CN110496625A - 一种双过渡金属氧化物介孔纳米管及其制备方法和应用 - Google Patents
一种双过渡金属氧化物介孔纳米管及其制备方法和应用 Download PDFInfo
- Publication number
- CN110496625A CN110496625A CN201810474320.9A CN201810474320A CN110496625A CN 110496625 A CN110496625 A CN 110496625A CN 201810474320 A CN201810474320 A CN 201810474320A CN 110496625 A CN110496625 A CN 110496625A
- Authority
- CN
- China
- Prior art keywords
- porous nano
- meso
- mnco
- transition metal
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000314 transition metal oxide Inorganic materials 0.000 title claims abstract description 14
- 238000002360 preparation method Methods 0.000 title claims description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims abstract description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002070 nanowire Substances 0.000 claims abstract description 15
- 238000006555 catalytic reaction Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- 230000008569 process Effects 0.000 claims abstract description 10
- 238000001035 drying Methods 0.000 claims abstract description 9
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 claims abstract description 8
- CKLJMWTZIZZHCS-UWTATZPHSA-N L-Aspartic acid Natural products OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 claims abstract description 8
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims abstract description 8
- 229960005261 aspartic acid Drugs 0.000 claims abstract description 8
- 239000008367 deionised water Substances 0.000 claims abstract description 8
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 8
- 239000012467 final product Substances 0.000 claims abstract description 8
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- YMKHJSXMVZVZNU-UHFFFAOYSA-N manganese(2+);dinitrate;hexahydrate Chemical compound O.O.O.O.O.O.[Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YMKHJSXMVZVZNU-UHFFFAOYSA-N 0.000 claims abstract description 8
- OQUOOEBLAKQCOP-UHFFFAOYSA-N nitric acid;hexahydrate Chemical compound O.O.O.O.O.O.O[N+]([O-])=O OQUOOEBLAKQCOP-UHFFFAOYSA-N 0.000 claims abstract description 8
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000007787 solid Substances 0.000 claims abstract description 8
- 238000005406 washing Methods 0.000 claims abstract description 8
- 229910003168 MnCo2O4 Inorganic materials 0.000 claims abstract description 6
- 238000003760 magnetic stirring Methods 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000002105 nanoparticle Substances 0.000 claims description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 8
- 239000001301 oxygen Substances 0.000 abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 abstract description 8
- 238000005303 weighing Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000003792 electrolyte Substances 0.000 description 2
- 239000002803 fossil fuel Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/889—Manganese, technetium or rhenium
- B01J23/8892—Manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/33—Electric or magnetic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/64—Pore diameter
- B01J35/651—50-500 nm
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
本发明公开了一种双过渡金属氧化物介孔纳米管,直径为400‑500nm,通过以下步骤制备:称取六水合硝酸锰,六水合硝酸钴和L‑天冬氨酸加入到高压反应釜中,再加入去离子水和乙二醇,再加入氢氧化钠溶液,分散均匀后将反应釜转移至150‑200℃的电热鼓风干燥箱中4‑7h,反应结束后,收集固体,分别用水和乙醇洗涤3‑6次,最终产物置于30‑60℃真空干燥箱中干燥10‑15h,得到MnCo2‑Asp超长纳米线,置于封闭的高温管式炉中,从室温以0.5‑4℃/min的升温速率升至200‑300℃并保持2‑6h,然后自然冷却至室温,再进行物理粉碎,得到MnCo2O4介孔纳米管。所述双过渡金属氧化物介孔纳米管的电催化产氧性能优于商业RuO2。
Description
技术领域
本发明涉及介孔纳米管技术领域,特别是涉及一种双过渡金属氧化物介孔纳米管及其制备方法和应用。
背景技术
随着人类文明进步和工业的快速发展,传统的化石燃料如煤、石油、天然气等在未来的几十或几百年将面临着枯竭的危险,同时也不可避免地影响着大气质量,地球环境。寻找合适的清洁能源来替代传统化石燃料变得很有必要,电催化水的分解产生高效清洁的氢气被认为是一种有巨大应用潜能的能量存储与转化技术。由于阴极产生氢气的过程中,伴随阳极产氧反应,其多步的四电子过程是电催化分解水的控速步骤,有效的催化剂可降低反应的能垒,因而开发廉价、高效的电催化阳极产氧催化剂迫在眉睫。
具有尖晶石结构的钴基氧化物,因地壳含量丰富、两种不同价态存在等优势被广泛用于电催化阳极产氧材料。这种材料的电催化产氧动力学快慢与电化学活性面积紧密相关,具有低密度、高渗透性和较大比表面积的多孔空心纳米材料是提高电化学活性面积的理想材料。传统空心纳米结构多是多孔空心球或多面体等,在催化过程中电解液只能由表面的孔道渗入内部,导致催化性能下降。因此,我们设计合成一种两端开口的的多孔纳米管,因具有较大的内部空间,比表面积并能最大限度的允许电解液进入,为催化反应提供了更多的活性位点。同时,也为广泛合成该形貌的材料提供一种普适的方法。
发明内容
本发明的目的是针对现有技术中存在的技术缺陷,而提供一种双过渡金属氧化物介孔纳米管及其制备方法和应用。
为实现本发明的目的所采用的技术方案是:
一种双过渡金属氧化物介孔纳米管,直径为400-500nm,通过以下步骤制备:
称取0.4-0.6g六水合硝酸锰,1.0-1.3g六水合硝酸钴和0.7-0.9g L-天冬氨酸加入到高压反应釜中,再加入20-40mL去离子水和30-40mL乙二醇,在磁力搅拌下加入5-10mL,1-3mol/L的氢氧化钠溶液,分散均匀后将反应釜转移至150-200℃的电热鼓风干燥箱中4-7h,反应结束后,收集固体,分别用水和乙醇洗涤3-6次,最终产物置于30-60℃真空干燥箱中干燥10-15h,得到MnCo2-Asp超长纳米线;
将所述MnCo2-Asp超长纳米线分别置于封闭的高温管式炉中,从室温以0.5-4℃/min的升温速率升至200-300℃并保持2-6h,然后自然冷却至室温,再进行物理粉碎,得到MnCo2O4介孔纳米管。
本发明的另一方面,还包括所述双过渡金属氧化物介孔纳米管在电催化产氢中的应用。
作为优选方式,所述双过渡金属氧化物介孔纳米管的电催化产氢的性能优于RuO2纳米颗粒修饰的玻碳电极。
本发明的另一方面,还包括一种双过渡金属氧化物介孔纳米管的制备方法,包括以下步骤:称取0.4-0.6g六水合硝酸锰,1.0-1.3g六水合硝酸钴和0.7-0.9g L-天冬氨酸加入到高压反应釜中,再加入20-40mL去离子水和30-40mL乙二醇,在磁力搅拌下加入5-10mL,1-3mol/L的氢氧化钠溶液,分散均匀后将反应釜转移至150-200℃的电热鼓风干燥箱中4-7h,反应结束后,收集固体,分别用水和乙醇洗涤3-6次,最终产物置于30-60℃真空干燥箱中干燥10-15h,得到MnCo2-Asp超长纳米线;
将所述MnCo2-Asp超长纳米线分别置于封闭的高温管式炉中,从室温以0.5-4℃/min的升温速率升至200-300℃并保持2-6h,然后自然冷却至室温,再进行物理粉碎,得到MnCo2O4介孔纳米管。
与现有技术相比,本发明的有益效果是:
本发明的MnCo2O4介孔纳米管的制备方法具有普适性高、所得材料比表面积大、稳定性好、电催化性能优异等优点。
附图说明
图1所示为本发明的MnCo2O4介孔纳米管的SEM图。
图2所示为通过本发明制备的MnCo2O4介孔纳米管和商业RuO2纳米颗粒修饰的玻碳电极在0.1M KOH中电催化产氧的极化曲线。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1
称取0.502g六水合硝酸锰,1.164g六水合硝酸钴和0.7986g L-天冬氨酸加入到100mL的高压反应釜中,再加入30mL去离子水和36mL乙二醇,在磁力搅拌下加入6mL,2mol/L的氢氧化钠溶液,室温下继续搅拌直至溶液变成透明的棕红色。然后将反应釜转移至150℃的电热鼓风干燥箱中5h。反应结束后,收集粉红色固体,分别用水和乙醇洗涤4次,最终产物置于40℃真空干燥箱中干燥12h,得到MnCo2-Asp超长纳米线;
将所述MnCo2-Asp超长纳米线分别置于封闭的高温管式炉中,从室温以0.5-4℃/min的升温速率升至200-300℃并保持2-6h,然后自然冷却至室温,再进行物理粉碎,得到直径为400-450nm的MnCo2O4介孔纳米管。
实施例2
称取0.586g六水合硝酸锰,1.224g六水合硝酸钴和0.853g L-天冬氨酸加入到100mL的高压反应釜中,再加入40mL去离子水和30mL乙二醇,在磁力搅拌下加入8mL,3mol/L的氢氧化钠溶液,室温下继续搅拌直至溶液变成透明溶液。然后将反应釜转移至200℃的电热鼓风干燥箱中3h。反应结束后,收集固体,分别用水和乙醇洗涤4次,最终产物置于60℃真空干燥箱中干燥10h,得到MnCo2-Asp超长纳米线;
将所述MnCo2-Asp超长纳米线分别置于封闭的高温管式炉中,从室温以3℃/min的升温速率升至300℃并保持2h,然后自然冷却至室温,再进行物理粉碎,得到直径为450-500nm的MnCo2O4介孔纳米管。
实施例3
称取0.432g六水合硝酸锰,1.123g六水合硝酸钴和0.775g L-天冬氨酸加入到100mL的高压反应釜中,再加入20mL去离子水和40mL乙二醇,在磁力搅拌下加入10mL,1mol/L的氢氧化钠溶液,室温下继续搅拌直至溶液变成透明溶液。然后将反应釜转移至180℃的电热鼓风干燥箱中6h。反应结束后,收集固体,分别用水和乙醇洗涤4次,最终产物置于30℃真空干燥箱中干燥15h,得到MnCo2-Asp超长纳米线;
将所述MnCo2-Asp超长纳米线分别置于封闭的高温管式炉中,从室温以1℃/min的升温速率升至200℃并保持6h,然后自然冷却至室温,再进行物理粉碎,得到直径为400-500nm的MnCo2O4介孔纳米管。
实施例1得到的MnCo2O4介孔纳米管的SEM图如图1所示,对实施例1得到的MnCo2O4介孔纳米管和商业RuO2纳米颗粒修饰的玻碳电极在0.1M KOH中电催化产氧性能进行测试,得到如图2所示的极化曲线,可见所述MnCo2O4介孔纳米管的电催化产氧性能优于RuO2纳米颗粒修饰的玻碳电极。对实施例2和3得到的MnCo2O4介孔纳米管进行电催化产氧性能进行测试,得到的极化曲线和图2类似。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Claims (4)
1.一种双过渡金属氧化物介孔纳米管,其特征在于,直径为400-500nm,通过以下步骤制备:
称取0.4-0.6g六水合硝酸锰,1.0-1.3g六水合硝酸钴和0.7-0.9g L-天冬氨酸加入到高压反应釜中,再加入20-40mL去离子水和30-40mL乙二醇,在磁力搅拌下加入5-10mL,1-3mol/L的氢氧化钠溶液,分散均匀后将反应釜转移至150-200℃的电热鼓风干燥箱中4-7h,反应结束后,收集固体,分别用水和乙醇洗涤3-6次,最终产物置于30-60℃真空干燥箱中干燥10-15h,得到MnCo2-Asp超长纳米线;
将所述MnCo2-Asp超长纳米线分别置于封闭的高温管式炉中,从室温以0.5-4℃/min的升温速率升至200-300℃并保持2-6h,然后自然冷却至室温,再进行物理粉碎,得到MnCo2O4介孔纳米管。
2.如权利要求1所述的双过渡金属氧化物介孔纳米管在电催化产氢中的应用。
3.如权利要求2所述的应用,其特征在于,所示双过渡金属氧化物介孔纳米管的电催化产氢的性能优于RuO2纳米颗粒修饰的玻碳电极。
4.如权利要求1所述的双过渡金属氧化物介孔纳米管的制备方法,其特征在于,包括以下步骤:
称取0.4-0.6g六水合硝酸锰,1.0-1.3g六水合硝酸钴和0.7-0.9g L-天冬氨酸加入到高压反应釜中,再加入20-40mL去离子水和30-40mL乙二醇,在磁力搅拌下加入5-10mL,1-3mol/L的氢氧化钠溶液,分散均匀后将反应釜转移至150-200℃的电热鼓风干燥箱中4-7h,反应结束后,收集固体,分别用水和乙醇洗涤3-6次,最终产物置于30-60℃真空干燥箱中干燥10-15h,得到MnCo2-Asp超长纳米线;
将所述MnCo2-Asp超长纳米线分别置于封闭的高温管式炉中,从室温以0.5-4℃/min的升温速率升至200-300℃并保持2-6h,然后自然冷却至室温,再进行物理粉碎,得到MnCo2O4介孔纳米管。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810474320.9A CN110496625A (zh) | 2018-05-17 | 2018-05-17 | 一种双过渡金属氧化物介孔纳米管及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810474320.9A CN110496625A (zh) | 2018-05-17 | 2018-05-17 | 一种双过渡金属氧化物介孔纳米管及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110496625A true CN110496625A (zh) | 2019-11-26 |
Family
ID=68585072
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810474320.9A Pending CN110496625A (zh) | 2018-05-17 | 2018-05-17 | 一种双过渡金属氧化物介孔纳米管及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110496625A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111151281A (zh) * | 2020-01-07 | 2020-05-15 | 山东师范大学 | 一种C3N4修饰的Co3O4自负载超薄多孔纳米片及其制备方法和应用 |
CN113368858A (zh) * | 2020-03-08 | 2021-09-10 | 天津大学 | 一种四氧化三钴-氧化镍双层介孔纳米管复合材料及其制备方法和应用 |
CN114105217A (zh) * | 2021-10-28 | 2022-03-01 | 合肥国轩高科动力能源有限公司 | 一种碳包覆四氧化三钴负极材料及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103950992A (zh) * | 2014-04-21 | 2014-07-30 | 西安交通大学 | 石墨烯表面生长直立的过渡金属氧化物纳米片的方法 |
CN106847529A (zh) * | 2017-01-21 | 2017-06-13 | 中国科学院深圳先进技术研究院 | 复合电极材料及其制备方法 |
-
2018
- 2018-05-17 CN CN201810474320.9A patent/CN110496625A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103950992A (zh) * | 2014-04-21 | 2014-07-30 | 西安交通大学 | 石墨烯表面生长直立的过渡金属氧化物纳米片的方法 |
CN106847529A (zh) * | 2017-01-21 | 2017-06-13 | 中国科学院深圳先进技术研究院 | 复合电极材料及其制备方法 |
Non-Patent Citations (4)
Title |
---|
CONG WU ET AL: "Electrospun MnCo2O4 nanofibers for efficient hydrogen evolution reaction", 《MATER. RES. EXPRESS》 * |
HUAN WANG ET AL: "General Self-Template Synthesis of Transition-Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances", 《ANGEW. CHEM.》 * |
WENHAI WANG ET AL: "Mass-Production of Mesoporous MnCo2O4 Spinels with Manganese(IV)- and Cobalt(II)-Rich Surfaces for Superior Bifunctional Oxygen Electrocatalysis", 《ANGEW. CHEM.》 * |
XUECHENG CAO ET AL: "Electrochemical Properties of MnCo2O4 Spinel Bifunctional Catalyst for Oxygen Reduction and Evolution Reaction", 《JOURNAL OF THE ELECTROCHEMICAL SOCIETY》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111151281A (zh) * | 2020-01-07 | 2020-05-15 | 山东师范大学 | 一种C3N4修饰的Co3O4自负载超薄多孔纳米片及其制备方法和应用 |
CN111151281B (zh) * | 2020-01-07 | 2022-09-02 | 山东师范大学 | 一种C3N4修饰的Co3O4自负载超薄多孔纳米片及其制备方法和应用 |
CN113368858A (zh) * | 2020-03-08 | 2021-09-10 | 天津大学 | 一种四氧化三钴-氧化镍双层介孔纳米管复合材料及其制备方法和应用 |
CN113368858B (zh) * | 2020-03-08 | 2023-03-10 | 天津大学 | 一种四氧化三钴-氧化镍双层介孔纳米管复合材料及其制备方法和应用 |
CN114105217A (zh) * | 2021-10-28 | 2022-03-01 | 合肥国轩高科动力能源有限公司 | 一种碳包覆四氧化三钴负极材料及其制备方法和应用 |
CN114105217B (zh) * | 2021-10-28 | 2023-11-03 | 合肥国轩高科动力能源有限公司 | 一种碳包覆四氧化三钴负极材料及其制备方法和应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109967099B (zh) | 一种具有中空纳米结构的Co2P@C复合材料及其制备方法和应用 | |
Ye et al. | A template-free route to a Fe 3 O 4–Co 3 O 4 yolk–shell nanostructure as a noble-metal free electrocatalyst for ORR in alkaline media | |
CN109569608B (zh) | 一种CoFe2O4纳米片析氧催化剂的制备方法及用途 | |
CN108411324A (zh) | 一种硫氮共掺杂石墨烯负载硫化钴镍催化材料及制备与应用 | |
CN108554413A (zh) | 一种三维多级结构高分散镍基电催化材料及其制备方法 | |
CN110075853B (zh) | 一种电催化全分解水CoZn-LDHs-ZIF@C复合结构材料及制备方法、应用 | |
CN107012473B (zh) | 一种双金属复合材料及其制备方法和应用 | |
CN106252673B (zh) | 一种基于天然植物组织的Fe-N/C氧还原反应催化剂的制备方法 | |
CN108048866A (zh) | 氮掺杂多孔碳包覆的钴铱核壳结构纳米颗粒的制备及其催化水裂解应用 | |
CN110496625A (zh) | 一种双过渡金属氧化物介孔纳米管及其制备方法和应用 | |
CN107673412A (zh) | 一种多孔四氧化三钴纳米材料及其制备方法和应用 | |
CN111483999B (zh) | 一种氮掺杂碳纳米管的制备方法、氮掺杂碳纳米管及其应用 | |
CN107999109A (zh) | 一种氮、硫、磷共掺杂碳材料的制备和应用 | |
CN111634954B (zh) | 铁改性的自组装花球结构的钴铁氧化物及其制备与应用 | |
CN108538611A (zh) | 一种纳米片阵列钴酸镍-碳复合材料及其制备方法和应用 | |
CN104538648B (zh) | 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法 | |
CN109569609A (zh) | 一种新型镍基复合材料的制备方法 | |
Liu et al. | Co-CoO/ZnFe2O4 encapsulated in carbon nanowires derived from MOFs as electrocatalysts for hydrogen evolution | |
Mahsud et al. | Self-templated formation of cobalt-embedded hollow N-doped carbon spheres for efficient oxygen reduction | |
CN108675360B (zh) | 一种β-氢氧化镍/氧化铁超薄纳米片、及其制备方法 | |
CN112058283A (zh) | 一种硒化镍/硒化钼复合纳米电催化剂的制备方法及应用 | |
Liu et al. | Rational design of ultrahigh porosity Co foam supported flower-like FeNiP-LDH electrocatalysts towards hydrogen evolution reaction | |
Xu et al. | Anchoring RuSe2 on CoSe2 nanoarrays as a hybrid catalyst for efficient and robust oxygen evolution reaction | |
CN110745784A (zh) | 一种金属氧化物纳米颗粒及其制备方法和应用 | |
Jiang et al. | Ion-biosorption induced core–shell Fe 2 P@ carbon nanoparticles decorated on N, P co-doped carbon materials for the oxygen evolution reaction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20191126 |
|
RJ01 | Rejection of invention patent application after publication |