CN106048532B - 一种二氧化钒纳米颗粒膜的制备方法 - Google Patents

一种二氧化钒纳米颗粒膜的制备方法 Download PDF

Info

Publication number
CN106048532B
CN106048532B CN201610436708.0A CN201610436708A CN106048532B CN 106048532 B CN106048532 B CN 106048532B CN 201610436708 A CN201610436708 A CN 201610436708A CN 106048532 B CN106048532 B CN 106048532B
Authority
CN
China
Prior art keywords
vanadium dioxide
film
vanadium
preparation
dioxide nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610436708.0A
Other languages
English (en)
Other versions
CN106048532A (zh
Inventor
田野
罗飞
刘大博
祁洪飞
滕乐金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Original Assignee
BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp filed Critical BEIJING INSTITUTE OF AERONAUTICAL MATERIALS CHINA AVIATION INDUSTRY GROUP Corp
Priority to CN201610436708.0A priority Critical patent/CN106048532B/zh
Publication of CN106048532A publication Critical patent/CN106048532A/zh
Application granted granted Critical
Publication of CN106048532B publication Critical patent/CN106048532B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及智能薄膜材料领域,具体涉及一种二氧化钒纳米颗粒膜的制备方法。本发明利用磁控溅射方法制备金属钒膜,随后将金属钒膜放入通有氮气的敞口管式炉中进行高温退火处理,保温一定时间后快速取出冷却。该方法无需复杂的真空热处理设备,通过简单的氧化反应,即可获得所需的二氧化钒薄膜。其过程工艺简单可控,所制备的薄膜晶粒尺寸均匀并且细小,相变特性明显,为二氧化钒薄膜材料提供了一种低成本、短周期、可工业化实施的新技术。

Description

一种二氧化钒纳米颗粒膜的制备方法
技术领域
本发明涉及智能薄膜材料领域,具体涉及一种二氧化钒纳米颗粒膜的制备方法。
背景技术
二氧化钒是一种智能薄膜材料,在温度、电流或者磁场等参数调控下,会发生快速的金属-绝缘体相变。随着相变的发生,材料的晶型结构发生改变,同时伴随电阻率、磁化率、透射率和反射率等诸多性质都产生突变。这一特性使得二氧化钒薄膜成为一种有广泛应用前景的智能材料,在红外探测、锂电池电极、激光保护和智能窗等领域有着巨大的应用潜力。
目前,研究者已经采用了多种途径合成了二氧化钒薄膜材料,其中反应磁控溅射法是应用最广的一种制备手段。例如华中科技大学的陈四海小组,通过调节溅射设备内的氧气和氩气混合气的比例,制备出了具有良好相变特性的二氧化钒薄膜(S.H.Chen,H.Ma,X.J.Yi,T.Xiong,H.C.Wang,and C.J.Ke,"Smart VO2thin film for protection ofsensitive infrared detectors from strong laser radiation",Sens.Actuators A,2004,115:28-31)。但是该工艺方法对混合气的比例控制以及设备操作要求很高,这会直接导致不同批次制备的材料的性能重复性较差,同时该方法需要利用真空退火设备进行后续退火,这也大大增加了制备成本。利用热氧化法,即采用磁控溅射制备金属钒膜,随后进行热氧化处理制备二氧化钒薄膜是一种新型的制备路线,相对于传统的混合气条件下直接溅射成膜,该工艺溅射工艺更加简单,样品的性能稳定性高。
目前热氧化法制备二氧化钒薄膜大多采用400~450℃温度范围进行热处理制备。然而上述方法也存在一些局限性。首先,热氧化法需要在真空炉中进行,设备造价昂贵,并且需要维护扩散泵以保证较高的真空度;其次,该方法还需要精确控制惰性气体和氧气的比例,从而使制备出的二氧化钒薄膜保持精确的化学计量比;最后,在这种较低的热处理温度下,薄膜内部的晶粒尺寸不均匀,同时晶内缺陷较多,从而大幅削弱了薄膜的相转变性能。同时,无论是采用传统的反应磁控溅射法,还是上述描述的热氧化法,由于氧化钒薄膜的易氧化特性,热处理温度高于500℃就会发生快速氧化,生成过度氧化的五氧化二钒薄膜,从而使薄膜丧失功能特性。因此,如果能通过调整热处理工艺,使得薄膜的后续热处理温度升高,无疑会大幅提高薄膜的结晶质量,进而提升其相变响应能力,对其工业化应用起到重要推动作用。如何使金属钒薄膜的热氧化处理温度提高到500℃以上,并且实现纯化学计量比的二氧化钒薄膜一直是相关领域的一个技术难点。
发明内容
为了解决已有的二氧化钒薄膜制备工艺中存在的问题,本发明提供了一种二氧化钒纳米颗粒膜的制备工艺。
本发明的技术解决方案是,
1)以金属钒靶作为溅射源,在氩气条件下在洁净衬底上溅射100~300nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到500~570℃范围时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为5~10min,将坩埚拉出在空气下冷却,得到二氧化钒纳米颗粒膜。
利用本发明方法制备的二氧化钒纳米颗粒膜具有如下优点:
1.摆脱了热氧化法对昂贵的真空热处理炉设备的依赖,不需要真空泵,利用普通的管式退火炉就可以简单快捷地制备出二氧化钒纳米颗粒膜。
2.不需要精确控制惰性气体和氧气的比例,只需惰性气体就可以制备出性能优异的二氧化钒薄膜,热处理时间短,成本低廉。
3.可以实现500℃以上的薄膜退火处理,制备的二氧化钒薄膜的晶化度高,晶粒尺寸均匀并且小于一百纳米,相变特性明显,可重复性高。
4.该方法工艺参数简单,对衬底材料和薄膜沉积尺寸无特殊要求,可方便实现批量化生产。
本发明开发了一种制备二氧化钒纳米颗粒膜的制备工艺。通过快速的高温氧化处理,即可获得晶粒尺寸均匀并且细小的二氧化钒薄膜材料。该方法过程工艺简单可控,为二氧化钒薄膜材料提供了一种低成本、短周期、可工业化实施的新技术。
附图说明
图1为实施例1中制备的二氧化钒纳米颗粒膜的XRD图;
图2为实施例1中制备的二氧化钒纳米颗粒膜的SEM图;
图3为实施例2中制备的二氧化钒纳米颗粒膜的XRD图;
图4为实施例2中制备的二氧化钒纳米颗粒膜的SEM图。
具体实施方式
下面结合具体实施例进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的保护范围。
实施例1
1)以金属钒靶作为溅射源,在氩气条件下在洁净衬底上溅射500nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到500℃时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为10min,到时后拉出坩埚进行快速空气下冷却。
图1为实施例1中制备的二氧化钒纳米颗粒膜的XRD图,可以看出薄膜中只含有单一的二氧化钒相,无其它杂质相生成。图2为实施例1中制备的二氧化钒纳米颗粒膜的SEM图。从图中可以看到,所制备出的薄膜表面平整致密,纳米颗粒膜的晶粒尺寸更加均匀,尺寸在几十纳米到一百纳米之间变化。通过变温拉曼谱以及变温电阻测试等手段对上述薄膜进行表征,其结果证实了实施例1中制备的二氧化钒纳米颗粒膜具有良好的变温相变特性。利用实施例1中所述工艺之所以能够获得均匀细晶二氧化钒纳米颗粒膜,主要原因分析为:炉管在氮气的保护下,极大降低了内部氧气的含量,在微氧的环境下,金属钒膜的热处理温度可以提高到更高温度而不会发生过度氧化。而另一方面,由于热处理的时间较短,晶粒在生长过程中的状态更容易保持一致,并且很难长大成大尺寸,所以最终形成了细晶二氧化钒纳米颗粒膜。由于在这种工艺下,薄膜的结晶质量得到了明显提高,所以提高了二氧化钒薄膜的相变特性。
实施例2
1)以金属钒靶作为溅射源,在氩气条件下在洁净衬底上溅射200nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到570℃时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为5min,到时后拉出坩埚进行快速空气下冷却。
图3为实施例2中制备的二氧化钒纳米颗粒膜的XRD图,可以看出薄膜中只含有单一的二氧化钒相,无其它杂质相生成。图4为实施例2中制备的二氧化钒纳米颗粒膜的SEM图。从图中可以看到,薄膜表面平整致密,纳米颗粒膜的晶粒尺寸更加均匀,尺寸在几十纳米到一百纳米之间变化。通过变温拉曼谱以及变温电阻测试等手段对薄膜进行表征,其结果证实了实施例2中制备的二氧化钒纳米颗粒膜具有良好的变温相变特性。其形成机制同实施例1中所述。

Claims (1)

1.一种二氧化钒纳米颗粒膜的制备方法,其特征在于,该工艺方法包括下述步骤:
1)以金属钒靶作为溅射源,在氩气条件下在洁净衬底上溅射100~300nm厚的金属钒膜,衬底温度保持在200℃;
2)将一端敞口的管式退火炉进行升温,到500~570℃范围时进行保温,从炉管的非敞口端通入氮气,氮气流量保持在2L/min;
3)将制备的金属钒膜放入石英坩埚中,之后将坩埚推入上述管式退火炉中进行退火,退火时间为5~10min,将坩埚拉出在空气下冷却,得到二氧化钒纳米颗粒膜。
CN201610436708.0A 2016-06-17 2016-06-17 一种二氧化钒纳米颗粒膜的制备方法 Active CN106048532B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610436708.0A CN106048532B (zh) 2016-06-17 2016-06-17 一种二氧化钒纳米颗粒膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610436708.0A CN106048532B (zh) 2016-06-17 2016-06-17 一种二氧化钒纳米颗粒膜的制备方法

Publications (2)

Publication Number Publication Date
CN106048532A CN106048532A (zh) 2016-10-26
CN106048532B true CN106048532B (zh) 2018-08-03

Family

ID=57168479

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610436708.0A Active CN106048532B (zh) 2016-06-17 2016-06-17 一种二氧化钒纳米颗粒膜的制备方法

Country Status (1)

Country Link
CN (1) CN106048532B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107177823B (zh) * 2017-06-14 2019-07-23 中国航发北京航空材料研究院 一种具有激光防护性能的Ag/VO2复合薄膜的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041170A2 (en) * 1999-03-31 2000-10-04 Praxair S.T. Technology, Inc. Nickel/vanadium sputtering target with ultra-low alpha emission
CN102212782A (zh) * 2011-05-24 2011-10-12 天津大学 一种制备二氧化钒薄膜快速热处理的方法
CN104032278A (zh) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 一种二氧化钒薄膜制备方法
CN104178738A (zh) * 2014-08-14 2014-12-03 电子科技大学 一种无相变高电阻温度系数的掺钛氧化钒薄膜的制备方法
CN105256280A (zh) * 2015-11-24 2016-01-20 天津大学 一种通过快速热处理调控二氧化钒相变温度的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1041170A2 (en) * 1999-03-31 2000-10-04 Praxair S.T. Technology, Inc. Nickel/vanadium sputtering target with ultra-low alpha emission
CN102212782A (zh) * 2011-05-24 2011-10-12 天津大学 一种制备二氧化钒薄膜快速热处理的方法
CN104032278A (zh) * 2014-06-12 2014-09-10 中国科学院上海技术物理研究所 一种二氧化钒薄膜制备方法
CN104178738A (zh) * 2014-08-14 2014-12-03 电子科技大学 一种无相变高电阻温度系数的掺钛氧化钒薄膜的制备方法
CN105256280A (zh) * 2015-11-24 2016-01-20 天津大学 一种通过快速热处理调控二氧化钒相变温度的方法

Also Published As

Publication number Publication date
CN106048532A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication of VO2 films with low transition temperature for optical switching applications
CN105018881B (zh) 一种含有v6o13晶体的非晶氧化钒薄膜材料和制备方法
CN102249552A (zh) 一种二氧化钒智能控温薄膜及方法
CN110195208B (zh) 一种可变带隙的NbMoTaWV高熵合金氧化物薄膜及其制备方法
CN109207927A (zh) 一种氧化钒单晶薄膜的制备方法
Ho et al. Fabrication of highly oriented (002) ZnO film on glass by sol–gel method
CN108314019B (zh) 一种层数均匀的大面积高质量石墨烯薄膜的制备方法
CN105624630A (zh) 一种VOx/M/VOx“三明治”结构薄膜制备VO2的方法及其应用
CN105256280A (zh) 一种通过快速热处理调控二氧化钒相变温度的方法
CN103833416B (zh) 一种镍酸镧导电薄膜的化学溶液沉积制备方法
CN106048532B (zh) 一种二氧化钒纳米颗粒膜的制备方法
CN109487338B (zh) 一种单晶二氧化钒薄膜的制备方法
CN102703873B (zh) 极窄回滞曲线宽度高电阻温度系数二氧化钒薄膜制备方法
CN113684485B (zh) 一种基于氮氢混合气产生装置的二氧化钒薄膜的制备方法
CN110318021B (zh) 一种晶圆级二氧化钒薄膜的制备方法
Zhu et al. Preparation and modification of VO2 thin film on R-sapphire substrate by rapid thermal process
Huang et al. Low transition-temperature characteristic in VOx films grown on Si3N4/Glass substrates
Qiao et al. Fabrication of low phase transition temperature vanadium oxide films by direct current reactive magnetron sputtering and oxidation post-anneal method
Pedrosa et al. In situ electrical resistivity measurements of vanadium thin films performed in vacuum during different annealing cycles
CN111613400B (zh) 一种常温ntc热敏电阻薄膜及其制备方法
Guhel et al. In situ Raman characterization of CeO2 thin films sputtered on (1 1 1) Si in order to optimize the post growth annealing parameters
CN111690897B (zh) 单原胞层二硒化钨薄膜及其生长方法
CN112126895A (zh) 一种二氧化钒单晶薄膜的制备方法
Lin et al. Sol–gel preparation of delafossite CuCr1− xMgxO2 thin films by nitrate salts
CN115125488B (zh) 基于混频脉冲反应磁控溅射制备的热敏薄膜

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant