CN106083061A - 一种激光烧结快速成型碳化硅陶瓷的制备方法 - Google Patents

一种激光烧结快速成型碳化硅陶瓷的制备方法 Download PDF

Info

Publication number
CN106083061A
CN106083061A CN201610453397.9A CN201610453397A CN106083061A CN 106083061 A CN106083061 A CN 106083061A CN 201610453397 A CN201610453397 A CN 201610453397A CN 106083061 A CN106083061 A CN 106083061A
Authority
CN
China
Prior art keywords
silicon carbide
carbide ceramics
rapid forming
laser sintering
forming silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610453397.9A
Other languages
English (en)
Other versions
CN106083061B (zh
Inventor
何金玲
林文松
刘浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Light Tough Composite Materials Co ltd
Original Assignee
Shanghai University of Engineering Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Engineering Science filed Critical Shanghai University of Engineering Science
Priority to CN201610453397.9A priority Critical patent/CN106083061B/zh
Publication of CN106083061A publication Critical patent/CN106083061A/zh
Application granted granted Critical
Publication of CN106083061B publication Critical patent/CN106083061B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • C04B41/5338Etching
    • C04B41/5353Wet etching, e.g. with etchants dissolved in organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/91After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics involving the removal of part of the materials of the treated articles, e.g. etching
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/424Carbon black
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及一种激光烧结快速成型碳化硅陶瓷的制备方法,该方法具体包括以下步骤:(1)制备激光烧结快速成型碳化硅陶瓷粉末;(2)采用基于激光选择性烧结的3D打印技术将激光烧结快速成型碳化硅陶瓷粉末制成粗坯;(3)将粗坯埋在硅粉与氮化硼粉末组成的混合粉料中,在真空环境中进行反应烧结,得到烧结坯;(4)将烧结坯浸泡在碱性溶液中,以脱除烧结坯表面多余的金属硅,即得到所述的激光烧结快速成型碳化硅陶瓷。与现有技术相比,本发明不需要模具,工艺简单,条件易于控制,可制造各种形状的碳化硅零件,在小批量制造、特种零件制造上有独特的优越性。

Description

一种激光烧结快速成型碳化硅陶瓷的制备方法
技术领域
本发明属于快速成型材料技术领域,涉及一种激光烧结快速成型碳化硅陶瓷的制备方法。
背景技术
快速成型技术是近年来得到高度重视和高速发展的先进制造技术之一,它的基本原理可以概括为:分层制造和逐层叠加,因此有时也被称为3D打印技术。该类技术通过接收产品计算机辅助设计的分层数据,利用激光选择性烧结技术,直接成形制备各种形状的陶瓷零件,不需要借助模具成形,对于缩短新产品的开发周期并降低开发成本具有非常重要的意义。
碳化硅密度低、硬度高、化学稳定性好、导热性较好、热膨胀率低,在机械、冶金、电子、航天等多个工业领域得到广泛应用。在众多的应用领域中,碳化硅产品经常会被制备成各种复杂的形状。由于碳化硅陶瓷韧性差、脆性大、加工性能差,难以制备成形状特殊、结构功能一体化的零件,一般只能采用模压成形。但对于试制新产品而言,复杂产品所需要的模具加工费用非常高昂。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种不需预制模具、方便快捷的激光烧结快速成型碳化硅陶瓷的制备方法。
本发明的目的可以通过以下技术方案来实现:
一种激光烧结快速成型碳化硅陶瓷的制备方法,该方法具体包括以下步骤:
(1)制备激光烧结快速成型碳化硅陶瓷粉末;
(2)采用基于激光选择性烧结的3D打印技术将激光烧结快速成型碳化硅陶瓷粉末制成粗坯;
(3)将粗坯埋在硅粉与氮化硼粉末组成的混合粉料中,在真空环境中进行反应烧结,得到烧结坯;
(4)将烧结坯浸泡在碱性溶液中,以脱除烧结坯表面多余的金属硅,即得到所述的激光烧结快速成型碳化硅陶瓷。
步骤(1)所述的激光烧结快速成型碳化硅陶瓷粉末的制备方法具体包括以下步骤:
(1-1)按照以下组分及重量份含量进行备料:
碳化硅粉末75-82份、酚醛树脂4-9份、炭黑2-4份、聚乙烯醇2-5份及丙酮8-11份;
(1-2)将步骤(1)中各组分加入至研磨机中进行研磨处理;
(1-3)依次进行喷雾制粒及干燥处理,即制得激光烧结快速成型碳化硅陶瓷粉末。
其中,步骤(1-1)所述的碳化硅粉末的粒径为0.1-0.5μm。
作为优选的技术方案,步骤(1-1)中所述的酚醛树脂与炭黑的质量比为2-2.5:1。
步骤(1-2)所述的研磨处理的条件为:控制研磨机的转速为200-300r/min,研磨时间为2-4h。
步骤(1-3)所述的喷雾制粒及干燥处理的温度均为80-90℃。
步骤(2)所述的激光选择性烧结过程中,所述的激光为CO2激光,该CO2激光的功率为20-30W,铺粉厚度为0.1-0.2mm,预热温度为50-60℃。
步骤(3)所述的硅粉的粒径为0.1-2mm,并且所述的硅粉与氮化硼粉末的质量比为1.5-2.5:1。
所述的反应烧结的具体方法为:以5-10℃/min的升温速率将粗坯升温至750-850℃,保温0.5-2h,再以5-10℃/min的升温速率继续升温至1500-1600℃,保温0.5-2h。
步骤(4)所述的碱性溶液为NaOH溶液,该NaOH溶液的质量浓度为150-180g/L。
步骤(4)中,浸泡温度为50-90℃,浸泡时间为0.5-1h。
本发明通过制备适合激光选区烧结的碳化硅陶瓷混合粉末,而后根据3D打印原理,经激光烧结,不需预制模具,方便快捷地成形尺寸精密、形状复杂的零件坯,再经反应熔渗和残留硅去除处理得到性能优良的碳化硅陶瓷。
与现有技术相比,本发明具有以下特点:
1)本发明制得的激光烧结快速成型碳化硅陶瓷粉末的平均粒径为100-500μm,工艺性能稳定,在激光烧结下可直接成型,能够方便快捷地制备成尺寸精密的薄壁、细小或者各种复杂形状的零部件;
2)本发明不需预制模具即可方便快捷地制备出全致密碳化硅陶瓷,具有制备工艺简单、适应范围广及产品性能优越的特点,在小批量制造及特种零件制造方面有独特的优越性。
具体实施方式
下面结合具体实施例进一步说明本发明。但实施例具体细节仅是为了说明本发明,并不代表本发明构思下的全部技术方案,因此不应理解为对本发明的技术方案的限定。一些不偏离本发明构思的非实质性改动,例如以具有相同或相似技术效果的技术特征简单改变或替换,均属本发明权利保护范围。
实施例1:
(1)在研磨机中,按质量百分比加入下列粉末,将平均粒径为0.25μm的碳化硅粉末78份,酚醛树脂7份,炭黑3份,聚乙烯醇4份,丙酮8份。研磨机转速250r/min,研磨4h,然后进行喷雾制粒和干燥处理,喷雾干燥的进风温度为85℃,得到激光烧结快速成型碳化硅陶瓷混合粉末;
(2)采用居于激光选择性烧结的3D打印技术将所述碳化硅粉末制成粗坯,激光烧结规程为:CO2激光,功率为25W,铺粉厚度为0.1mm,预热温度60℃;
(3)将粗坯进行反应烧结,具体工艺规程为:将粗坯埋在硅粉和氮化硼粉末组成的混合粉料中,硅粉与氮化硼粉末的质量比例为2:1,在真空环境中将压坯升温至800℃保温1h,而后再升温至1560℃保温1h,升温速度为5~10℃/min,得到烧结坯;
(4)将烧结坯浸泡在NaOH溶液1h,NaOH浓度为155g/L,处理温度为70℃,脱除烧结坯表面多余的金属硅,得到碳化硅零件。
实施例2:
(1)在研磨机中,按质量百分比加入下列粉末,将颗粒度为0.5μm的碳化硅粉末78份,酚醛树脂6份,炭黑2.5份,聚乙烯醇3.5份,丙酮10份。研磨机转速250r/min,研磨3h,然后进行喷雾制粒和干燥处理,喷雾干燥的进风温度为85℃,得到激光烧结快速成型碳化硅陶瓷混合粉末;
(2)采用居于激光选择性烧结的3D打印技术将所述碳化硅粉末制成粗坯,激光烧结规程为:CO2激光,功率为30W,铺粉厚度为0.2mm,预热温度60℃;
(3)将粗坯进行反应烧结,具体工艺规程为:将粗坯埋在硅粉和氮化硼粉末组成的混合粉料中,硅粉与氮化硼粉末的质量比例为1.5:1,在真空环境中将压坯升温至800℃保温1h,而后再升温至1600℃保温1h,升温速度为10℃/min,得到烧结坯;
(4)将烧结坯浸泡在NaOH溶液0.5h,NaOH浓度为180g/L,处理温度为80℃,脱除烧结坯表面多余的金属硅,得到碳化硅零件。
实施例3:
本实施例激光烧结快速成型碳化硅陶瓷的制备方法,具体包括以下步骤:
(1)制备激光烧结快速成型碳化硅陶瓷粉末;
(2)采用基于激光选择性烧结的3D打印技术将激光烧结快速成型碳化硅陶瓷粉末制成粗坯;
(3)将粗坯埋在硅粉与氮化硼粉末组成的混合粉料中,在真空环境中进行反应烧结,得到烧结坯;
(4)将烧结坯浸泡在碱性溶液中,以脱除烧结坯表面多余的金属硅,即得到所述的激光烧结快速成型碳化硅陶瓷。
其中,步骤(1)中激光烧结快速成型碳化硅陶瓷粉末的制备方法具体包括以下步骤:
(1-1)按照以下组分及重量份含量进行备料:
碳化硅粉末75份、酚醛树脂4份、炭黑2份、聚乙烯醇2份及丙酮8份;
(1-2)将步骤(1)中各组分加入至研磨机中进行研磨处理;
(1-3)依次进行喷雾制粒及干燥处理,即制得激光烧结快速成型碳化硅陶瓷粉末。
步骤(1-1)中,碳化硅粉末的粒径为0.1μm;步骤(1-2)研磨处理的条件为:控制研磨机的转速为200r/min,研磨时间为4h;步骤(1-3)中喷雾制粒及干燥处理的温度均为80℃。
步骤(2)中,激光选择性烧结过程中,激光为CO2激光,该CO2激光的功率为20W,铺粉厚度为0.1mm,预热温度为50℃。
步骤(3)中,硅粉的粒径为0.1mm,并且硅粉与氮化硼粉末的质量比为1.5:1。反应烧结的具体方法为:以5℃/min的升温速率将粗坯升温至750℃,保温2h,再以5℃/min的升温速率继续升温至1500℃,保温2h。
步骤(4)中,碱性溶液为NaOH溶液,该NaOH溶液的质量浓度为150g/L,浸泡温度为50℃,浸泡时间为0.5h。
实施例4:
本实施例激光烧结快速成型碳化硅陶瓷的制备方法,具体包括以下步骤:
(1)制备激光烧结快速成型碳化硅陶瓷粉末;
(2)采用基于激光选择性烧结的3D打印技术将激光烧结快速成型碳化硅陶瓷粉末制成粗坯;
(3)将粗坯埋在硅粉与氮化硼粉末组成的混合粉料中,在真空环境中进行反应烧结,得到烧结坯;
(4)将烧结坯浸泡在碱性溶液中,以脱除烧结坯表面多余的金属硅,即得到所述的激光烧结快速成型碳化硅陶瓷。
其中,步骤(1)中激光烧结快速成型碳化硅陶瓷粉末的制备方法具体包括以下步骤:
(1-1)按照以下组分及重量份含量进行备料:
碳化硅粉末82份、酚醛树脂9份、炭黑4份、聚乙烯醇5份及丙酮11份;
(1-2)将步骤(1)中各组分加入至研磨机中进行研磨处理;
(1-3)依次进行喷雾制粒及干燥处理,即制得激光烧结快速成型碳化硅陶瓷粉末。
步骤(1-1)中,碳化硅粉末的粒径为0.5μm;步骤(1-2)研磨处理的条件为:控制研磨机的转速为300r/min,研磨时间为2h;步骤(1-3)中喷雾制粒及干燥处理的温度均为90℃。
步骤(2)中,激光选择性烧结过程中,激光为CO2激光,该CO2激光的功率为30W,铺粉厚度为0.2mm,预热温度为60℃。
步骤(3)中,硅粉的粒径为2mm,并且硅粉与氮化硼粉末的质量比为2.5:1。反应烧结的具体方法为:以10℃/min的升温速率将粗坯升温至850℃,保温0.5h,再以10℃/min的升温速率继续升温至1600℃,保温0.5h。
步骤(4)中,碱性溶液为NaOH溶液,该NaOH溶液的质量浓度为180g/L,浸泡温度为90℃,浸泡时间为1h。
实施例5:
本实施例激光烧结快速成型碳化硅陶瓷的制备方法,具体包括以下步骤:
(1)制备激光烧结快速成型碳化硅陶瓷粉末;
(2)采用基于激光选择性烧结的3D打印技术将激光烧结快速成型碳化硅陶瓷粉末制成粗坯;
(3)将粗坯埋在硅粉与氮化硼粉末组成的混合粉料中,在真空环境中进行反应烧结,得到烧结坯;
(4)将烧结坯浸泡在碱性溶液中,以脱除烧结坯表面多余的金属硅,即得到所述的激光烧结快速成型碳化硅陶瓷。
其中,步骤(1)中激光烧结快速成型碳化硅陶瓷粉末的制备方法具体包括以下步骤:
(1-1)按照以下组分及重量份含量进行备料:
碳化硅粉末80份、酚醛树脂6份、炭黑3份、聚乙烯醇4份及丙酮10份;
(1-2)将步骤(1)中各组分加入至研磨机中进行研磨处理;
(1-3)依次进行喷雾制粒及干燥处理,即制得激光烧结快速成型碳化硅陶瓷粉末。
步骤(1-1)中,碳化硅粉末的粒径为0.3μm;步骤(1-2)研磨处理的条件为:控制研磨机的转速为260r/min,研磨时间为3h;步骤(1-3)中喷雾制粒及干燥处理的温度均为85℃。
步骤(2)中,激光选择性烧结过程中,激光为CO2激光,该CO2激光的功率为25W,铺粉厚度为0.15mm,预热温度为56℃。
步骤(3)中,硅粉的粒径为0.8mm,并且硅粉与氮化硼粉末的质量比为2:1。反应烧结的具体方法为:以8℃/min的升温速率将粗坯升温至800℃,保温1h,再以8℃/min的升温速率继续升温至1520℃,保温1h。
步骤(4)中,碱性溶液为NaOH溶液,该NaOH溶液的质量浓度为160g/L,浸泡温度为80℃,浸泡时间为0.5h。
实施例6:
本实施例激光烧结快速成型碳化硅陶瓷的制备方法,具体包括以下步骤:
(1)制备激光烧结快速成型碳化硅陶瓷粉末;
(2)采用基于激光选择性烧结的3D打印技术将激光烧结快速成型碳化硅陶瓷粉末制成粗坯;
(3)将粗坯埋在硅粉与氮化硼粉末组成的混合粉料中,在真空环境中进行反应烧结,得到烧结坯;
(4)将烧结坯浸泡在碱性溶液中,以脱除烧结坯表面多余的金属硅,即得到所述的激光烧结快速成型碳化硅陶瓷。
其中,步骤(1)中激光烧结快速成型碳化硅陶瓷粉末的制备方法具体包括以下步骤:
(1-1)按照以下组分及重量份含量进行备料:
碳化硅粉末76份、酚醛树脂8份、炭黑2份、聚乙烯醇3份及丙酮9份;
(1-2)将步骤(1)中各组分加入至研磨机中进行研磨处理;
(1-3)依次进行喷雾制粒及干燥处理,即制得激光烧结快速成型碳化硅陶瓷粉末。
步骤(1-1)中,碳化硅粉末的粒径为0.2μm;步骤(1-2)研磨处理的条件为:控制研磨机的转速为240r/min,研磨时间为2.5h;步骤(1-3)中喷雾制粒及干燥处理的温度均为88℃。
步骤(2)中,激光选择性烧结过程中,激光为CO2激光,该CO2激光的功率为28W,铺粉厚度为0.16mm,预热温度为52℃。
步骤(3)中,硅粉的粒径为1.2mm,并且硅粉与氮化硼粉末的质量比为1.8:1。反应烧结的具体方法为:以7℃/min的升温速率将粗坯升温至770℃,保温1h,再以7℃/min的升温速率继续升温至1580℃,保温1h。
步骤(4)中,碱性溶液为NaOH溶液,该NaOH溶液的质量浓度为175g/L,浸泡温度为78℃,浸泡时间为0.5h。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,该方法具体包括以下步骤:
(1)制备激光烧结快速成型碳化硅陶瓷粉末;
(2)采用基于激光选择性烧结的3D打印技术将激光烧结快速成型碳化硅陶瓷粉末制成粗坯;
(3)将粗坯埋在硅粉与氮化硼粉末组成的混合粉料中,在真空环境中进行反应烧结,得到烧结坯;
(4)将烧结坯浸泡在碱性溶液中,以脱除烧结坯表面多余的金属硅,即得到所述的激光烧结快速成型碳化硅陶瓷。
2.根据权利要求1所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(1)所述的激光烧结快速成型碳化硅陶瓷粉末的制备方法具体包括以下步骤:
(1-1)按照以下组分及重量份含量进行备料:
碳化硅粉末75-82份、酚醛树脂4-9份、炭黑2-4份、聚乙烯醇2-5份及丙酮8-11份;
(1-2)将步骤(1)中各组分加入至研磨机中进行研磨处理;
(1-3)依次进行喷雾制粒及干燥处理,即制得激光烧结快速成型碳化硅陶瓷粉末。
3.根据权利要求2所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(1-1)所述的碳化硅粉末的粒径为0.1-0.5μm。
4.根据权利要求2所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(1-2)所述的研磨处理的条件为:控制研磨机的转速为200-300r/min,研磨时间为2-4h。
5.根据权利要求2所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(1-3)所述的喷雾制粒及干燥处理的温度均为80-90℃。
6.根据权利要求1所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(2)所述的激光选择性烧结过程中,所述的激光为CO2激光,该CO2激光的功率为20-30W,铺粉厚度为0.1-0.2mm,预热温度为50-60℃。
7.根据权利要求1所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(3)所述的硅粉的粒径为0.1-2mm,并且所述的硅粉与氮化硼粉末的质量比为1.5-2.5:1。
8.根据权利要求7所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,所述的反应烧结的具体方法为:以5-10℃/min的升温速率将粗坯升温至750-850℃,保温0.5-2h,再以5-10℃/min的升温速率继续升温至1500-1600℃,保温0.5-2h。
9.根据权利要求1所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(4)所述的碱性溶液为NaOH溶液,该NaOH溶液的质量浓度为150-180g/L。
10.根据权利要求1所述的一种激光烧结快速成型碳化硅陶瓷的制备方法,其特征在于,步骤(4)中,浸泡温度为50-90℃,浸泡时间为0.5-1h。
CN201610453397.9A 2016-06-21 2016-06-21 一种激光烧结快速成型碳化硅陶瓷的制备方法 Active CN106083061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610453397.9A CN106083061B (zh) 2016-06-21 2016-06-21 一种激光烧结快速成型碳化硅陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610453397.9A CN106083061B (zh) 2016-06-21 2016-06-21 一种激光烧结快速成型碳化硅陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN106083061A true CN106083061A (zh) 2016-11-09
CN106083061B CN106083061B (zh) 2018-12-21

