CN107311236A - 一种Fe2O3@SnO2核壳结构纳米棒的制备方法 - Google Patents

一种Fe2O3@SnO2核壳结构纳米棒的制备方法 Download PDF

Info

Publication number
CN107311236A
CN107311236A CN201710525210.6A CN201710525210A CN107311236A CN 107311236 A CN107311236 A CN 107311236A CN 201710525210 A CN201710525210 A CN 201710525210A CN 107311236 A CN107311236 A CN 107311236A
Authority
CN
China
Prior art keywords
sno
shell structure
nano rod
nuclear shell
structure nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710525210.6A
Other languages
English (en)
Other versions
CN107311236B (zh
Inventor
刘荣梅
江紫翔
孙雪莹
朱贤东
刘琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201710525210.6A priority Critical patent/CN107311236B/zh
Publication of CN107311236A publication Critical patent/CN107311236A/zh
Application granted granted Critical
Publication of CN107311236B publication Critical patent/CN107311236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide [Fe2O3]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种Fe2O3@SnO2核壳结构纳米棒的制备方法,包括以下步骤:将锡酸钠加入到硝酸铁水溶液中,混合均匀后,然后在120‑200℃下反应,最后经过离心分离、洗涤和干燥,得到Fe2O3@SnO2核壳结构纳米棒。其中,锡酸钠和硝酸铁的摩尔比为1:10‑1:2,锡酸钠的摩尔浓度为0.020‑0.100 moL/L,硝酸铁的摩尔浓度为0.200moL/L。本发明采用水热方法,制备条件温和,工艺简单节能;本发明制备方法合成的Fe2O3@SnO2核壳结构纳米棒以Fe2O3长度约为100‑200 nm纳米棒为核,SnO2纳米粒子为壳组成;与Fe2O3相比,Fe2O3@SnO2核壳结构纳米棒对乙醇表现出更高的灵敏度。

Description

一种Fe2O3@SnO2核壳结构纳米棒的制备方法
技术领域
本发明涉及的是新材料领域,具体涉及一种Fe2O3@SnO2核壳结构纳米棒的制备方法。
背景技术
在纳米结构设计中,半导体纳米异质结,由于其含有不同的成分,在光电化学、气敏和催化等领域具有潜在的应用。材料的性能受其成分、形貌和尺寸的影响,因此生长不同成分、形貌和尺寸的纳米异质结引起了人们极大的兴趣。至今为止,国内外的科研工作者合成了大量的纳米异质结。例如Fe2O3/TiO2、Fe2O3/SnO2、CdSe/CdS、ZnO/ZnFe2O4、PPY@CoNi-LDH、AlCo-LDH/MOF等等,并广泛应用于催化、传感等领域,不同的成分和特殊的结构大大提高了材料的性能。与单一的成分相比,不同成分之间的协同效应大大提高了材料的性能。
作为功能氧化物半导体纳米材料,Fe2O3和SnO2在气敏、催化和电池等领域都展现了优异的性能。复合材料相对于单一的成分,某方面性能往往得到提高。Fe2O3@SnO2复合材料纳米异质结在光电化学、催化和气敏等方面显示出更优异的性能。
通常情况下,Fe2O3@SnO2核壳结构的合成采用两步法合成,首先得到Fe2O3纳米结构,然后再在Fe2O3纳米结构上生长SnO2纳米结构,从而得到Fe2O3@SnO2核壳结构。关于一步水热法合成Fe2O3@SnO2核壳结构纳米棒尚未见报道。
综上所述,本发明设计了一种Fe2O3@SnO2核壳结构纳米棒的一步制备方法。
发明内容
针对现有技术上存在的不足,本发明目的是在于提供一种a-Fe2O3@SnO2核壳结构纳米棒的制备方法,该方法采用水热方法,通过一步简单的混合过程合成出Fe2O3@SnO2核壳结构纳米棒,简单易行,避免了传统过程中首先得到Fe2O3再复合SnO2的繁琐处理过程。
为了实现上述目的,本发明是通过如下的技术方案来实现:一种Fe2O3@SnO2核壳结构纳米棒的制备方法,包括以下步骤:首先配制0.2 mol/L的硝酸铁溶液,将一定量的锡酸钠加入到硝酸铁水溶液中,磁力搅拌10-30min,分散均匀得到混合液;然后在120-200℃下反应1-12小时;最后经过离心分离、洗涤和干燥,得到Fe2O3@SnO2核壳结构纳米棒。
作为优选,所述的锡酸钠和硝酸铁的摩尔比为1:10-1:2。
作为优选,所述的混合溶液中锡酸钠的摩尔浓度为0.020-0.100 moL/L。
作为优选,所述的硝酸铁的摩尔浓度为0.200 moL/L。
作为优选,所述洗涤,分别采用水和乙醇对产品洗涤。
作为优选,所述干燥采用烘箱干燥,干燥温度为50-80℃,时间为6-24 h。
本发明具有以下有益效果:1、采用一步水热方法,制备条件温和,工艺简单;
2、本发明制备方法可得到核壳结构的Fe2O3@SnO2纳米棒,制备的Fe2O3@SnO2纳米棒,长度约为100-200 nm;以Fe2O3纳米棒为核, SnO2纳米粒子为壳组成;
3、与Fe2O3相比,Fe2O3@SnO2核壳结构纳米棒对乙醇表现出更高的灵敏度;
4、Fe2O3@SnO2核壳结构纳米棒在气体传感、光电转换、光催化等领域具有大的应用潜力。
附图说明
下面结合附图和具体实施方式来详细说明本发明;
图1本发明实施例锡酸钠和硝酸铁不同摩尔比样品的XRD图谱。
图2本发明实施例1产品的EDX元素分布mappings图。
图3本发明实施例1产品的电镜图,其中,(a,b)为FE-SEM图,(c,d)为TEM图,(e)为单个纳米棒的TEM图,(f)为HRTEM图(内附SAED图)。
图4本发明实施例1产品的XPS图谱。
图5本发明实施例2产品的FE-SEM电镜图。
图6本发明实施例3产品的FE-SEM电镜图。
图7a是本发明实施例1制备的Fe2O3@SnO2核壳结构纳米棒气敏传感器对不同浓度乙醇的响应曲线图;b是Fe2O3气敏传感器对不同浓度乙醇的响应曲线图。
具体实施方式
为使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施方式,进一步阐述本发明。
实施例1:一种Fe2O3@SnO2核壳结构纳米棒的制备方法,包括以下步骤:
(1)将0.2 mmoL锡酸钠加入到10 mL 0.200 moL/L硝酸铁水溶液中,采用磁力搅拌30min,得到悬浊液;
(2)将悬浊液倒入聚四氟乙烯内衬的不锈钢高压反应釜中,升温至160℃,反应6 h,反应完后随炉冷却;
(3 )将反应产物离心分离,得到固体粉末,接着依次用蒸馏水、乙醇洗涤,然后在60℃下干燥24 h,得到Fe2O3@SnO2核壳结构纳米棒。
采用X射线粉末衍射(XRD)、场发射扫描电子显微镜(FE-SEM)和透射电子显微镜(TEM)对产品进行分析。
图1(b)是实施例1产品的XRD图,结果表明本实施例产品是六方晶型的Fe2O3相;SnO2为无定型相,XRD图谱上看不到其衍射峰。图2为实施例1产品的EDX 元素分布mappings图,由图可以看到产品为Fe2O3纳米棒为核, SnO2纳米粒子为壳组成的核壳结构。
图3(a)(b)为实施例1产品的SEM图,图3(c,d)为实施例1产品的TEM图,图3(e)为单个纳米棒的TEM图,图3(f)为单个纳米棒的高分辨透射电镜图和选区电子衍射图。从图中可以看出,实施例1产品的长度约为100-200 nm,大小均匀;晶格条文清晰,结晶良好,为多晶结构。
图4为实施例1产品的XPS图,由于XPS只能检测样品表面1-10nm厚度的元素。由图可以看到产品的外壳为SnO2
实施例2:
(1)将0.4 mmoL锡酸钠加入到10 mL 0.200 moL/L硝酸铁水溶液中,采用磁力搅拌20min,得到悬浊液;
(2)将悬浊液倒入聚四氟乙烯内衬的不锈钢高压反应釜中,升温至160℃,反应6 h,反应完后随炉冷却;
(3 )将反应产物离心分离,得到固体粉末,接着依次用蒸馏水、乙醇洗涤,然后在70℃下干燥16 h,得到Fe2O3@SnO2核壳结构纳米棒。
制得的产品与实施例1基本一致,棒的直径略微加大,其XRD如图1(c)和扫瞄电镜图如图5(a)(b)所示。
实施例3:
(1)将1 mmoL锡酸钠加入到10 mL 0.200 moL/L硝酸铁水溶液中,采用磁力搅拌10min,得到悬浊液;
(2)将悬浊液倒入聚四氟乙烯内衬的不锈钢高压反应釜中,升温至200℃,反应12h,反应完后随炉冷却;
(3 )将反应产物离心分离,得到固体粉末,接着依次用蒸馏水、乙醇洗涤,然后在80℃下干燥12h,得到Fe2O3@SnO2核壳结构纳米棒。
制得的产品与实施例1基本一致,棒的直径变大,与棒上生长的SnO2纳米粒子变多有关。其XRD如图1(d),扫瞄电镜图如图6(a)(b)所示。
实施例4:
以实施例1制备的Fe2O3@SnO2核壳结构纳米棒测试其气敏性能。具体为:Fe2O3@SnO2核壳结构纳米棒和Fe2O3样品与一定量的无水乙醇混合成糊状。将糊均匀致密地涂在有四个Pt电极的Al2O3微米管上后,将其焊接在基座上。气敏性测试在昆明贵研金峰科技有限公司生产的 JF02E系统上进行。测试浓度范围100–500 ppm,温度180°C,控温系统的压强:2.0–5.0V。
图7为实施例1制备的Fe2O3@SnO2核壳结构纳米棒气敏传感器对不同浓度乙醇的响应曲线图。当乙醇浓度为100 ppm时,Fe2O3@SnO2核壳结构纳米棒对乙醇的灵敏度为14.3。随着乙醇浓度从100 ppm增加到500 ppm时,Fe2O3@SnO2核壳结构纳米棒的灵敏度分别从14.3增加到 58.7。而Fe2O3样品的灵敏度从9.6增加到 29.3。Fe2O3@SnO2核壳结构纳米棒表现出比Fe2O3样品更高的灵敏度。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (6)

1.一种Fe2O3@SnO2核壳结构纳米棒的制备方法,其特征在于,包括以下步骤:首先配制0.2 mol/L的硝酸铁溶液,将一定量的锡酸钠加入到硝酸铁水溶液中,磁力搅拌10-30min,分散均匀得到混合液;然后在120-200℃下反应1-12小时;最后经过离心分离、洗涤和干燥,得到a-Fe2O3@SnO2核壳结构纳米棒。
2.根据权利要求1所述的一种Fe2O3@SnO2核壳结构纳米棒的制备方法,其特征在于,所述的锡酸钠和硝酸铁的摩尔比为1:10-1:2。
3.根据权利要求1所述的一种Fe2O3@SnO2核壳结构纳米棒的制备方法,其特征在于,所述的混合溶液中锡酸钠的摩尔浓度为0.020-0.100 moL/L。
4.根据权利要求1所述的一种Fe2O3@SnO2核壳结构纳米棒的制备方法,其特征在于,所述的硝酸铁的摩尔浓度为0.200 moL/L。
5.根据权利要求1所述的一种Fe2O3@SnO2核壳结构纳米棒的制备方法,其特征在于,所述洗涤,分别采用水和乙醇对产品洗涤。
6.根据权利要求1所述的一种Fe2O3@SnO2核壳结构纳米棒的制备方法,其特征在于,所述干燥采用烘箱干燥,干燥温度为50-80℃,时间为6-24 h。
CN201710525210.6A 2017-06-26 2017-06-26 一种Fe2O3@SnO2核壳结构纳米棒的制备方法 Active CN107311236B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710525210.6A CN107311236B (zh) 2017-06-26 2017-06-26 一种Fe2O3@SnO2核壳结构纳米棒的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710525210.6A CN107311236B (zh) 2017-06-26 2017-06-26 一种Fe2O3@SnO2核壳结构纳米棒的制备方法

Publications (2)

Publication Number Publication Date
CN107311236A true CN107311236A (zh) 2017-11-03
CN107311236B CN107311236B (zh) 2019-08-30

Family

ID=60180016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710525210.6A Active CN107311236B (zh) 2017-06-26 2017-06-26 一种Fe2O3@SnO2核壳结构纳米棒的制备方法

Country Status (1)

Country Link
CN (1) CN107311236B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423516A (zh) * 2018-09-04 2019-11-08 广东聚华印刷显示技术有限公司 墨水及其制备方法和气敏传感器薄膜

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586019A (zh) * 2009-03-31 2009-11-25 哈尔滨工程大学 吸收高频电磁波的四氧化三铁/氧化锡核壳纳米棒及制法
CN106044864A (zh) * 2016-08-05 2016-10-26 东北师范大学 一种楔形Sn掺杂氧化铁纳米棒的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101586019A (zh) * 2009-03-31 2009-11-25 哈尔滨工程大学 吸收高频电磁波的四氧化三铁/氧化锡核壳纳米棒及制法
CN106044864A (zh) * 2016-08-05 2016-10-26 东北师范大学 一种楔形Sn掺杂氧化铁纳米棒的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LU-PING ZHU等: "Synthesis and photocatalytic properties of core–shell structured a-Fe2O3@SnO2 shuttle-like nanocomposites", 《CRYSTENGCOMM》 *
PENG SUN等: "Hierarchical -Fe2O3/SnO2 semiconductor composites: Hydrothermal synthesis and gas sensing properties", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
YJ CHEN等: "Synthesis and enhanced ethanol sensing characteristics of alpha-Fe2O3/SnO2 core-shell nanorods", 《NANOTECHNOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110423516A (zh) * 2018-09-04 2019-11-08 广东聚华印刷显示技术有限公司 墨水及其制备方法和气敏传感器薄膜
CN110423516B (zh) * 2018-09-04 2022-04-19 广东聚华印刷显示技术有限公司 墨水及其制备方法和气敏传感器薄膜

Also Published As

Publication number Publication date
CN107311236B (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
Sakthivel et al. Synthesis and characterization of bimetallic nickel-cobalt chalcogenides (NiCoSe2, NiCo2S4, and NiCo2O4) for non-enzymatic hydrogen peroxide sensor and energy storage: Electrochemical properties dependence on the metal-to-chalcogen composition
Ahmad et al. Microwave-assisted synthesis of ZnO doped CeO2 nanoparticles as potential scaffold for highly sensitive nitroaniline chemical sensor
CN105883906B (zh) 一种纳米二氧化锡与石墨烯复合材料及其制备方法与应用
CN109023417B (zh) 碳化铁-钴/氮掺杂碳纳米复合材料的制备方法及应用
CN105384193B (zh) 一种五氧化二铌海胆状纳米微球的制备方法及其作为光催化剂的应用
CN109502632B (zh) 一种多级SnO2纳米管状气敏材料的制备方法及其应用
CN101143357B (zh) 一种纳米晶薄膜及其低温制备方法
CN103030169A (zh) 纳米氧化铜的形貌可控制备方法
Li et al. Hollow SnO2/Zn2SnO4 cubes with porous shells towards n-butylamine sensing and photocatalytic applications
CN105833887B (zh) 一种BiOCl/β‑FeOOH复合纳米材料及其制备方法
CN107694580A (zh) 一种纳米复合硒化物及其制备方法
CN105869907B (zh) 一种碳氮共掺杂NiFe2O4/Ni纳米立方结构复合材料的制备方法
CN101941734A (zh) 一种氧化锡纳米材料及其制备方法
CN104961159B (zh) 一种纳米钨氧化物及其一步气相还原制备方法和应用
Jiang et al. Enhanced hydrogen evolution under visible light by a ternary composite photocatalyst made of CdS and MoS 2 modified with bacterial cellulose aerogel
CN114797848A (zh) 一种含氧缺陷棒状核壳结构催化剂的制备方法及其应用
CN107311236A (zh) 一种Fe2O3@SnO2核壳结构纳米棒的制备方法
CN107064221B (zh) 一种检测甲醛的气敏材料及制备方法
CN111686734B (zh) 一种磁性多孔镍纳米片的制备方法及其应用
CN111389421B (zh) 一种二维层状氯氧铋和钛铌酸盐复合光催化材料的制备方法与应用
CN110496625A (zh) 一种双过渡金属氧化物介孔纳米管及其制备方法和应用
CN109037700A (zh) 一种具有双壳结构锌空电池催化剂的制备方法及其应用
Peng et al. A novel non-enzymatic glucose electrochemical sensor with high sensitivity and selectivity based on CdIn2O4 nanoparticles on 3D Ni foam substrate
CN109126802B (zh) 一种二维多孔Co3O4-ZnO复合纳米片的制备方法
CN116083949A (zh) MXene负载Ag-ZnO电催化剂及其制备方法、应用和测试方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant