氧化铝基陶瓷型芯及其制备方法
CN103286273A (zh) * 2011-12-13 2013-09-11 丹阳市精密合金厂有限公司 机匣类环形铸件空心支板成型用陶瓷型芯的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994964A (zh) * 2006-12-29 2007-07-11 辽宁省轻工科学研究院 采用氧化铝空心球的复合氧化铝陶瓷型芯材料及成型制备工艺
CN102093040A (zh) * 2010-12-07 2011-06-15 山东理工大学 水泵叶轮用复合陶瓷型芯及其制法
CN103231021A (zh) * 2011-12-13 2013-08-07 丹阳市精密合金厂有限公司 一种氧化铝基陶瓷型芯及其制备方法
CN103286273A (zh) * 2011-12-13 2013-09-11 丹阳市精密合金厂有限公司 机匣类环形铸件空心支板成型用陶瓷型芯的制备方法
CN102491779A (zh) * 2011-12-16 2012-06-13 沈阳黎明航空发动机(集团)有限责任公司 一种改善氧化铝陶瓷型芯孔隙率的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109467445A (zh) * 2018-11-27 2019-03-15 中航装甲科技有限公司 一种石墨烯增强石蜡基增塑剂材料及其制备方法
CN109759539A (zh) * 2019-02-28 2019-05-17 上海万泽精密铸造有限公司 一种用于熔模铸造型壳的复合粘结剂及其制备方法
CN110128159A (zh) * 2019-06-01 2019-08-16 安徽齐鑫新材料科技有限公司 一种稀土氧化物铝基陶瓷芯的制备方法
CN110465627A (zh) * 2019-09-16 2019-11-19 郑州航空工业管理学院 一种用于空心涡轮叶片精密铸造的表层致密内部疏松陶瓷型芯制造方法
CN110590387A (zh) * 2019-10-22 2019-12-20 嘉兴凤翼特种材料科技有限公司 一种无机纤维复合硅基陶瓷型芯及其制备方法
CN110773700A (zh) * 2019-10-30 2020-02-11 武汉因泰莱激光科技有限公司 一种空心叶片易脱除氧化铝陶瓷型芯及其制备方法
CN112047726A (zh) * 2020-09-02 2020-12-08 上海交通大学 定向凝固用莫来石晶须增强铝基陶瓷型芯制备方法
CN112062547A (zh) * 2020-09-02 2020-12-11 上海交通大学 氮化铝/氧化铝复合陶瓷型芯及其制备方法
CN112239369A (zh) * 2020-10-20 2021-01-19 西安工程大学 一种梯度空心陶瓷型芯及其制备方法

Similar Documents

Publication Publication Date Title
CN106116533A (zh) 高孔隙率氧化铝基陶瓷型芯的制备方法
CN106079030B (zh) 一种粉末覆膜氧化钙基陶瓷铸型的快速制造方法
CN102603275B (zh) 硅基陶瓷型芯的制备方法
CN103949590B (zh) 一种氧化物掺杂改性的y2o3+ysz耐高温型壳的制备方法
CN103242036B (zh) 一种复合陶瓷型芯制备工艺
CN103880406B (zh) 一种改进的氧化硅陶瓷型芯的制备方法
CN102718512A (zh) 一种抗热震刚玉-尖晶石质耐火浇注料及其制备方法
CN105272223B (zh) 一种大尺寸氧化锆基隔热材料的制备方法
CN110128115A (zh) 一种闪烧制备氧化物共晶陶瓷的方法
Kim et al. Development of a new process in high functioning ceramic core without shape deformation
CN104384452A (zh) 一种薄壁硅基陶瓷型芯制备工艺
CN101785944B (zh) 用于镁和镁合金熔体过滤用氧化镁泡沫陶瓷过滤器的制备方法
CN106747369A (zh) 一种硅基陶瓷型芯及其制备方法
CN108059445A (zh) 一种非水基凝胶注模快速制造的氧化钙基陶瓷铸型及其制备方法
CN105499480A (zh) 一种高溃散性陶瓷型芯及其制备方法
CN101947648B (zh) 锆及锆合金大型铸件的生产方法
CN103482873A (zh) 振动注浆成型方法制备熔融石英陶瓷
CN113998894B (zh) 一种硅酸锂玻璃陶瓷修复体及其制备方法
CN102060514A (zh) 一种高致密氧化镁陶瓷的制备方法
CN107900286B (zh) 一种熔融石英陶瓷型壳制备方法
CN106478081A (zh) 真空碳热还原强化熔融石英高温性能的方法
CN105130490A (zh) 一种免烧蜂窝陶瓷蓄热体配方和工艺
CN104788082A (zh) 一种改进的氧化铝陶瓷型芯及其制备方法
CN106083005B (zh) 高孔隙率易脱除硅基陶瓷型芯制备方法
WO2014063491A1 (zh) 一种氧化钙基陶瓷型芯及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161116