WO2014063491A1 - 一种氧化钙基陶瓷型芯及其制备方法 - Google Patents

一种氧化钙基陶瓷型芯及其制备方法 Download PDF

Info

Publication number
WO2014063491A1
WO2014063491A1 PCT/CN2013/076526 CN2013076526W WO2014063491A1 WO 2014063491 A1 WO2014063491 A1 WO 2014063491A1 CN 2013076526 W CN2013076526 W CN 2013076526W WO 2014063491 A1 WO2014063491 A1 WO 2014063491A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium oxide
rare earth
oxide
powder
earth oxide
Prior art date
Application number
PCT/CN2013/076526
Other languages
English (en)
French (fr)
Inventor
吴国清
周朋朋
赵嘉琪
南海
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2012104130626A external-priority patent/CN102936140A/zh
Priority claimed from CN201210413334.2A external-priority patent/CN102924062B/zh
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to US14/374,919 priority Critical patent/US9308579B2/en
Publication of WO2014063491A1 publication Critical patent/WO2014063491A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/022Casting heavy metals, with exceedingly high melting points, i.e. more than 1600 degrees C, e.g. W 3380 degrees C, Ta 3000 degrees C, Mo 2620 degrees C, Zr 1860 degrees C, Cr 1765 degrees C, V 1715 degrees C
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on calcium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62815Rare earth metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof

Definitions

  • the invention relates to a calcium oxide based core and a preparation method thereof, and belongs to the technical field of titanium alloy precision casting. Background technique
  • the complex internal cavity of the alloy casting is mainly formed by using a prefabricated ceramic core, and is to be removed after the casting is cast.
  • the process is as follows: ceramic core preparation, wax mold preparation with ceramic core, shell making, shell dewaxing and roasting, alloy casting, core removal.
  • alumina and silica-based ceramic cores have been studied. Because the core material does not have a good chemical reaction inertness to the molten titanium alloy and the core removal is not suitable for the titanium alloy precision casting field. Calcium oxide has attracted the attention of researchers concerned because of its good chemical reaction inertness to molten titanium alloys and excellent core-releasing properties.
  • Chinese Patent Application Publication No. CN 102531648 A discloses a calcium oxide matrix for titanium alloy casting.
  • a ceramic core and a preparation method comprising the following components by weight: 1.0 to 15% of zirconium dioxide, 0.5 to 10.0% of cerium oxide, 0.05 to 0.1% of cerium oxide and the balance of calcium oxide.
  • the content of calcium oxide in the patent is 74.9 ⁇ 98.45wt%. Due to the complicated process of precision casting of titanium alloy, the casting time from the preparation of the wax-containing mold to the alloy is generally more than two weeks, and the core is in use. To be in contact with water-based paints. The core prepared by the above patents undergoes a hydration reaction upon contact with water, causing the core to collapse. Therefore, the above core is difficult to be practically applied in the field of titanium alloy precision casting.
  • the Chinese Patent Application Publication No. CN 1793033 A discloses a ceramic core material for titanium alloy precision casting, the main component being zirconia, the content of which is 60 to 85 wt%, and the content of calcium oxide is 4 to 20 wt%.
  • the core removal process mainly includes: mechanical force breaking core removal, chemical corrosion core removal, mechanical force destruction and chemical corrosion combined with core removal. It is difficult to mechanically destroy and remove the core of complex shape.
  • Chemical corrosion core removal method The above-mentioned core has a large content of zirconia, and zirconia is a stable compound, and is insoluble in an acid-base solution. Therefore, core removal is difficult, and since the core contains a certain amount of calcium oxide, the core The same is faced with hydration problems during use. The precision casting process of titanium alloy is complicated and the production cycle is long.
  • the core In the process of shell making, the core should be in contact with the water-containing paint, and the calcium oxide ceramic core will generate powdery calcium hydroxide after the water absorption, so that the core can be broken and cannot be used continuously. . Therefore, the development of a calcium oxide-based ceramic core with anti-hydration effect is a requirement in the actual production of the titanium industry. Summary of the invention
  • One of the objects of the present invention is to provide a calcium oxide-based ceramic core for precision casting of titanium alloy, which is prepared from the following raw materials of weight percentage: plasticizer 5 ⁇ 15 wt%, balance is rare earth oxide
  • the calcium oxide powder was coated, and the sum of the above components was 100%.
  • the above raw material may further include a mineralizer of 0.01 to 20% by weight.
  • the mineralizer is one or a combination of Zr0 2 and Y 2 0 3 in any mass ratio.
  • the plasticizer is prepared from the following raw materials by weight: paraffin wax 50 ⁇ 80 wt%, beeswax 10 ⁇ 40 wt% oleic acid is 5 ⁇ 10 wt%.
  • the invention also provides a preparation method of a calcium oxide based ceramic core, the method comprising the following steps:
  • a rare earth oxide coated calcium oxide powder is prepared, and the specific steps are as follows:
  • Step 1 Preparing a calcium oxide suspension: adding a nonionic surfactant to the absolute ethanol to form a first mixed solution containing 0.1 to lkg of a nonionic surfactant per 10 L of absolute ethanol; adding calcium oxide powder to In the first mixed solution, a calcium oxide suspension is prepared by stirring;
  • Step 2 Preparation of rare earth oxide precursor solution: Mixing zirconium oxychloride and inorganic cerium salt in any proportion as a rare earth oxide precursor, weighing zirconium oxychloride and inorganic cerium salt into a container containing absolute ethanol Heating, adding hydrogen peroxide, stirring to prepare a rare earth oxide precursor solution;
  • Step 3 adding a rare earth oxide precursor solution to the calcium oxide suspension, and stirring to obtain a second mixed solution;
  • Step 4 adding ammonia water to the second mixed solution to adjust the pH of the solution to 8 to 11 to obtain a third mixed solution.
  • Step 5 drying the third mixed solution to obtain a dried powder;
  • Step 6 Sintering the dried powder at a sintering temperature of 500 to 1600 ° C for 0.5 to 20 hours. Finally, a powder of rare earth oxide-coated calcium oxide is obtained.
  • the calcium oxide powder is added in an amount of 10 to 20 kg of calcium oxide powder in 10 L of absolute ethanol.
  • the nonionic surfactant which may be in the form of polyethylene glycol, fatty alcohol polyoxyethylene ether, high carbon fatty alcohol polyoxyethylene ether, fatty acid polyoxyethylene ester, polyoxyethylene amine or polyoxyethylene amide.
  • the nonionic surfactant which may be in the form of polyethylene glycol, fatty alcohol polyoxyethylene ether, high carbon fatty alcohol polyoxyethylene ether, fatty acid polyoxyethylene ester, polyoxyethylene amine or polyoxyethylene amide.
  • the inorganic phosphonium salt may be cerium chloride or cerium nitrate.
  • the hydrogen peroxide is added in an amount of 00000. l ⁇ 0.5 kg of hydrogen peroxide per 10 L of the rare earth oxide precursor solution.
  • the rare earth oxide precursor solution has a molar mass percentage of 0.01 to 22 mol/L.
  • the second mixed solution wherein the ratio of the amount of the rare earth oxide precursor to the substance of the calcium oxide powder is 0.005 to 9.5.
  • the rare earth oxide coated calcium oxide powder and the plasticizer are heated to 50 to 130 ° C, and the mixture is mixed by stirring to obtain a calcium oxide based core material; or the rare earth oxide is coated and oxidized.
  • Calcium powder, plasticizer and mineralizer are heated to 50 ⁇ 130 ° C, and mixed by stirring to obtain a calcium oxide based core material;
  • the core material is shaped and sintered to obtain a calcium oxide-based ceramic core; the sintering temperature is 1100 to 1600 ° C, and the time is 0.5 to 20 h.
  • the calcium oxide-based ceramic core prepared by the invention has good hydration resistance, simple preparation process and low cost, and is suitable for industrial production. Attachment
  • FIG. 1 is a flow chart of a method for preparing a rare earth coated calcium oxide powder according to the present invention
  • Figure 2 is a comparative effect diagram of the ceramic sheets prepared by pure calcium oxide before and after the hydration test
  • Fig. 3 is a comparative effect diagram of the ceramic sheets prepared by the rare earth oxide-coated calcium oxide powder prepared in the examples before and after the hydration test.
  • Embodiment 1 A calcium oxide-based ceramic core is prepared by the preparation method provided by the present invention. Referring to FIG. 1, the following steps are specifically included:
  • Step 1 preparing a calcium oxide suspension: adding 0.1 kg of polyethylene glycol to 10 L of absolute ethanol to form a first mixed solution, adding lkg calcium oxide powder to the first mixed solution, and stirring to prepare a calcium oxide suspension;
  • Step 2 preparing a rare earth oxide precursor solution: taking a certain amount of zirconium oxychloride and heating it in a vessel containing absolute ethanol, adding a hydrogen peroxide solution having a mass percentage of 25%, and stirring to prepare a molar mass percentage Concentration is
  • Step 3 adding a zirconia precursor solution to the prepared calcium oxide suspension, and stirring to obtain a second mixed solution, wherein the ratio of the amount of the rare earth oxide precursor zirconium oxychloride to the calcium oxide powder is 9.5: 1 ;
  • Step 4 adding ammonia water to the second mixed solution and adjusting the pH value of the solution to 8 to obtain a third mixed solution; Step 5, drying the third mixed solution to obtain a dried powder, and selecting a drying condition to be a temperature of 80 ° C, Dry for 9 hours. Step 6. Sintering the dried powder, wherein the sintering temperature is 500 ° C and the time is 20 h. Finally get
  • the sintering time is 0.5 hours.
  • the sintering time is 0.5 hours.
  • the room temperature bending strength and high temperature bending strength of the prepared core are tested.
  • the test results are: room temperature bending strength is 40MPa, high temperature bending strength is 15MPa; high temperature deflection at 1500°C It is 0.1 mm; the firing shrinkage is 0.4%; the porosity is 40%;
  • the hydrated calcium oxide based ceramic core prepared above is placed in a constant temperature and humidity chamber at 26 ° C and a humidity of 98 %.
  • the hydration time is 1, 5, 10, 15, and 20 days, respectively, and then the coated powder ceramics after the hydration experiment are weighed, and the weight changes of the coated ceramic sheets before and after the comparison are compared (see Table). 1 shown).
  • Table 1 Results of hydration experiments It can be seen from Table 1 that the prepared water-resistant calcium oxide-based ceramic core has a weight gain rate of only 0.11% after 20 days of hydration test, and has a good anti-hydration effect, and can satisfy the titanium alloy precision casting. Demand. It can be seen from the changes of the morphology of Fig. 2 and Fig. 3: The ceramic sheets prepared by the rare earth oxide coated calcium oxide powder can maintain a relatively complete morphology after the hot steam test at 100 ° C for 10 min; The ceramic sheets prepared by the pure calcium oxide are highly hydrated and have an irregular shape. It is indicated that the rare earth oxide coated calcium oxide powder prepared by the invention has good hydration resistance.
  • Embodiment 2 Preparing a calcium oxide-based ceramic core by using the preparation method provided by the present invention, specifically comprising the following steps:
  • Step 1 Preparing a calcium oxide suspension: adding 1 kg of polyoxyethyleneamine to 10 L of absolute ethanol to form a first mixed solution, adding 20 kg of calcium oxide powder to the first mixed solution, and stirring to prepare a calcium oxide suspension;
  • Step 2 preparing a rare earth oxide precursor solution: taking a certain amount of barium chloride and heating it in a container containing absolute ethanol, adding a hydrogen peroxide solution having a mass percentage of 20%, and stirring to prepare a molar mass percentage of O .Olmol/L cerium oxide precursor solution;
  • Step 3 adding a cerium oxide precursor solution to the prepared calcium oxide suspension, and stirring to obtain a second mixed solution, wherein the ratio of the amount of cerium chloride to the amount of the calcium oxide powder is 0.005 : 1
  • Step 4 adding ammonia water to the second mixed solution and adjusting the pH value of the solution to 11 to obtain a third mixed solution; Step 5, drying the third mixed solution to obtain a dried powder, and selecting a drying condition to be a temperature of 100 ° C, Dry for 10 hours.
  • Step 6 The baking powder is sintered, wherein the sintering temperature is 1600 ° C and the time is 0.5 h. Finally, 20.202 kg of cerium oxide coated calcium oxide powder was obtained.
  • Step 7 Mix 20.202 kg of rare earth oxide coated calcium oxide powder, 6.216 kg of zirconia, 3.73 kg of paraffin, 0.466 kg of beeswax, and 0.466 kg of oleic acid to 120 ° C to mix the core materials.
  • the calcium oxide based core material is obtained.
  • Step 8 Modeling and sintering the core material to obtain a calcium oxide-based ceramic core.
  • the sintering temperature was 1400 °C.
  • the room temperature bending strength and high temperature bending strength of the prepared core are tested.
  • the test results are: room temperature bending strength is 38MPa, high temperature bending strength is 13MPa; high temperature deflection at 1500 °C
  • the ratio of the firing shrinkage is 0.23%; the porosity is 33%; and the hydrated calcium oxide-based ceramic core prepared above is placed in a constant temperature and humidity chamber at 26 ° C and a humidity of 98 %.
  • the hydration time was 1, 5, 10, 15, and 20 days, respectively, and then the coated powder ceramics after the hydration experiment were weighed, and the weight changes of the coated ceramic sheets before and after the comparison were compared (see Table). 2)).
  • the prepared water-resistant calcium oxide-based ceramic core has a weight gain rate of only 0.67% after 20 days of hydration test, and has a good anti-hydration effect, and can satisfy the titanium alloy precision casting. Demand.
  • Example 3 Preparing a calcium oxide-based ceramic core by the preparation method provided by the present invention, specifically comprising the following steps:
  • Step 1 Preparation of calcium oxide suspension: 0.5 kg of fatty acid polyoxyethylene ester is added to 10 L of absolute ethanol to form a first mixed solution, 7 kg of calcium oxide powder is added to the first mixed solution, and a calcium oxide suspension is prepared by stirring. ;
  • Step 2 preparing a rare earth oxide precursor solution: a mixture of zirconium oxychloride and cerium nitrate is placed in a water bath heated in a vessel containing absolute ethanol, and a hydrogen peroxide solution having a mass percentage of 20% is added, and the mixture is stirred to prepare a molar solution. a zirconia/yttria precursor solution having a mass percentage concentration of 5 mol/L;
  • Step 3 adding a zirconia/yttria precursor solution to the prepared calcium oxide suspension, and stirring to obtain a second mixed solution, wherein the ratio of the amount of the zirconium oxychloride, the cerium nitrate and the calcium oxide powder is 0.5 : 1;
  • Step 4 adding ammonia water to the second mixed solution and adjusting the pH value of the solution to 9 to obtain a third mixed solution; Step 5, drying the third mixed solution to obtain a dried powder; selecting drying conditions is a temperature of 60 ° C, Drying for 12 hours; Step 6. Sintering the dried powder, wherein the sintering temperature is 1300 ° C, and the time is 12 h.
  • Step VII 36.5 kg of rare earth oxide coated with calcium oxide powder, 2.281 kg of oxygen Zirconium oxide, 2.281kg cerium oxide, 3.421kg paraffin wax, 0.913kg beeswax, 0.228kg oleic acid heated to 50 ° C, the core material is mixed to obtain a calcium oxide based core material;
  • Step 8 The core is shaped and sintered to obtain a calcium oxide-based ceramic core, and the sintering temperature is 1100 °C.
  • room temperature bending strength and high temperature bending strength of the prepared core are tested.
  • the test results are: room temperature bending strength is 33 MPa, high temperature bending strength is lOMPa; high temperature deflection at 1500 °C For
  • the hydrated calcium oxide-based ceramic core prepared above is placed in a constant temperature and humidity chamber at 26 ° C and 98% humidity.
  • the hydration time was 1, 5, 10, 15, and 20 days, respectively. Then, the coated powder ceramic sheets after the hydration experiment were weighed, and the weight changes of the coated powder ceramic sheets were compared (see Table 3). Shown).
  • the prepared water-resistant calcium oxide-based ceramic core has a weight gain rate of only 0.030% after 20 days of hydration test, and has a good anti-hydration effect, and can satisfy the titanium alloy precision casting. Demand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

一种氧化钙基陶瓷型芯及其制备方法,属于钛合金精密铸造领域,所述制备方法首先制备稀土氧化物包覆氧化钙粉体,然后对所述粉体进行造型、烧结、最后制得氧化钙基陶瓷型芯,所述型芯由下述重量百分比组成的原料制备而成:增塑剂5-15wt%,矿化剂0.001-20wt%,余量为稀土氧化物包覆氧化钙粉体,上述组分之和为100wt%,通过该方法制备出的氧化钙基陶瓷型芯具备优良的力学性能,而且能够有效克服氧化钙遇水易水化的缺点。

Description

一种氧化钙基陶瓷型芯及其制备方法
技 术 领 域
本发明涉及一种氧化钙基型芯及其制备方法, 属于钛合金精密铸造技术领域。 背 景 技 术
合金铸件的复杂内腔主要通过使用预制的陶瓷型芯来成型, 并待铸件铸成后设法脱除。 其工艺流程如下: 陶芯制备、 含陶芯的蜡模制备、 制壳、 型壳脱蜡和焙烧、 合金浇铸、 脱芯。 随着我国发展大型飞机项目和各种新型发动机研制项目的启动, 钛合金精密铸件的形体和结 构越来越复杂, 往往带有复杂内腔, 对型芯的综合性能尤其是脱芯性能提出了更高的要求。
目前, 研究较为广泛的氧化铝、 氧化硅基陶瓷型芯, 因型芯材料不具备对熔融钛合金良 好的化学反应惰性且脱芯困难不适合应用于钛合金精铸领域。 氧化钙因具有对熔融钛合金良 好的化学反应惰性以及优良的脱芯性能而引起了相关科研人员的关注, 如公开号 CN 102531648 A的中国发明专利申请公开了一种钛合金铸造用氧化钙基体陶瓷型芯及制备方法, 其包括有下列重量百分比的成分: 1.0〜15%的二氧化锆、 0.5〜10.0%的氧化钇、 0.05〜0.1% 的氧化钍和余量的氧化钙。 该专利中氧化钙的含量为 74.9〜98.45wt%, 由于在钛合金精密 铸造工艺较为复杂, 从含陶芯的蜡模制备到合金的浇注时间一般均在两周以上, 型芯在使用 过程中要与水基涂料相接触。 上述专利制备出的型芯遇水后即发生水化反应而造成型芯的溃 散, 因此, 上述型芯难以实际应用于钛合金精密铸造领域。 公开号 CN 1793033 A的中国发 明专利申请公开了一种钛合金精密铸造用陶瓷型芯材料, 主体成分为氧化锆, 其含量为 60〜85wt%, 其中氧化钙的含量为 4〜20wt%。 目前, 型芯的脱芯工艺主要有: 机械力破坏 脱芯、 化学腐蚀脱芯、 机械力破坏与化学腐蚀相结合脱芯, 对于复杂形状的型芯很难进行机 械力破坏脱除只能采用化学腐蚀脱芯方法。 上述型芯中氧化锆的含量较多, 氧化锆又是一种 稳定的化合物, 不溶于酸碱溶液, 因此, 型芯的脱芯困难, 且由于型芯中含有一定量的氧化 钙, 型芯同样面临着在使用过程中水化问题。 钛合金精密铸造工艺复杂、 生产周期较长, 在制壳等工序中型芯要与含水的涂料接触, 而氧化钙陶瓷型芯吸水后会生成粉末状的氢氧化钙使型芯溃散而不能继续使用。 因此, 开发 一种具有抗水化效果的氧化钙基陶瓷型芯是钛工业实际生产中的需要。 发 明 内 容
本发明的目的之一是提供一种钛合金精密铸造用的氧化钙基陶瓷型芯, 由下述重量百分 比组成的原料制备而成: 增塑剂 5〜15 wt%、 余量为稀土氧化物包覆氧化钙粉体, 上述组分 之和为 100%。 上述原料中还可以包括矿化剂 0.01〜20wt%。
所述的矿化剂为 Zr02、 Y203中的一种或者两种以任意质量比混合组成。
所述的增塑剂由下述重量百分比组成的原料制备而成: 石蜡 50〜80 wt%、 蜂蜡 10〜40 wt% 油酸为 5〜10 wt%。
本发明还提供一种氧化钙基陶瓷型芯的制备方法, 该方法包括如下步骤:
第一步, 制备稀土氧化物包覆氧化钙的粉体, 具体步骤如下:
步骤一: 制备氧化钙悬浮液: 将非离子表面活性剂加入到无水乙醇中形成第一混合溶液, 其中每 10L无水乙醇中含有 0.1〜lkg非离子表面活性剂; 将氧化钙粉加入到第一混合溶液 中, 搅拌制备出氧化钙悬浮液;
步骤二: 制备稀土氧化物前驱体溶液: 将氧氯化锆和无机钇盐以任何比例混合作为稀土 氧化物前驱体, 称取氧氯化锆和无机钇盐放入盛有无水乙醇的容器中加热, 加入过氧化氢, 搅拌制备稀土氧化物前驱体溶液;
步骤三: 将稀土氧化物前驱体溶液加入到氧化钙悬浮液中, 搅拌得到第二混合溶液; 步骤四: 将氨水加入第二混合溶液中调整溶液的 PH值至 8〜11得到第三混合溶液; 步骤五: 烘干第三混合溶液得到烘干粉体;
步骤六: 将烘干粉体进行烧结, 烧结温度为 500〜1600°C, 时间为 0.5〜20h。 最终得到 稀土氧化物包覆氧化钙的粉体。
所述的氧化钙粉, 其加入量是 10L无水乙醇中加入 l〜20kg氧化钙粉。
所述的非离子表面活性剂, 它可以是聚乙二醇、 脂肪醇聚氧乙烯醚、 高碳脂肪醇聚氧乙 烯醚、 脂肪酸聚氧乙烯酯、 聚氧乙烯胺或聚氧乙烯酰胺中的一种。
所述的无机钇盐可以为氯化钇、 硝酸钇。
所述的过氧化氢, 加入量为每配制 10L稀土氧化物前驱体溶液加入 00000. l〜0.5kg过氧 化氢。 所述的稀土氧化物前驱体溶液, 它的摩尔质量百分比浓度为 0.01〜22mol/L。 所述的第二混合溶液, 其中稀土氧化物前驱体与氧化钙粉体的物质的量之比为: 0.005〜9.5。
第二步, 将稀土氧化物包覆氧化钙的粉体和增塑剂加热至 50〜130°C, 通过搅拌将其混 合均勾得到氧化钙基型芯材料; 或者将稀土氧化物包覆氧化钙的粉体、 增塑剂和矿化剂加热 至 50〜130°C, 通过搅拌将其混合均勾得到氧化钙基型芯材料;
第三步、 对型芯材料进行造型、 烧结得到氧化钙基陶瓷型芯; 所述烧结温度为 1100〜 1600°C, 时间为 0.5〜20h。
本发明制备出的氧化钙基陶瓷型芯具备良好的抗水化性能, 且制备工艺简单、 成本较低, 适合工业化生产。 附 图 说 明
图 1为本发明中稀土包覆氧化钙粉体制备方法流程图;
图 2 为纯氧化钙制备的陶瓷片的水化试验前后对比效果图;
图 3 为实施例中制备的稀土氧化物包覆氧化钙粉体制备的陶瓷片的水化试验前后对比 效果图。
具 体 实 施 方 式
实施例 1 : 采用本发明提供的制备方法制备氧化钙基陶瓷型芯, 参见图 1, 具体包括如 下步骤:
步骤一、 制备氧化钙悬浮液: 将 0.1kg聚乙二醇加入到 10L无水乙醇中形成第一混合溶 液, 将 lkg氧化钙粉加入到第一混合溶液中, 搅拌制备出氧化钙悬浮液;
步骤二、 制备稀土氧化物前驱体溶液: 取一定量的氧氯化锆放入盛有无水乙醇的容器中 中加热, 加入质量百分比浓度为 25 %的过氧化氢溶液, 搅拌制备摩尔质量百分比浓度为
22mol/L的氧化锆前驱体溶液;
步骤三、 将氧化锆前驱体溶液加入到制备好的氧化钙悬浮液中, 搅拌得到第二混合溶液, 其中稀土氧化物前驱体氧氯化锆与氧化钙粉的物质的量之比为 9.5:1 ;
步骤四、 将氨水加入第二混合溶液中并调整溶液的 PH值至 8得到第三混合溶液; 步骤五、 烘干第三混合溶液得到烘干粉体, 选择烘干条件为温度 80°C, 烘干 9小时。 步骤六、 将烘干粉体进行烧结, 其中烧结温度为 500°C, 时间为 20h。 最终得到
20.866kg稀土氧化物包覆氧化钙的粉体; 步骤七: 将 20.866kg的稀土氧化物包覆氧化钙的粉体、 0.062kg氧化锆、 0.549kg的石蜡、 0.439kg的蜂蜡、 0.110kg的油酸加热至 50°C, 通过机械搅拌和超声搅拌等方式混合均勾得到 氧化钙基型芯材料;
步骤八: 对型芯材料进行造型、 烧结得到氧化钙基陶瓷型芯, 烧结温度为 1100°C, 烧结 时间为 0. 5小时。
按照航空标准的要求对制备出的型芯的室温抗弯强度、 高温抗弯强度等性能进行测试, 测试结果为: 室温抗弯强度为 40MPa、 高温抗弯强度为 15MPa; 1500°C时高温挠度为 0.1mm; 烧成收缩率为 0.4 % ; 孔隙率为 40 % ; 对上述制备得的抗水化型氧化钙基陶瓷型芯置于 26°C、 湿度为 98 %的恒温恒湿箱中进行水化实验, 水化时间分别是 1、 5、 10、 15、 20天, 随后将 水化实验后的包覆粉体陶瓷片称重, 对比前后包覆粉体陶瓷片的重量变化 (见表 1所示) 。
表 1 水化实验结果
Figure imgf000006_0001
从表 1可见, 制备出的抗水化型氧化钙基陶瓷型芯经过 20天的水化实验后重量增重率 仅为 0.11 %, 具有很好的抗水化效果, 能够满足钛合金精密铸造的需求。 从图 2和图 3的形 貌变化可以看出: 稀土氧化物包覆氧化钙粉体制备的陶瓷片经过 100°C、 lOmin的热蒸汽实 验后仍能保持较为完整的形貌; 而对比试验中的纯氧化钙制备的陶瓷片水化严重, 呈不规则 形状。 说明本发明制备得到的稀土氧化物包覆氧化钙粉体具有很好的抗水化性能。
实施例 2: 采用本发明提供的制备方法制备氧化钙基陶瓷型芯, 具体包括如下步骤:
步骤一、 制备氧化钙悬浮液: 将 lkg聚氧乙烯胺加入到 10L无水乙醇中形成第一混合溶 液, 将 20kg氧化钙粉加入到第一混合溶液中, 搅拌制备出氧化钙悬浮液;
步骤二、 制备稀土氧化物前驱体溶液: 取一定量氯化钇放入盛有无水乙醇的容器中加热, 加入质量百分比浓度为 20 %的过氧化氢溶液, 搅拌制备摩尔质量百分比浓度为 O.Olmol/L的 氧化钇前驱体溶液;
步骤三、 将氧化钇前驱体溶液加入到制备好的氧化钙悬浮液中, 搅拌得到第二混合溶液, 其中氯化钇与氧化钙粉的物质的量之比为 0.005 : 1
步骤四、 将氨水加入第二混合溶液中并调整溶液的 PH值至 11得到第三混合溶液; 步骤五、 烘干第三混合溶液得到烘干粉体, 选择烘干条件为温度 100°C, 烘干 10小时。 步骤六、 将烘干粉体进行烧结, 其中烧结温度为 1600°C, 时间为 0.5h。 最终得到 20.202kg氧化钇包覆氧化钙的粉体。
步骤七、 将 20.202kg的稀土氧化物包覆氧化钙的粉体、 6.216kg的氧化锆、 3.73kg的石 蜡、 0.466kg的蜂蜡、 0.466kg的油酸加热至 120°C, 使型芯材料混合均勾得到氧化钙基型芯 材料。
步骤八、 对型芯材料进行造型、 烧结得到氧化钙基陶瓷型芯。 所述烧结的温度为 1400°C。 按照航空标准的要求对制备出的型芯的室温抗弯强度、 高温抗弯强度等性能进行测试, 测试结果为: 室温抗弯强度为 38MPa、 高温抗弯强度为 13MPa ; 1500 °C时高温挠度为 0.11mm; 烧成收缩率为 0.23 % ; 孔隙率为 33 % ; 对上述制备得的抗水化型氧化钙基陶瓷型 芯置于 26°C、 湿度为 98 %的恒温恒湿箱中进行水化实验, 水化时间分别是 1、 5、 10、 15、 20 天, 随后将水化实验后的包覆粉体陶瓷片称重, 对比前后包覆粉体陶瓷片的重量变化 (见表 2所示) 。
表 2水化实验结果
Figure imgf000007_0001
从表 2可见, 制备出的抗水化型氧化钙基陶瓷型芯经过 20天的水化实验后重量增重率 仅为 0.67 %, 具有很好的抗水化效果, 能够满足钛合金精密铸造的需求。
实施例 3 : 采用本发明提供的制备方法制备氧化钙基陶瓷型芯, 具体包括如下步骤:
步骤一、 制备氧化钙悬浮液: 将 0.5kg脂肪酸聚氧乙烯酯加入到 10L无水乙醇中形成第 一混合溶液, 将 7kg氧化钙粉加入到第一混合溶液中, 搅拌制备出氧化钙悬浮液;
步骤二、 制备稀土氧化物前驱体溶液: 取氧氯化锆和硝酸钇的混合物放入盛有无水乙醇 的容器中水浴加热, 加入质量百分比浓度为 20 %的过氧化氢溶液, 搅拌制备摩尔质量百分 比浓度为 5mol/L的氧化锆 /氧化钇前驱体溶液;
步骤三、 将氧化锆 /氧化钇前驱体溶液加入到制备好的氧化钙悬浮液中, 搅拌得到第二 混合溶液, 其中氧氯化锆、 硝酸钇与氧化钙粉的物质的量之比均为 0.5 : 1;
步骤四、 将氨水加入第二混合溶液中并调整溶液的 PH值至 9得到第三混合溶液; 步骤五、 烘干第三混合溶液得到烘干粉体; 选择烘干条件为温度 60°C, 烘干 12小时; 步骤六、 将烘干粉体进行烧结, 其中烧结温度为 1300°C, 时间为 12h。 最终得到氧化锆 氧化钇包覆氧化钙的粉体; 步骤七、 将 36.5kg的稀土氧化物包覆氧化钙的粉体、 2.281kg氧 化锆、 2.281kg氧化钇、 3.421kg的石蜡、 0.913kg的蜂蜡、 0.228kg的油酸加热至 50°C, 使型 芯材料混合均勾得到氧化钙基型芯材料;
步骤八、 对型芯进行造型烧结得到氧化钙基陶瓷型芯, 烧结温度为 1100°C。
按照航空标准的要求对制备出的型芯的室温抗弯强度、 高温抗弯强度等性能进行测试, 测试结果为: 室温抗弯强度为 33MPa、 高温抗弯强度为 lOMPa; 1500°C时高温挠度为
0.22mm; 烧成收缩率为 0.43 % ; 孔隙率为 49 % ; 对上述制备得的抗水化型氧化钙基陶瓷型 芯置于 26°C、 湿度为 98 %的恒温恒湿箱中进行水化实验, 水化时间分别是 1、 5、 10、 15、 20天, 随后将水化实验后的包覆粉体陶瓷片称重, 对比前后包覆粉体陶瓷片的重量变化 (见表 3所示) 。
表 3 水化实验结果
Figure imgf000008_0001
从表 3可见, 制备出的抗水化型氧化钙基陶瓷型芯经过 20天的水化实验后重量增重率 仅为 0.030 %, 具有很好的抗水化效果, 能够满足钛合金精密铸造的需求。

Claims

权 利 要 求 书
1、 一种氧化钙基陶瓷型芯, 其特征在于: 由下述重量百分比组成的原料制备而成: 增 塑剂 5〜15 wt%、 余量为稀土氧化物包覆氧化钙粉体。
2、 根据权利要求 1 所述的一种氧化钙基陶瓷型芯, 其特征在于: 所述的原料中还包括 矿化剂 0.01〜20wt%。
3、 根据权利要求 2所述的一种氧化钙基陶瓷型芯, 其特征在于: 所述的矿化剂为 Zr02、 Y203中的一种或者两种以任意质量比混合组成。
4、 根据权利要求 1 所述的一种氧化钙基陶瓷型芯, 其特征在于: 所述的增塑剂由下述 重量百分比组成的原料制备而成: 石蜡 50〜80 wt%、 蜂蜡 10〜40 wt%、 油酸为 5〜10 wt%。
5、 根据权利要求 1 所述的一种氧化钙基陶瓷型芯, 其特征在于: 一种稀土氧化物包覆 氧化钙粉体, 内部为氧化钙, 外层为稀土氧化物包覆; 所述的稀土氧化物为氧化锆、 或氧化 钇, 或者二者的混合。
6、 一种权利要求 1所述的氧化钙基陶瓷型芯的制备方法, 其特征在于, 包括如下步骤: 步骤一、 制备稀土氧化物包覆氧化钙的粉体;
步骤二、 将稀土氧化物包覆氧化钙的粉体和增塑剂加热至 50〜130°C, 通过搅拌将其混 合均勾得到氧化钙基型芯材料; 或者将稀土氧化物包覆氧化钙的粉体、 增塑剂和矿化剂加热 至 50〜130°C, 通过搅拌将其混合均勾得到氧化钙基型芯材料;
步骤三、 对型芯材料进行造型、 烧结得到氧化钙基陶瓷型芯; 所述烧结温度为 1100〜 1600°C, 时间为 0.5〜20h。
7、 根据权利要求 6所述的制备方法, 其特征是: 所述的步骤一具体包括如下步骤: 步骤一、 制备氧化钙悬浮液: 将非离子表面活性剂加入到无水乙醇中形成第一混合溶液, 其中每 10L无水乙醇中含有 0.1〜lkg非离子表面活性剂; 将氧化钙粉加入到第一混合溶液 中, 搅拌制备出氧化钙悬浮液; 氧化钙粉的加入量是每 10L无水乙醇中加入 l〜20kg;
步骤二、 制备稀土氧化物前驱体溶液: 将氧氯化锆和无机钇盐以任何比例混合作为稀土 氧化物前驱体, 称取氧氯化锆和无机钇盐放入盛有无水乙醇的容器中加热, 加入过氧化氢, 搅拌制备稀土氧化物前驱体溶液;
步骤三、 将稀土氧化物前驱体溶液加入到氧化钙悬浮液中, 搅拌得到第二混合溶液; 步骤四、 将氨水加入第二混合溶液中调整溶液的 PH值至 8〜11得到第三混合溶液; 步骤五、 烘干第三混合溶液得到烘干粉体;
步骤六、 将烘干粉体进行烧结得到稀土氧化物包覆氧化钙的粉体。
8、 根据权利要求 7所述的制备方法, 其特征在于: 所述的非离子型表面活性剂, 是聚 乙二醇、 脂肪醇聚氧乙烯醚、 高碳脂肪醇聚氧乙烯醚、 脂肪酸聚氧乙烯酯、 聚氧乙烯胺或聚 氧乙烯酰胺中的一种。
9、 根据权利要求 7所述的制备方法, 其特征在于: 所述的无机钇盐为氯化钇或硝酸钇。
10、 根据权利要求 7所述的制备方法, 其特征在于: 所述的过氧化氢, 加入量为每配制 10L稀土氧化物前驱体溶液加入 00000. l〜0.5kg过氧化氢。
11、 根据权利要求 7所述的制备方法, 其特征在于: 所述的稀土氧化物前驱体溶液, 它 的摩尔质量百分比浓度为 0.01〜22mol/L。
12、 根据权利要求 7所述的稀土氧化物包覆氧化钙粉体的制备方法, 其特征在于: 所述 的第二混合溶液, 其中稀土氧化物前驱体与氧化钙粉的物质的量之比为: 0.005〜9.5。
13、 根据权利要求 7所述的稀土氧化物包覆氧化钙粉体的制备方法, 其特征在于: 步骤 六中所述的烧结, 温度为 500〜1600°C, 时间为 0.5〜20h。
PCT/CN2013/076526 2012-10-25 2013-05-31 一种氧化钙基陶瓷型芯及其制备方法 WO2014063491A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/374,919 US9308579B2 (en) 2012-10-25 2013-05-31 Calcium oxide-based ceramic core and preparation method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210413062.6 2012-10-25
CN2012104130626A CN102936140A (zh) 2012-10-25 2012-10-25 一种稀土氧化物包覆氧化钙粉体的制备方法
CN201210413334.2A CN102924062B (zh) 2012-10-25 2012-10-25 一种氧化钙基陶瓷型芯的制备方法
CN201210413334.2 2012-10-25

Publications (1)

Publication Number Publication Date
WO2014063491A1 true WO2014063491A1 (zh) 2014-05-01

Family

ID=50543953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/076526 WO2014063491A1 (zh) 2012-10-25 2013-05-31 一种氧化钙基陶瓷型芯及其制备方法

Country Status (2)

Country Link
US (1) US9308579B2 (zh)
WO (1) WO2014063491A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108178627A (zh) * 2016-12-08 2018-06-19 辽宁法库陶瓷工程技术研究中心 一种氧化钇稳定氧化锆陶瓷型芯的制备方法
CN108484178A (zh) * 2018-03-01 2018-09-04 辽宁航安特铸材料有限公司 一种水溶性陶瓷型芯增塑剂的制备方法及其应用
CN115583831B (zh) * 2022-10-26 2023-05-26 中国地质大学(武汉) 一种基于微挤出3d打印技术快速成形的氧化钙基陶瓷型芯及其制备方法
CN115677327B (zh) * 2022-10-26 2023-05-26 中国地质大学(武汉) 一种内部流道构件用的水溶性氧化钙基支撑型芯及其制备方法
CN115673241A (zh) * 2022-10-26 2023-02-03 华中科技大学 一种可溶性陶瓷壳或陶瓷芯的材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088312A1 (en) * 2005-06-15 2009-04-02 Tokuyama Corporation Aluminum Nitride Sinter, Slurry, Green Object, and Degreased Object
CN102531584A (zh) * 2010-12-20 2012-07-04 苏州中锆新材料科技有限公司 高性能陶瓷材料掺镧的制备方法
CN102557622A (zh) * 2010-12-20 2012-07-11 苏州中锆新材料科技有限公司 氧化钙烧结的高性能氧化钪陶瓷材料的制备方法
CN102924062A (zh) * 2012-10-25 2013-02-13 北京航空航天大学 一种氧化钙基陶瓷型芯的制备方法
CN102936140A (zh) * 2012-10-25 2013-02-20 北京航空航天大学 一种稀土氧化物包覆氧化钙粉体的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204674B1 (en) * 1985-06-06 1991-12-27 Remet Corporation Casting of reactive metals into ceramic molds
US5535811A (en) * 1987-01-28 1996-07-16 Remet Corporation Ceramic shell compositions for casting of reactive metals
CN1793033A (zh) * 2005-11-29 2006-06-28 辽宁省轻工科学研究院 钛合金精铸用陶瓷型芯材料
JP5632136B2 (ja) * 2009-03-27 2014-11-26 スズキ株式会社 崩壊性鋳型及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090088312A1 (en) * 2005-06-15 2009-04-02 Tokuyama Corporation Aluminum Nitride Sinter, Slurry, Green Object, and Degreased Object
CN102531584A (zh) * 2010-12-20 2012-07-04 苏州中锆新材料科技有限公司 高性能陶瓷材料掺镧的制备方法
CN102557622A (zh) * 2010-12-20 2012-07-11 苏州中锆新材料科技有限公司 氧化钙烧结的高性能氧化钪陶瓷材料的制备方法
CN102924062A (zh) * 2012-10-25 2013-02-13 北京航空航天大学 一种氧化钙基陶瓷型芯的制备方法
CN102936140A (zh) * 2012-10-25 2013-02-20 北京航空航天大学 一种稀土氧化物包覆氧化钙粉体的制备方法

Also Published As

Publication number Publication date
US9308579B2 (en) 2016-04-12
US20150239037A1 (en) 2015-08-27

Similar Documents

Publication Publication Date Title
CN102924062B (zh) 一种氧化钙基陶瓷型芯的制备方法
WO2014063491A1 (zh) 一种氧化钙基陶瓷型芯及其制备方法
CN102990006B (zh) 一种用于钛及钛合金精密铸造的型壳及其制备方法
CN102151787A (zh) 600℃高温钛合金熔模铸造型壳面层涂料及其制备方法
CN102284678A (zh) 一种精密铸造钛合金的模壳制备方法
CN106116533A (zh) 高孔隙率氧化铝基陶瓷型芯的制备方法
CN108424124B (zh) 一种氧化镁晶须原位合成尖晶石增强氧化镁基坩埚及其制备方法
CN105418164B (zh) 表面涂覆钇稳定氧化锆涂层的碳化硅陶瓷窑具的制备方法
CN103128227B (zh) 用于不锈钢精密铸造的型壳面层制造方法
CN110357642A (zh) 光固化3d打印用浆料、制备方法及氮化硅陶瓷
CN107159869A (zh) 一种用于易氧化金属的熔模精密铸造型壳的制备方法
CN102936140A (zh) 一种稀土氧化物包覆氧化钙粉体的制备方法
CN102266906B (zh) 一种易脱除陶瓷型芯的制备方法
CN108546093B (zh) 一种氧化铝短纤增强氧化镁基坩埚及其制备方法
CN110078477B (zh) 一种氧化镁陶瓷型芯及其制备方法
CN101698607B (zh) 一种环保型凝胶注膜成型制备氧化铝基陶瓷材料的方法
CN104072112B (zh) 一种稀土包覆氧化铝基陶瓷型芯
CN110125326B (zh) 一种钛合金熔模精密铸造用复合涂料、面层涂料及其制备方法与应用
CN104129975B (zh) 一种稀土包覆氧化钙基陶瓷型芯
CN106083005A (zh) 高孔隙率易脱除硅基陶瓷型芯制备方法
CN114044695B (zh) 一种多孔陶瓷材料及其制备方法
CN107188545A (zh) 一种利用硅溶胶复配物混悬注浆制备氧化铝日用陶瓷坯的方法
CN107721450A (zh) 一种多孔陶瓷材料的制备方法
CN103964851B (zh) 一种钛合金精密铸造用包覆型碳化硼基陶瓷型芯及其制备方法
CN107010933A (zh) 一种熔模铸件用型芯的浆料制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13848970

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14374919

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13848970

Country of ref document: EP

Kind code of ref document: A1