Family

ID=57238575

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610453397.9A Active CN106083061B (zh) 2016-06-21 2016-06-21 一种激光烧结快速成型碳化硅陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106083061B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673662A (zh) * 2016-12-26 2017-05-17 上海工程技术大学 一种碳化硅陶瓷零件及其制备方法
CN106935799A (zh) * 2017-03-17 2017-07-07 成都新柯力化工科技有限公司 一种稳定的镍钴锰酸锂三元锂电池正极片及制备方法
CN106966732A (zh) * 2017-03-09 2017-07-21 平顶山学院 一种细粉碳化硅陶瓷及其制备方法
CN108947537A (zh) * 2018-08-02 2018-12-07 西安增材制造国家研究院有限公司 一种SiC陶瓷结构件及其制备方法
CN109970449A (zh) * 2019-03-01 2019-07-05 武汉科技大学 采用slm制备碳化硅氮化铝复合材料异形零件的方法
CN111747749A (zh) * 2020-07-06 2020-10-09 南京理工大学 一种原位激光选区成形结合反应烧结制备Ti2AlC复杂件的方法
CN112174675A (zh) * 2020-10-21 2021-01-05 上海德宝密封件有限公司 一种反应烧结碳化硅的制备方法
CN113105272A (zh) * 2021-04-15 2021-07-13 浙江东新新材料科技有限公司 熔盐去除反应烧结碳化硅陶瓷表面硅瘤的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784045A1 (en) * 2013-03-29 2014-10-01 Osseomatrix Selective laser sintering/melting process
CN104944962A (zh) * 2015-03-23 2015-09-30 济南大学 一种激光烧结快速成型氮化硅陶瓷粉末的制备
CN105439564A (zh) * 2014-09-18 2016-03-30 Toto株式会社 反应烧结碳化硅构件的制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784045A1 (en) * 2013-03-29 2014-10-01 Osseomatrix Selective laser sintering/melting process
CN105439564A (zh) * 2014-09-18 2016-03-30 Toto株式会社 反应烧结碳化硅构件的制造方法
CN104944962A (zh) * 2015-03-23 2015-09-30 济南大学 一种激光烧结快速成型氮化硅陶瓷粉末的制备

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106673662A (zh) * 2016-12-26 2017-05-17 上海工程技术大学 一种碳化硅陶瓷零件及其制备方法
CN106966732A (zh) * 2017-03-09 2017-07-21 平顶山学院 一种细粉碳化硅陶瓷及其制备方法
CN106935799A (zh) * 2017-03-17 2017-07-07 成都新柯力化工科技有限公司 一种稳定的镍钴锰酸锂三元锂电池正极片及制备方法
CN106935799B (zh) * 2017-03-17 2018-10-12 江苏润寅石墨烯科技有限公司 一种稳定的镍钴锰酸锂三元锂电池正极片及制备方法
CN108947537A (zh) * 2018-08-02 2018-12-07 西安增材制造国家研究院有限公司 一种SiC陶瓷结构件及其制备方法
CN109970449A (zh) * 2019-03-01 2019-07-05 武汉科技大学 采用slm制备碳化硅氮化铝复合材料异形零件的方法
CN109970449B (zh) * 2019-03-01 2021-12-21 武汉科技大学 采用slm制备碳化硅氮化铝复合材料异形零件的方法
CN111747749A (zh) * 2020-07-06 2020-10-09 南京理工大学 一种原位激光选区成形结合反应烧结制备Ti2AlC复杂件的方法
CN112174675A (zh) * 2020-10-21 2021-01-05 上海德宝密封件有限公司 一种反应烧结碳化硅的制备方法
CN113105272A (zh) * 2021-04-15 2021-07-13 浙江东新新材料科技有限公司 熔盐去除反应烧结碳化硅陶瓷表面硅瘤的方法

Also Published As

Publication number Publication date
CN106083061B (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
CN106083061A (zh) 一种激光烧结快速成型碳化硅陶瓷的制备方法
CN104149038B (zh) 一种陶瓷结合剂金刚石砂轮
CN108046833A (zh) 一种具有多孔发热膜结构的陶瓷加热体的制备工艺
CN105503160B (zh) 一种新能源汽车四元系95氧化铝瓷片及其加工方法
CN102617154A (zh) 一种用高瘠性料制备环保型建筑陶瓷砖的方法
CN104387073B (zh) 基于反应烧结法制造超细高韧性碳化硅陶瓷材料的方法
CN105732007B (zh) 一种用于复杂零件制造的氧化钙基陶瓷铸型快速制备方法
CN109467438A (zh) 一种碳化硅陶瓷光固化成型方法
CN103553632B (zh) 一种致密化氮化硅陶瓷材料的制备方法
CN104440597A (zh) 树脂陶瓷复合材料的金刚石磨轮及其制备方法
CN108059479A (zh) 一种新型多孔陶瓷加热体的制备工艺
CN102992778A (zh) 一种具有玉石质地的精密陶瓷及其制作方法
CN105481347A (zh) 一种新型特种陶瓷材料及其制备方法
CN105060896A (zh) 一种碳化硅陶瓷精密器件的制备方法
CN104162661B (zh) 一种微波烧结Al2O3-TiC-TiN微米复合陶瓷刀具材料的方法
CN103831734A (zh) 一种含沸石粉的金刚玉砂轮
CN104211407A (zh) 一种大尺寸复杂形状碳化硅陶瓷素坯的成型工艺
CN100519476C (zh) 超高温二硅化钼氧化锆复合发热体及其制备方法
CN105601283B (zh) 一种导电网络结构Si3N4陶瓷的制备方法
CN106187263B (zh) C/C-SiC复合材料部件的制造方法及C/C-SiC复合材料部件
CN103639915A (zh) 一种烧结型金属结合剂磨具生产方法
CN105272288B (zh) 微波高温专用保温耐火材料及其制备方法
CN105585324A (zh) 晶须增韧强化碳陶瓷复合材料
CN107879735A (zh) 一种中高温低膨胀系数镁橄榄石‑锂辉石复合陶瓷材料的制备方法
CN103624697B (zh) 一种陶瓷磨具制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230330

Address after: 313219 No.7, Zhenxing Road, LEIDIAN Town, Deqing County, Huzhou City, Zhejiang Province

Patentee after: ZHEJIANG LIGHT-TOUGH COMPOSITE MATERIALS CO.,LTD.

Address before: 201620 No. 333, Longteng Road, Shanghai, Songjiang District

Patentee before: SHANGHAI University OF ENGINEERING SCIENCE

TR01 Transfer of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A preparation method of laser sintering rapid prototyping silicon carbide ceramics

Granted publication date: 20181221

Pledgee: Zhejiang Deqing Rural Commercial Bank Co.,Ltd. leidian sub branch

Pledgor: ZHEJIANG LIGHT-TOUGH COMPOSITE MATERIALS CO.,LTD.

Registration number: Y2024980034967

PE01 Entry into force of the registration of the contract for pledge of patent right