CN106044864A - 一种楔形Sn掺杂氧化铁纳米棒的制备方法 - Google Patents

一种楔形Sn掺杂氧化铁纳米棒的制备方法 Download PDF

Info

Publication number
CN106044864A
CN106044864A CN201610632272.2A CN201610632272A CN106044864A CN 106044864 A CN106044864 A CN 106044864A CN 201610632272 A CN201610632272 A CN 201610632272A CN 106044864 A CN106044864 A CN 106044864A
Authority
CN
China
Prior art keywords
oxide nanometer
wedge shape
ferric oxide
nanometer rods
wedge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610632272.2A
Other languages
English (en)
Inventor
李鹿
王春刚
苏忠民
谢海明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201610632272.2A priority Critical patent/CN106044864A/zh
Publication of CN106044864A publication Critical patent/CN106044864A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种楔形Sn掺杂氧化铁纳米棒的制备方法。本发明以三氯化铁和四氯化锡为原料,通过一步水热法合成楔形Sn掺杂氧化铁纳米棒,合成方法简单,长短可调、易于推广。所得产品掺杂均匀、分散性好,且结构稳定,有利于获得更高的容量,更好循环稳定性以及更长的使用寿命。

Description

一种楔形Sn掺杂氧化铁纳米棒的制备方法
技术领域
本发明属于纳米复合材料及其应用技术领域,具体涉及一种楔形Sn掺杂氧化铁纳米棒的制备方法。
背景技术
锂电池因高的开路电压和能量密度,长寿命,低自放电率,环境友好,且无记忆效应等优点,继镍系电池后,被称为第三代可充电“绿色电池”。但由于目前商业化的石墨负极材料的比容量偏低,其他负极材料虽然比容量高,但是循环稳定性差。为了满足未来社会中将普遍使用的电动汽车、电动自行车、手机、笔记本计算机、移动电源(“充电宝”)等的市场需求,以及航空航天、航海、人造卫星、军用通信设备、医疗等领域对电源的需求,人们迫切希望开发一些具有更高比容量,更好导电性和更好循环稳定性、倍率性能的锂离子电池。
过渡金属氧化物由于具有较高理论容量,价格低廉、环境友好等优点成为锂离子电池负极材料关注的焦点。(参考文献: A. Ito, L. Zhao, S. Okada, J.-i. Yamaki, J.Power Sources 2011, 196, 8154-8159; J. Su, M. H. Cao, L. Ren, C. W. Hu, J.Phys. Chem. C 2011, 115, 14469-14477; X. Chen, L. Li, X. Sun, Y. Liu, B. Luo,C. Wang, Y. Bao, H. Xu, H. Peng, Angew. Chem. Int. Ed. 2011, 50, 5486-5489.)其中Fe2O3由于具有高理论容量,高稳定性,对环境友好等特点吸引了大家的广泛关注。但目前还存在着倍率放电性能差、电导率低、循环寿命短等问题。纳米尺寸材料可以减缓在Li+脱嵌过程中的应力变化,当颗粒为纳米级时,颗粒空隙间也为纳米尺寸,可为锂离子的嵌入提供了很好的纳米通道和嵌锂位置,具有大的嵌锂容量和良好的嵌锂性能,另外纳米化还可以更有效的减缓在充放电过程中带来的体积变化和团聚粉化问题,达到改善循环性能的目的。此外,金属掺杂也是一种提高材料性能的有效方法,可提高材料导电性、改善材料表面电子分布。(参考文献:R. C. Jin, L. X. Yang, G. H. Li, G. Chen, RSC Adv.,2014, 4, 32781–32786; X. Y. Meng, G. W. Qin, W. A. Goddard, S. Li, H. J. Pan,X. H. Wen, Y. K. Qin, L. Zuo, J. Phys. Chem. C 2013, 117, 3779−3784.)但是,现有合成方法得到的锡掺杂三氧化二铁纳米粒子多大都为聚集态,分散性较差,这就在很大程度上减小了纳米化对电池性能的提高,不能完全体现纳米电极材料的特性。到目前为止,还没有文献和专利报道采用本文方法合成高分散的楔形Sn掺杂氧化铁纳米棒。
发明内容
本发明的目的是提供一种楔形Sn掺杂氧化铁纳米棒的制备方法,使用该方法制备的楔形Sn掺杂氧化铁纳米棒具有合成方法简单、长短可调、分散性好、比容量大、循环性能好等特点。
本发明楔形Sn掺杂氧化铁纳米棒的制备方法包括如下步骤:
分别将5 ~ 7 ml去离子水、10 ~ 30 mg无水三氯化铁和5 ~ 15 mg四氯化锡加入到20ml烧杯中,磁力搅拌10 ~ 20 min,至固体全部溶解后,将溶液转移到15 mL水热反应釜中,于170 ~ 200 oC烘箱中反应2 ~ 4 h。自然冷却至室温,离心分离(7000 rpm,8 ~ 10 min),再分别用去离子水和无水乙醇交替洗涤数次,所得沉淀在烘箱中50 ~ 100 oC烘干8 ~ 10h,既得到楔形Sn掺杂氧化铁纳米棒。
本发明具有如下优点:
1.本发明合成方法简单易行,一步合成楔形Sn掺杂氧化铁纳米棒,即缩短了反应步骤,又易于推广。
2.本发明得到的楔形Sn掺杂氧化铁纳米棒具有掺杂均匀、长短可调、分散性好,结构稳定等特点。
3.使用本发明方法制备的Sn掺杂氧化铁纳米棒为锂电池负极材料具有容量大、循环性能好、使用寿命长等特点。
附图说明
图1、为本发明制备得到的楔形Sn掺杂氧化铁纳米棒的透射电镜图片;
图2、为本发明制备得到的单个楔形Sn掺杂氧化铁纳米棒的面扫描图片;
图3、楔形Sn掺杂氧化铁纳米棒的XRD谱图;
图4、为本发明制备得到的楔形Sn掺杂氧化铁纳米棒的首次充放电曲线;
图5、为本发明制备得到的楔形Sn掺杂氧化铁纳米棒的充放电循环曲线。
具体实施方式
下面结合具体实施例进一步阐述本发明,实施例仅用于说明本发明而不用于限制本发明的保护范围。
具体实施例
实施例1:
分别将6 ml去离子水、20 mg无水三氯化铁和10 mg四氯化锡加入到20 ml烧杯中,磁力搅拌15 min,至固体全部溶解后,将溶液转移到15 mL水热反应釜中,于180 oC烘箱中反应4h。自然冷却至室温,离心分离(7000 rpm,8 min),再分别用去离子水和无水乙醇交替洗涤数次,所得沉淀在烘箱中100 oC烘干10 h,既得到楔形Sn掺杂氧化铁纳米棒。
实施例2:
分别将5 ml去离子水、10 mg无水三氯化铁和5 mg四氯化锡加入到20 ml烧杯中,磁力搅拌10 min,至固体全部溶解后,将溶液转移到15 mL水热反应釜中,于190 oC烘箱中反应2h。自然冷却至室温,离心分离(7000 rpm,10 min),再分别用去离子水和无水乙醇交替洗涤数次,所得沉淀在烘箱中80 oC烘干8 h,既得到楔形Sn掺杂氧化铁纳米棒。
实施例3:
分别将7 ml去离子水、22 mg无水三氯化铁和11 mg四氯化锡加入到20 ml烧杯中,磁力搅拌20 min,至固体全部溶解后,将溶液转移到15 mL水热反应釜中,于200 oC烘箱中反应3h。自然冷却至室温,离心分离(7000 rpm,7 min),再分别用去离子水和无水乙醇交替洗涤数次,所得沉淀在烘箱中90 oC烘干9 h,既得到楔形Sn掺杂氧化铁纳米棒。
所述的制备出的楔形Sn掺杂氧化铁纳米棒用于锂离子电池。以合成的楔形Sn掺杂氧化铁纳米棒为活性物质,乙炔黑为导电剂,聚偏氟乙烯为粘结剂,氮甲基吡咯烷酮为溶剂。电池的组装过程为:将活性物质 、导电剂、聚偏氟乙烯按70:20:10的重量比准确称量,充分混合、研磨均匀,然后滴加NMP,继续研磨至均匀浆状。将浆料均匀涂于已称量过的铜箔上,然后在真空干燥箱中于120 oC真空干燥12 h至恒重,10 MPa下压片,再继续干燥至少2 h,降到室温后取出称重。
本发明用实验半电池来测试合成材料的电化学性能,模拟电池的组装在无水无氧、充有氩气的手套箱中完成。将烘干的极片、电池壳和隔膜放入手套箱。以金属锂片为对电极,聚丙烯多孔膜做隔膜,1.0 mol/L LiPF6 的EC-DMC(体积比1:1)溶液做电解液,组装成扣式CR2025模拟电池,进行充放电测试。
实验表明所制备的楔形Sn掺杂氧化铁纳米棒用于锂离子电池负极材料具有很高的比容量和较好的循环性能。如图4和5所示,在0.01-3.0 V电压范围内,在200 mA g-1电流下充放电,其首次放电容量为1260 mA h g-1,经100次循环后放电容量仍有925 mAh g-1

Claims (1)

1.一种楔形Sn掺杂氧化铁纳米棒的制备方法,其特征是具体步骤如下:
分别将5 ~ 7 ml去离子水、10 ~ 30 mg无水三氯化铁和5 ~ 15 mg四氯化锡加入到20ml烧杯中,磁力搅拌10 ~ 20 min,至固体全部溶解后,将溶液转移到15 mL水热反应釜中,于170 ~ 200 oC烘箱中反应2 ~ 4 h,自然冷却至室温,离心分离7000 rpm,8 ~ 10 min,再分别用去离子水和无水乙醇交替洗涤数次,所得沉淀在烘箱中50 ~ 100 oC烘干8 ~ 10 h,既得到楔形Sn掺杂氧化铁纳米棒。
CN201610632272.2A 2016-08-05 2016-08-05 一种楔形Sn掺杂氧化铁纳米棒的制备方法 Pending CN106044864A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610632272.2A CN106044864A (zh) 2016-08-05 2016-08-05 一种楔形Sn掺杂氧化铁纳米棒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610632272.2A CN106044864A (zh) 2016-08-05 2016-08-05 一种楔形Sn掺杂氧化铁纳米棒的制备方法

Publications (1)

Publication Number Publication Date
CN106044864A true CN106044864A (zh) 2016-10-26

Family

ID=57196346

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610632272.2A Pending CN106044864A (zh) 2016-08-05 2016-08-05 一种楔形Sn掺杂氧化铁纳米棒的制备方法

Country Status (1)

Country Link
CN (1) CN106044864A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311236A (zh) * 2017-06-26 2017-11-03 安徽工程大学 一种Fe2O3@SnO2核壳结构纳米棒的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140135306A (ko) * 2013-05-15 2014-11-26 한국과학기술원 일차원 금속산화물 나노섬유에 부착된 결정화된 이리듐옥사이드 나노입자 산소 발생 촉매 및 그 제조 방법
CN105498773A (zh) * 2014-09-26 2016-04-20 中国科学院大连化学物理研究所 一种掺杂氧化铁纳米棒催化剂的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140135306A (ko) * 2013-05-15 2014-11-26 한국과학기술원 일차원 금속산화물 나노섬유에 부착된 결정화된 이리듐옥사이드 나노입자 산소 발생 촉매 및 그 제조 방법
CN105498773A (zh) * 2014-09-26 2016-04-20 中国科学院大连化学物理研究所 一种掺杂氧化铁纳米棒催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIXIA YANG ET AL.: ""Facile hydrothermal route to the controlled synthesis of α-Fe2O3 1-D nanostructures"", 《BULL. MATER. SCI.》 *
吴东辉等: ""pH值对微波水热法制备纳米α-Fe2O3的控制作用"", 《精细化工》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107311236A (zh) * 2017-06-26 2017-11-03 安徽工程大学 一种Fe2O3@SnO2核壳结构纳米棒的制备方法
CN107311236B (zh) * 2017-06-26 2019-08-30 安徽工程大学 一种Fe2O3@SnO2核壳结构纳米棒的制备方法

Similar Documents

Publication Publication Date Title
Wu et al. The electrochemical performance of aqueous rechargeable battery of Zn/Na0. 44MnO2 based on hybrid electrolyte
Li et al. Sphere-like SnO2/TiO2 composites as high-performance anodes for lithium ion batteries
Huang et al. Net-structured NiO–C nanocomposite as Li-intercalation electrode material
CN102290572B (zh) 锂离子二次电池用负极活性物质及负极
CN104638252A (zh) 一种硅复合负极材料、制备方法及锂离子电池
CN111146427A (zh) 一种以聚苯胺为碳源制备中空核壳结构纳米硅碳复合材料的方法及应用该材料的二次电池
WO2018209912A1 (zh) 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
CN103606672A (zh) 棒状纳米氧化铁电极材料及其制备方法和应用
Liu et al. Iron doping of NiSe2 nanosheets to accelerate reaction kinetics in sodium-ion half/full batteries
Li et al. Three-dimensionally ordered macroporous SnO2 as anode materials for lithium ion batteries
Deng et al. High-performance SiMn/C composite anodes with integrating inactive Mn4Si7 alloy for lithium-ion batteries
CN104183832A (zh) 一种基于碳纳米管-石墨烯复合三维网络的FeF3柔性电极的制备方法与应用
CN103762354A (zh) 一种LiNi0.5Mn1.5O4材料、其制备方法及锂离子电池
CN104659333A (zh) 锂离子二次电池Mg2Si/SiOx/C复合负极材料膜电极的制备方法
CN108172744B (zh) 一种用于锂硫电池隔膜的Sb2Se3复合材料的制备方法
CN107611379A (zh) 一种三维氢氧化镍‑石墨烯复合材料、其制备方法及应用
Ma et al. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries
CN110600699B (zh) 一种三维有序介孔mof材料的制备方法
Luo et al. Controlled fabrication and performances of single-core/dual-shell hierarchical structure m-TNO@ TiC@ NC anode composite for lithium-ion batteries
CN102104149A (zh) 一种锂离子电池中的磷酸铁锂复合正极材料及其制备方法
Sui et al. Highly dispersive CoSe 2 nanoparticles encapsulated in carbon nanotube-grafted multichannel carbon fibers as advanced anodes for sodium-ion half/full batteries
CN106450203A (zh) 金属氧化物/导电聚合物双重修饰的硫复合正极材料的制备方法
Qin et al. Electrochemical performance and Cu2+ modification of nickel metal organic framework derived tellurides for application in aluminum ion batteries
Duan et al. Fe3O4 fuzzy spheroids as anode materials for lithium-ion batteries
CN106356513B (zh) 一种具有三明治结构的导电聚合物/硫复合正极材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026