CN106098687B - 一种三维功率vdmos器件及其集成方法 - Google Patents

一种三维功率vdmos器件及其集成方法 Download PDF

Info

Publication number
CN106098687B
CN106098687B CN201610624812.2A CN201610624812A CN106098687B CN 106098687 B CN106098687 B CN 106098687B CN 201610624812 A CN201610624812 A CN 201610624812A CN 106098687 B CN106098687 B CN 106098687B
Authority
CN
China
Prior art keywords
layer
tsv
hole
chip
chip layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610624812.2A
Other languages
English (en)
Other versions
CN106098687A (zh
Inventor
林洁馨
傅兴华
马奎
杨发顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201610624812.2A priority Critical patent/CN106098687B/zh
Publication of CN106098687A publication Critical patent/CN106098687A/zh
Application granted granted Critical
Publication of CN106098687B publication Critical patent/CN106098687B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3677Wire-like or pin-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5384Conductive vias through the substrate with or without pins, e.g. buried coaxial conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本发明公开了一种三维功率VDMOS器件及其集成方法,它包括功率单元和芯片层,所述芯片层有二个以上,每个芯片层上均匀分布有二个以上的功率单元,每个功率单元外围设置有独立的终端,每个功率单元外围设置有层间导电互连的TSV通孔,各个芯片层堆叠在一起形成三维功率VDMOS器件;解决了VDMOS器件采用平面集成工艺存在的器件面积随着电流容量增大而增大,严重影响功率系统的集成度,同时信号延迟时间及互连线功耗比重也将越来越大等技术问题。

Description

一种三维功率VDMOS器件及其集成方法
技术领域
本发明属于VDMOS器件集成技术,尤其涉及一种三维功率VDMOS器件及其集成方法。
背景技术
功率VDMOS器件作为电力电子设备中的主要元件之一,主要是用来实现电能的变换。是八十年代迅速发展起来的新型功率器件,它比双极型功率器件具有许多优良性能:高输入阻抗、低驱动电流、高速高频、负的电流温度系数、没有二次击穿等。而且VDMOS的漏极从背面引出,集成度更高于功率LDMOS,广泛地应用于各种高速开关电路、开关电源、高功率放大电路、射频功放电路、电力转换电路、电机变频调速、电机驱动、控制电路与功率负载之间的接口电路等。
目前,功率VDMOS器件的制作工艺还是沿用传统的平面集成工艺,器件有源层只存在于芯片表面几十微米内,这会导致器件面积随着电流容量增大而增大,严重影响功率系统的集成度,同时信号延迟时间及互连线功耗比重也将越来越大。随着晶体管特征尺寸的缩小,自上世纪60年代起推动信息技术革命的原则——摩尔定律正走向终结。
发明内容
本发明要解决的技术问题:提供一种三维功率VDMOS器件及其集成方法,以解决现有技术的VDMOS器件采用平面集成工艺存在的器件面积随着电流容量增大而增大,严重影响功率系统的集成度,同时信号延迟时间及互连线功耗比重也将越来越大等技术问题。
本发明技术方案:
一种三维功率VDMOS器件,它包括功率单元和芯片层,所述芯片层有二个以上,每个芯片层上均匀分布有二个以上的功率单元,每个功率单元外围设置有独立的终端,每个功率单元外围设置有层间导电互连的TSV通孔,各个芯片层堆叠在一起形成三维功率VDMOS器件。
所述功率单元外围设置有散热的TSV通孔。
每个芯片层之间有绝缘介质层,所述绝缘介质层为二氧化硅。
各个芯片层间的空隙处有填充胶。
所述的各个功率单元外围都设置有独立的终端,所述终端为场限环结构。
TSV通孔上方设有凸点。
所述三维功率VDMOS器件采用双层金属布线结构。
一种三维功率VDMOS器件的集成方法,它包括:
步骤1、将VDMOS器件的有源区制作在二个以上的芯片层上,每一芯片层上的元胞平均分成二个以上的功率单元;
步骤2、金属布线:将VDMOS器件采用双层金属布线,第一层金属布线将每个功率单元中元胞间的源极连接,将功率单元的栅极引出,第二层金属布线将功率单元间的源极和栅极连接;
步骤3、芯片层表面平坦化处理:在完成金属布线后的芯片层上淀积钝化层,然后采用物理化学抛光工艺将芯片层表面平坦化处理;
步骤4、刻蚀TSV通孔:在芯片层的功率单元预留处刻蚀出二个以上的TSV通孔,TSV通孔的直径按照芯片层从上至下的顺序逐渐增大;
步骤5、TSV通孔填满:采用低温CVD工艺在TSV通孔中淀积绝缘介质层,深槽溅射生长阻挡层及种子层,然后电镀Cu将TSV通孔填满;
步骤6、芯片层表面铜抛光:采用物理化学抛光工艺将电镀在芯片层表面的铜抛掉,并将芯片层表面平坦化;
步骤7、芯片层正表面氧化:采用低温CVD工艺在平坦化处理后的芯片层正表面上淀积氧化层;
步骤8、芯片层背面氧化:对芯片层的背面进行减薄及抛光将TSV通孔底部露出,并用低温CVD工艺在芯片层背面淀积氧化层;
步骤9、芯片层正面TSV通孔上方及栅、源极金属上方的氧化层刻蚀接触孔:将芯片层正表面TSV上方的氧化层及用于层间栅极和源极互连的TSV通孔周围的金属上方的氧化层刻蚀出接触孔;
步骤10、TSV通孔电镀金:溅射生长阻挡层及种子层,并匀胶保护不需要金属互连的地方,然后电镀金将TSV通孔上方接触孔填满、将层间栅极和源极互连的TSV通孔与周围栅极及源极金属连接,最后去胶并腐蚀掉生长阻挡层及种子层,同时形成芯片正表面键合的凸点;
步骤11、芯片层背面TSV通孔及周围漏极上方刻蚀出接触孔:将芯片层背面TSV上方的氧化层及用于层间漏极互连的TSV通孔周围的漏极上方的氧化层刻蚀出接触孔;
步骤12、将芯片层背面TSV通孔与芯片层背面漏极互连:溅射生长阻挡层及种子层,并匀胶保护不需要金属互连的地方,然后电镀金将TSV通孔与漏极互连,同时形成键合的凸点,最后去胶,腐蚀掉阻挡层及种子层;
步骤13、用胶保护刻蚀栅极和源极的压焊点;
步骤14、将芯片层堆叠起来形成三维VDMOS器件。
步骤14所述将芯片层堆叠起来形成三维VDMOS器件,堆叠采用的方法为低温共晶键合技术。
所述的低温CVD工艺其温度在400°C以下,所述绝缘介质层为二氧化硅,所述生长阻挡层为Ti、Ta或TiN;所述种子层为铜。
本发明有益效果:
半导体行业路线图将遵循“超越摩尔定律”的战略,而本发明的三维集成技术将是“超越摩尔定律”应用的最好方法。三维集成是一种系统级的架构,它将多层平面芯片堆叠起来,然后通过键合引线或硅通孔(Through Silicon Via,TSV)来实现各层之间的互连,基于TSV的三维集成技术通过缩短全局互连长度,更大程度地改善信号传输速度和功耗特性。
本发明基于TSV的三维集成技术应用于功率VDMOS器件,更大程度地缩短全局互连线长度,缩短信号延迟时间;降低了功耗比重,同时将基于TSV的三维集成技术应用于包含功率VDMOS器件的功率系统,可利用三维集成的异质集成技术解决高、低压兼容问题;由于功率VDMOS器件的工作电流越大,构成的元胞数量越多,故把VDMOS器件的有效器件层分割在多个平面层,然后在垂直方向上将它们堆叠起来,并用TSV通孔实现垂直互连,解决了现有VDMOS器件电流容量越大导致器件面积越大问题。又由于功率VDMOS器件在为负载提供尽可能大的输出功率的同时,自身也消耗了很大的电能,消耗的电能将转变为热量使器件的管芯发热,导致有源区温度上升,故作为互连的TSV通孔也充当散热通道;解决了器件发热问题。本发明解决了现有技术的VDMOS器件采用平面集成工艺存在的器件面积随着电流容量增大而增大,严重影响功率系统的集成度,同时信号延迟时间及互连线功耗比重也将越来越大等技术问题。
附图说明:
图1为本发明三维功率VDMOS器件结构示意图。
具体实施方式:
一种三维功率VDMOS器件,它包括功率单元和芯片层,所述芯片层有二个以上,每个芯片层上均匀分布有二个以上的功率单元,每个功率单元外围设置有独立的终端,每个功率单元外围设置有层间导电互连的TSV通孔,各个芯片层堆叠在一起形成三维功率VDMOS器件。
所述功率单元外围设置有散热的TSV通孔。在每个功率单元外围嵌入散热的TSV通孔,其个数与每个功率单元的功率损耗、TSV通孔的深宽比及TSV通孔中绝缘层的厚度相关;
由于各芯片层的VDMOS功率单元的漏极电流通过层间导电互连的TSV通孔最后聚集在最底层芯片的漏极压焊点上,因此三维功率VDMOS器件堆叠层从上至下,嵌入在其中的TSV通孔的直径逐渐增大。
层间导电互连的TSV通孔个数与其相连的功率单元的漏极电流之和相关。
同时层间导电互连的TSV通孔也作为散热孔,作为散热通道在使用。
每个芯片层之间有绝缘介质层,所述绝缘介质层为二氧化硅。
各个芯片层间的空隙处有填充胶,填充胶主要是增加导热作用,否则芯片层与层之间有缝隙存在空气,影响热量的传导。
所述的各个功率单元外围都设置有独立的终端,所述终端为场限环结构,本发明在各个功率单元外围设置独立的终端目的是防止器件被表面击穿。
TSV通孔上方设有凸点,设立凸点可以有利于各个芯片层层间堆叠时的键合。
所述三维功率VDMOS器件采用双层金属布线结构。第一层金属布线将每个功率单元中各元胞的源极连接,将功率单元的栅极引出,且第一层金属布线不能跨越每个功率单元的终端;第二层金属布线将各功率单元间的源极和栅极连接。本发明采用双层金属布线结构,主要是防止表面击穿电压降低。
一种三维功率VDMOS器件的集成方法,它包括:
步骤1、将VDMOS器件的有源区制作在二个以上的芯片层上,每一芯片层上的元胞平均分成二个以上的功率单元;
步骤2、金属布线:将VDMOS器件采用双层金属布线,第一层金属布线将每个功率单元中元胞间的源极连接,将功率单元的栅极引出,第二层金属布线将功率单元间的源极和栅极连接;
步骤3、芯片层表面平坦化处理:在完成金属布线后的芯片层上淀积钝化层,然后采用物理化学抛光工艺将芯片层表面平坦化处理;
步骤4、刻蚀TSV通孔:在芯片层的功率单元预留处刻蚀出二个以上的TSV通孔,TSV通孔的直径按照芯片层从上至下的顺序逐渐增大;
步骤5、TSV通孔填满:采用低温CVD工艺在TSV通孔中淀积绝缘介质层,深槽溅射生长阻挡层及种子层,然后电镀Cu将TSV通孔填满;
步骤6、芯片层表面铜抛光:采用物理化学抛光工艺将电镀在芯片层表面的铜抛掉,并将芯片层表面平坦化;
步骤7、芯片层正表面氧化:采用低温CVD工艺在平坦化处理后的芯片层正表面上淀积氧化层;
步骤8、芯片层背面氧化:对芯片层的背面进行减薄及抛光将TSV通孔底部露出,并用低温CVD工艺在芯片层背面淀积氧化层;
步骤9、芯片层正面TSV通孔上方及栅、源极金属上方的氧化层刻蚀接触孔:将芯片层正表面TSV上方的氧化层及用于层间栅极和源极互连的TSV通孔周围的金属上方的氧化层刻蚀出接触孔;
步骤10、TSV通孔电镀金:溅射生长阻挡层及种子层,并匀胶保护不需要金属互连的地方,然后电镀金将TSV通孔上方接触孔填满、将层间栅极和源极互连的TSV通孔与周围栅极及源极金属连接,最后去胶并腐蚀掉生长阻挡层及种子层,同时形成芯片正表面键合的凸点;
步骤11、芯片层背面TSV通孔及周围漏极上方刻蚀出接触孔:将芯片层背面TSV上方的氧化层及用于层间漏极互连的TSV通孔周围的漏极上方的氧化层刻蚀出接触孔;
步骤12、将芯片层背面TSV通孔与芯片层背面漏极互连:溅射生长阻挡层及种子层,并匀胶保护不需要金属互连的地方,然后电镀金将TSV通孔与漏极互连,同时形成键合的凸点,最后去胶,腐蚀掉阻挡层及种子层;
步骤13、用胶保护刻蚀栅极和源极的压焊点;
步骤14、将芯片层堆叠起来形成三维VDMOS器件。
步骤14所述将芯片层堆叠起来形成三维VDMOS器件,堆叠采用的方法为低温共晶键合技术。
所述的低温CVD工艺其温度在400°C以下,所述绝缘介质层为二氧化硅,所述生长阻挡层为Ti、Ta或TiN;所述种子层为铜。

Claims (7)

1.一种三维功率VDMOS器件的集成方法,所述三维功率VDMOS器件它包括功率单元和芯片层,所述芯片层有二个以上,每个芯片层上均匀分布有二个以上的功率单元,每个功率单元外围设置有独立的终端,每个功率单元外围设置有层间导电互连的TSV通孔,各个芯片层堆叠在一起形成三维功率VDMOS器件;所述功率单元外围设置有散热的TSV通孔;各个芯片层间的空隙处有填充胶;其特征在于:所述三维功率VDMOS器件的集成方法,它包括:
步骤1、将VDMOS器件的有源区制作在二个以上的芯片层上,每一芯片层上的元胞平均分成二个以上的功率单元;
步骤2、金属布线:将VDMOS器件采用双层金属布线,第一层金属布线将每个功率单元中元胞间的源极连接,将功率单元的栅极引出,第二层金属布线将功率单元间的源极和栅极连接;
步骤3、芯片层表面平坦化处理:在完成金属布线后的芯片层上淀积钝化层,然后采用物理化学抛光工艺将芯片层表面平坦化处理;
步骤4、刻蚀TSV通孔:在芯片层的功率单元预留处刻蚀出二个以上的TSV通孔,TSV通孔的直径按照芯片层从上至下的顺序逐渐增大;
步骤5、TSV通孔填满:采用低温CVD工艺在TSV通孔中淀积绝缘介质层,深槽溅射生长阻挡层及种子层,然后电镀Cu将TSV通孔填满;
步骤6、芯片层表面铜抛光:采用物理化学抛光工艺将电镀在芯片层表面的铜抛掉,并将芯片层表面平坦化;
步骤7、芯片层正表面氧化:采用低温CVD工艺在平坦化处理后的芯片层正表面上淀积氧化层;
步骤8、芯片层背面氧化:对芯片层的背面进行减薄及抛光将TSV通孔底部露出,并用低温CVD工艺在芯片层背面淀积氧化层;
步骤9、芯片层正面TSV通孔上方及栅、源极金属上方的氧化层刻蚀接触孔:将芯片层正表面TSV上方的氧化层及用于层间栅极和源极互连的TSV通孔周围的金属上方的氧化层刻蚀出接触孔;
步骤10、TSV通孔电镀金:溅射生长阻挡层及种子层,并匀胶保护不需要金属互连的地方,然后电镀金将TSV通孔上方接触孔填满、将层间栅极和源极互连的TSV通孔与周围栅极及源极金属连接,最后去胶并腐蚀掉生长阻挡层及种子层,同时形成芯片正表面键合的凸点;
步骤11、芯片层背面TSV通孔及周围漏极上方刻蚀出接触孔:将芯片层背面TSV上方的氧化层及用于层间漏极互连的TSV通孔周围的漏极上方的氧化层刻蚀出接触孔;
步骤12、将芯片层背面TSV通孔与芯片层背面漏极互连:溅射生长阻挡层及种子层,并匀胶保护不需要金属互连的地方,然后电镀金将TSV通孔与漏极互连,同时形成键合的凸点,最后去胶,腐蚀掉阻挡层及种子层;
步骤13、用胶保护刻蚀栅极和源极的压焊点;
步骤14、将芯片层堆叠起来形成三维VDMOS器件。
2.根据权利要求1所述的一种三维功率VDMOS器件的集成方法,其特征在于:每个芯片层之间有绝缘介质层,所述绝缘介质层为二氧化硅。
3.根据权利要求1所述的一种三维功率VDMOS器件的集成方法,其特征在于:所述的各个功率单元外围都设置有独立的终端,所述终端为场限环结构。
4.根据权利要求1所述的一种三维功率VDMOS器件的集成方法,其特征在于:TSV通孔上方设有凸点。
5.根据权利要求1所述的一种三维功率VDMOS器件的集成方法,其特征在于:所述三维功率VDMOS器件采用双层金属布线结构。
6.根据权利要求1所述的一种三维功率VDMOS器件的集成方法,其特征在于:步骤14所述将芯片层堆叠起来形成三维VDMOS器件,堆叠采用的方法为低温共晶键合技术。
7.根据权利要求1所述的一种三维功率VDMOS器件的集成方法,其特征在于:所述的低温CVD工艺其温度在400°C以下,所述绝缘介质层为二氧化硅,所述生长阻挡层为Ti、Ta或TiN;所述种子层为铜。
CN201610624812.2A 2016-08-03 2016-08-03 一种三维功率vdmos器件及其集成方法 Active CN106098687B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610624812.2A CN106098687B (zh) 2016-08-03 2016-08-03 一种三维功率vdmos器件及其集成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610624812.2A CN106098687B (zh) 2016-08-03 2016-08-03 一种三维功率vdmos器件及其集成方法

Publications (2)

Publication Number Publication Date
CN106098687A CN106098687A (zh) 2016-11-09
CN106098687B true CN106098687B (zh) 2019-04-16

Family

ID=57454977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610624812.2A Active CN106098687B (zh) 2016-08-03 2016-08-03 一种三维功率vdmos器件及其集成方法

Country Status (1)

Country Link
CN (1) CN106098687B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107285270A (zh) * 2017-05-31 2017-10-24 中国电子科技集团公司第十三研究所 硅基集成微系统三维堆叠结构及其制作方法
CN110137147A (zh) * 2019-07-02 2019-08-16 贵州大学 基于下粗上细型tsv的嵌套式散热网络结构
CN111508913A (zh) * 2020-05-06 2020-08-07 贵州大学 一种基于硅通孔的大功率芯片背面散热方法
CN112652596B (zh) * 2020-12-17 2023-12-22 武汉新芯集成电路制造有限公司 半导体结构及其制造方法
CN117794253A (zh) * 2022-09-19 2024-03-29 长鑫存储技术有限公司 一种半导体结构及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789376A (zh) * 2009-01-23 2010-07-28 中芯国际集成电路制造(上海)有限公司 一种vdmos及其制造方法
CN102610567A (zh) * 2012-03-31 2012-07-25 上海华力微电子有限公司 两层半导体器件的制备方法
US8907392B2 (en) * 2011-12-22 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including stacked sub memory cells
CN205863168U (zh) * 2016-08-03 2017-01-04 贵州大学 一种三维功率vdmos器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174504A (ja) * 1997-08-27 1999-03-16 Toshiba Corp 半導体装置及びその製造方法
US20080157327A1 (en) * 2007-01-03 2008-07-03 Advanced Chip Engineering Technology Inc. Package on package structure for semiconductor devices and method of the same
JP5492836B2 (ja) * 2011-07-28 2014-05-14 京セラドキュメントソリューションズ株式会社 画像形成方法
CN104966693B (zh) * 2015-06-03 2017-03-15 贵州大学 一种内嵌式复合散热结构的三维集成功率系统及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789376A (zh) * 2009-01-23 2010-07-28 中芯国际集成电路制造(上海)有限公司 一种vdmos及其制造方法
US8907392B2 (en) * 2011-12-22 2014-12-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory device including stacked sub memory cells
CN102610567A (zh) * 2012-03-31 2012-07-25 上海华力微电子有限公司 两层半导体器件的制备方法
CN205863168U (zh) * 2016-08-03 2017-01-04 贵州大学 一种三维功率vdmos器件

Also Published As

Publication number Publication date
CN106098687A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106098687B (zh) 一种三维功率vdmos器件及其集成方法
TWI431759B (zh) 可堆疊式功率mosfet、功率mosfet堆疊及其製備方法
CN104600059B (zh) 一种带有ipd的tsv孔结构及其加工方法
CN108766897A (zh) 实现大功率GaN器件层散热的三维异质结构的封装方法
CN107039372A (zh) 半导体结构及其形成方法
CN103943614B (zh) 集成无源器件扇出型晶圆级封装三维堆叠结构及制作方法
CN102270640B (zh) 大电流整晶圆全压接平板式封装的igbt及其制造方法
CN102208438A (zh) 近乎无衬底的复合功率半导体器件及其方法
CN105405838A (zh) 一种新型tsv转接板及制作方法
CN104979226B (zh) 一种铜的混合键合方法
US9117786B2 (en) Chip module, an insulation material and a method for fabricating a chip module
CN102693969A (zh) 一种igbt功率模块
CN205863168U (zh) 一种三维功率vdmos器件
CN104332455A (zh) 一种基于硅通孔的片上半导体器件结构及其制备方法
CN103258791A (zh) 通过制备超细间距微凸点实现金属互连的方法及相应器件
CN104733381A (zh) 一种晶圆硅穿孔互连工艺
CN104009014B (zh) 集成无源器件晶圆级封装三维堆叠结构及制作方法
US10937767B2 (en) Chip packaging method and device with packaged chips
CN104241202B (zh) 一种集成功率器件与控制器件的工艺
CN104332464A (zh) 一种功率器件与控制器件的集成工艺
CN110931477B (zh) 一种智能功率模块及其制备方法
CN103780102B (zh) 一种智能半导体功率模块
Rouger et al. 3D Packaging for vertical power devices
CN104659113B (zh) Rfldmos器件的内匹配电容及制造方法
CN206639791U (zh) 芯片封装器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant