CN106040309A - 一种改性聚苯乙烯磁性微球的制备方法 - Google Patents

一种改性聚苯乙烯磁性微球的制备方法 Download PDF

Info

Publication number
CN106040309A
CN106040309A CN201610477199.6A CN201610477199A CN106040309A CN 106040309 A CN106040309 A CN 106040309A CN 201610477199 A CN201610477199 A CN 201610477199A CN 106040309 A CN106040309 A CN 106040309A
Authority
CN
China
Prior art keywords
magnetic
filtering residue
nanoparticle
add
obtains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610477199.6A
Other languages
English (en)
Inventor
郭迎庆
王龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610477199.6A priority Critical patent/CN106040309A/zh
Publication of CN106040309A publication Critical patent/CN106040309A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/42Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of organic or organo-metallic materials, e.g. graphene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种改性聚苯乙烯磁性微球的制备方法,属于磁性催化剂技术领域。针对应用于磁稳定床研究的磁性催化剂磁性较弱,不易于磁化形成稳定床层,降低磁场易产生团聚效应的问题,本发明提供了一种改性聚苯乙烯磁性微球的制备方法,本发明用六水氯化铁、乙酸钠、柠檬酸钠、乙二醇为原料制备磁性Fe3O4 纳米粒子,并用十二烷基苯磺酸钠对磁性Fe3O4 纳米粒子进行表面修饰,提高磁性Fe3O4 纳米粒子的磁学性能,表现出更好的超顺磁性,并将其添加在制备聚苯乙烯过程中,粘结苯乙烯,形成聚苯乙烯磁性微球,解决了应用于磁稳定床研究的磁性催化剂磁性较弱,不易于磁化形成稳定床层,降低磁场易产生团聚效应的问题。

Description

一种改性聚苯乙烯磁性微球的制备方法
技术领域
本发明涉及一种改性聚苯乙烯磁性微球的制备方法,属于磁性催化剂技术领域。
背景技术
磁稳定床反应器是在传统流化床反应器中采用具有磁敏性颗粒作为床层介质,外加不随时间变化的均匀磁场而得到的一种新型反应器。磁稳定床是流态化技术与电磁技术的完美结合。该反应器床层可使用细小颗粒而不会出现固定床中压降过高及局部热点等问题。外加磁场控制了颗粒固体间的流动,能较好地克服普通流化床相间返混严重以及粒子容易带出的缺点。均匀的空隙度使得床层不易出现沟流和短路,反应过程中真正实现了固定粒子与流体的逆向接触,特别是对于多相反应,被磁场固定化的磁性介质可有效抑制气泡的产生,提高传质传热效率,有利于强化反应进行。经过几十年的发展,磁稳定床应用已在生物及石油化工领域取得了很大的突破,由于磁稳定床外加均匀稳定的磁场,流化颗粒首先应具备良好的软磁性能,一般用于磁稳定床的催化剂比饱和磁化强度应大于10emu/g并且要求矫顽力小,使其易于磁化形成稳定床层并降低磁场撤去后的团聚效应。同时磁性催化剂还应具有较高的低温催化活性,目前应用于磁稳定床研究的磁性催 化剂磁性较弱,不易于磁化形成稳定床层,降低磁场易产生团聚效应。因此,对磁稳定流化床反应器的催化剂的优化显得尤为重要。
发明内容
本发明所要解决的技术问题:针对应用于磁稳定床研究的磁性催化剂磁性较弱,不易于磁化形成稳定床层,降低磁场易产生团聚效应的问题,本发明提供了一种改性聚苯乙烯磁性微球的制备方法,本发明用六水氯化铁、乙酸钠、柠檬酸钠、乙二醇为原料制备磁性Fe3O4 纳米粒子,并用十二烷基苯磺酸钠对磁性Fe3O4 纳米粒子进行表面修饰,提高磁性Fe3O4 纳米粒子的磁学性能,表现出更好的超顺磁性,并将其添加在制备聚苯乙烯过程中,粘结苯乙烯,形成聚苯乙烯磁性微球,解决了应用于磁稳定床研究的磁性催化剂磁性较弱,不易于磁化形成稳定床层,降低磁场易产生团聚效应的问题。
为解决上述技术问题,本发明采用的技术方案是:
(1)分别称取22~25g六水氯化铁,48~50g乙酸钠和5~6g柠檬酸钠,加入盛有400~450mL无水乙二醇烧杯中,搅拌混合至固体完全溶解后,置入烘箱,在180~200℃下加热18~20h,冷却至室温,用磁铁分离得到黑色固体,用去离子水和乙醇分别洗涤黑色固体5~7次,得磁性Fe3O4 纳米粒子;
(2)分别称取6.0~8.0g上述磁性 Fe3O4 纳米粒子,13.5~15.0g十二烷基苯磺酸钠,加入175~180mL质量浓度为50%乙醇溶液,超声分散30~40min,再置于 40~50℃恒温水浴中,在氮气保护下,以600~700r/min搅拌5~6h,抽滤,得滤渣,用质量浓度为50%乙醇溶液洗涤滤渣3~5次,将滤渣置于50~60℃烘箱中真空干燥45~48h,得表面修饰的磁性 Fe3O4 纳米粒子;
(3)称取0.22~0.25g明胶,加入80~100mL去离子水,浸泡10~12h,在35~40℃恒温水浴下以300r/min,搅拌1~2h,依次加入0.2~0.3g过氧化苯甲酰、7~8mL二乙烯苯、24~25mL苯乙烯和11~12mL液蜡,继续搅拌30~40min,升温至 45~50 ℃,加入0.6~0.8g无水碳酸钠和1.2~1.4g无水硫酸镁,继续升温至80~85℃,保温1~2h,得混合液;
(4)称取2.0~3.0g上述步骤(2)制备的表面修饰磁性 Fe3O4 纳米粒子加入上述混合液中,加热升温至95~96℃,保持温度2~3h后,降温至80~85℃,抽滤,得滤渣,用去离子水洗涤滤渣3~5次,将滤渣置入55~60℃烘箱,真空干燥20~24h,得改性聚苯乙烯磁性微球。
本发明的应用方法是:在醇的氧化反应中,按芳香族醇和脂肪族醇的质量,加入质量分数为0.07~0.1%本发明制备的改性聚苯乙烯磁性微球,提高反应速率20~30%。
本发明的有益技术效果是:
(1)本发明制备的改性聚苯乙烯磁性微球磁化强度高,具有超顺磁性,分散性,悬浮性好;
(2)本法明制备的改性聚苯乙烯磁性微球作为载体应用于分析检测,能大幅度缩短检测时间。
具体实施方式
分别称取22~25g六水氯化铁,48~50g乙酸钠和5~6g柠檬酸钠,加入盛有400~450mL无水乙二醇烧杯中,搅拌混合至固体完全溶解后,置入烘箱,在180~200℃下加热18~20h,冷却至室温,用磁铁分离得到黑色固体,用去离子水和乙醇分别洗涤黑色固体5~7次,得磁性Fe3O4 纳米粒子;分别称取6.0~8.0g上述磁性 Fe3O4 纳米粒子,13.5~15.0g十二烷基苯磺酸钠,加入175~180mL质量浓度为50%乙醇溶液,超声分散30~40min,再置于 40~50℃恒温水浴中,在氮气保护下,以600~700r/min搅拌5~6h,抽滤,得滤渣,用质量浓度为50%乙醇溶液洗涤滤渣3~5次,将滤渣置于50~60℃烘箱中真空干燥45~48h,得表面修饰的磁性 Fe3O4 纳米粒子;称取0.22~0.25g明胶,加入80~100mL去离子水,浸泡10~12h,在35~40℃恒温水浴下以300r/min,搅拌1~2h,依次加入0.2~0.3g过氧化苯甲酰、7~8mL二乙烯苯、24~25mL苯乙烯和11~12mL液蜡,继续搅拌30~40min,升温至 45~50 ℃,加入0.6~0.8g无水碳酸钠和1.2~1.4g无水硫酸镁,继续升温至80~85℃,保温1~2h,得混合液;称取2.0~3.0g上述步骤(2)制备的表面修饰磁性 Fe3O4 纳米粒子加入上述混合液中,加热升温至95~96℃,保持温度2~3h后,降温至80~85℃,抽滤,得滤渣,用去离子水洗涤滤渣3~5次,将滤渣置入55~60℃烘箱,真空干燥20~24h,得改性聚苯乙烯磁性微球。
实例1
分别称取22g六水氯化铁,48g乙酸钠和5g柠檬酸钠,加入盛有400mL无水乙二醇烧杯中,搅拌混合至固体完全溶解后,置入烘箱,在180℃下加热18h,冷却至室温,用磁铁分离得到黑色固体,用去离子水和乙醇分别洗涤黑色固体5次,得磁性 Fe3O4 纳米粒子;分别称取6.0g上述磁性 Fe3O4 纳米粒子,13.5g十二烷基苯磺酸钠,加入175mL质量浓度为50%乙醇溶液,超声分散30min,再置于 40℃恒温水浴中,在氮气保护下,以600r/min搅拌5h,抽滤,得滤渣,用质量浓度为50%乙醇溶液洗涤滤渣3次,将滤渣置于50℃烘箱中真空干燥45h,得表面修饰的磁性 Fe3O4 纳米粒子;称取0.22g明胶,加入80mL去离子水,浸泡10h,在35℃恒温水浴下以300r/min,搅拌1h,依次加入0.2g过氧化苯甲酰、7mL二乙烯苯、24mL苯乙烯和11mL液蜡,继续搅拌30min,升温至 45 ℃,加入0.6g无水碳酸钠和1.2g无水硫酸镁,继续升温至80℃,保温1h,得混合液;称取2.0g上述步骤(2)制备的表面修饰磁性 Fe3O4 纳米粒子加入上述混合液中,加热升温至95℃,保持温度2h后,降温至80℃,抽滤,得滤渣,用去离子水洗涤滤渣3次,将滤渣置入55℃烘箱,真空干燥20h,得改性聚苯乙烯磁性微球。
本发明的应用方法是:在醇的氧化反应中,按芳香族醇和脂肪族醇的质量,加入质量分数为0.07%本发明制备的改性聚苯乙烯磁性微球,提高反应速率20%。
实例2
分别称取23g六水氯化铁,49g乙酸钠和5.5g柠檬酸钠,加入盛有430mL无水乙二醇烧杯中,搅拌混合至固体完全溶解后,置入烘箱,在190℃下加热19h,冷却至室温,用磁铁分离得到黑色固体,用去离子水和乙醇分别洗涤黑色固体6次,得磁性 Fe3O4 纳米粒子;分别称取7.0g上述磁性 Fe3O4 纳米粒子,14g十二烷基苯磺酸钠,加入178mL质量浓度为50%乙醇溶液,超声分散35min,再置于45℃恒温水浴中,在氮气保护下,以650r/min搅拌5.5h,抽滤,得滤渣,用质量浓度为50%乙醇溶液洗涤滤渣4次,将滤渣置于55℃烘箱中真空干燥46h,得表面修饰的磁性 Fe3O4 纳米粒子;称取0.24g明胶,加入90mL去离子水,浸泡11h,在38℃恒温水浴下以300r/min,搅拌1.5h,依次加入0.25g过氧化苯甲酰、7mL二乙烯苯、24mL苯乙烯和11mL液蜡,继续搅拌35min,升温至 48 ℃,加入0.7g无水碳酸钠和1.3g无水硫酸镁,继续升温至82℃,保温1.5h,得混合液;称取2.5g上述步骤(2)制备的表面修饰磁性 Fe3O4 纳米粒子加入上述混合液中,加热升温至95℃,保持温度2.5h后,降温至82℃,抽滤,得滤渣,用去离子水洗涤滤渣4次,将滤渣置入58℃烘箱,真空干燥22h,得改性聚苯乙烯磁性微球。
本发明的应用方法是:在醇的氧化反应中,按芳香族醇和脂肪族醇的质量,加入质量分数为0.08%本发明制备的改性聚苯乙烯磁性微球,提高反应速率25%。
实例3
分别称取25g六水氯化铁,50g乙酸钠和6g柠檬酸钠,加入盛有450mL无水乙二醇烧杯中,搅拌混合至固体完全溶解后,置入烘箱,在200℃下加热20h,冷却至室温,用磁铁分离得到黑色固体,用去离子水和乙醇分别洗涤黑色固体7次,得磁性 Fe3O4 纳米粒子;分别称取8.0g上述磁性 Fe3O4 纳米粒子,15.0g十二烷基苯磺酸钠,加入180mL质量浓度为50%乙醇溶液,超声分散40min,再置于50℃恒温水浴中,在氮气保护下,以700r/min搅拌6h,抽滤,得滤渣,用质量浓度为50%乙醇溶液洗涤滤渣5次,将滤渣置于60℃烘箱中真空干燥48h,得表面修饰的磁性 Fe3O4 纳米粒子;称取0.25g明胶,加入100mL去离子水,浸泡12h,在40℃恒温水浴下以300r/min,搅拌2h,依次加入0.3g过氧化苯甲酰、8mL二乙烯苯、25mL苯乙烯和12mL液蜡,继续搅拌40min,升温至50 ℃,加入0.8g无水碳酸钠和1.4g无水硫酸镁,继续升温至85℃,保温2h,得混合液;称取3.0g上述步骤(2)制备的表面修饰磁性 Fe3O4 纳米粒子加入上述混合液中,加热升温至96℃,保持温度3h后,降温至85℃,抽滤,得滤渣,用去离子水洗涤滤渣5次,将滤渣置入60℃烘箱,真空干燥24h,得改性聚苯乙烯磁性微球。
本发明的应用方法是:在醇的氧化反应中,按芳香族醇和脂肪族醇的质量,加入质量分数为0.1%本发明制备的改性聚苯乙烯磁性微球,提高反应速率30%。

Claims (1)

1.一种改性聚苯乙烯磁性微球的制备方法,其特征在于具体制备步骤为:
(1)分别称取22~25g六水氯化铁,48~50g乙酸钠和5~6g柠檬酸钠,加入盛有400~450mL无水乙二醇烧杯中,搅拌混合至固体完全溶解后,置入烘箱,在180~200℃下加热18~20h,冷却至室温,用磁铁分离得到黑色固体,用去离子水和乙醇分别洗涤黑色固体5~7次,得磁性Fe3O4 纳米粒子;
(2)分别称取6.0~8.0g上述磁性 Fe3O4 纳米粒子,13.5~15.0g十二烷基苯磺酸钠,加入175~180mL质量浓度为50%乙醇溶液,超声分散30~40min,再置于 40~50℃恒温水浴中,在氮气保护下,以600~700r/min搅拌5~6h,抽滤,得滤渣,用质量浓度为50%乙醇溶液洗涤滤渣3~5次,将滤渣置于50~60℃烘箱中真空干燥45~48h,得表面修饰的磁性 Fe3O4 纳米粒子;
(3)称取0.22~0.25g明胶,加入80~100mL去离子水,浸泡10~12h,在35~40℃恒温水浴下以300r/min,搅拌1~2h,依次加入0.2~0.3g过氧化苯甲酰、7~8mL二乙烯苯、24~25mL苯乙烯和11~12mL液蜡,继续搅拌30~40min,升温至 45~50 ℃,加入0.6~0.8g无水碳酸钠和1.2~1.4g无水硫酸镁,继续升温至80~85℃,保温1~2h,得混合液;
(4)称取2.0~3.0g上述步骤(2)制备的表面修饰磁性 Fe3O4 纳米粒子加入上述混合液中,加热升温至95~96℃,保持温度2~3h后,降温至80~85℃,抽滤,得滤渣,用去离子水洗涤滤渣3~5次,将滤渣置入55~60℃烘箱,真空干燥20~24h,得改性聚苯乙烯磁性微球。
CN201610477199.6A 2016-06-27 2016-06-27 一种改性聚苯乙烯磁性微球的制备方法 Pending CN106040309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610477199.6A CN106040309A (zh) 2016-06-27 2016-06-27 一种改性聚苯乙烯磁性微球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610477199.6A CN106040309A (zh) 2016-06-27 2016-06-27 一种改性聚苯乙烯磁性微球的制备方法

Publications (1)

Publication Number Publication Date
CN106040309A true CN106040309A (zh) 2016-10-26

Family

ID=57165756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610477199.6A Pending CN106040309A (zh) 2016-06-27 2016-06-27 一种改性聚苯乙烯磁性微球的制备方法

Country Status (1)

Country Link
CN (1) CN106040309A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475071A (zh) * 2016-11-24 2017-03-08 清华大学 一种磁性微球及其制备方法和在处理抗生素废水中的应用
CN108165233A (zh) * 2017-12-12 2018-06-15 王景硕 一种路面融雪剂及其制备方法
CN111138611A (zh) * 2020-01-06 2020-05-12 河北科技大学 一种磁性磺酸化聚苯乙烯分子刷的制备方法及其应用
CN113621112A (zh) * 2020-05-06 2021-11-09 N科研中心私人投资有限公司 一种单分散超顺磁粒子及制备方法
CN115414949A (zh) * 2022-08-19 2022-12-02 东北电力大学 电子传递速率快、易回收的磁性“鸡米花”状CuS/Fe3O4催化剂的制备方法及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468898A (zh) * 2003-07-02 2004-01-21 北京倍爱康生物技术股份有限公司 一种超顺磁性聚合物微球的制备方法
US20080081193A1 (en) * 2006-10-02 2008-04-03 National Defense University Functionalized magnetizable microspheres and preparation thereof
CN101543764A (zh) * 2009-04-30 2009-09-30 南京大学 疏水性羰基修饰超高交联吸附树脂及其合成方法与应用
CN102432780A (zh) * 2011-09-16 2012-05-02 复旦大学 一种表面羧基功能化的核壳式磁性复合微球及其制备方法
CN103285838A (zh) * 2013-07-02 2013-09-11 景德镇陶瓷学院 一种用于工业废水处理的功能磁性吸附剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1468898A (zh) * 2003-07-02 2004-01-21 北京倍爱康生物技术股份有限公司 一种超顺磁性聚合物微球的制备方法
US20080081193A1 (en) * 2006-10-02 2008-04-03 National Defense University Functionalized magnetizable microspheres and preparation thereof
CN101543764A (zh) * 2009-04-30 2009-09-30 南京大学 疏水性羰基修饰超高交联吸附树脂及其合成方法与应用
CN102432780A (zh) * 2011-09-16 2012-05-02 复旦大学 一种表面羧基功能化的核壳式磁性复合微球及其制备方法
CN103285838A (zh) * 2013-07-02 2013-09-11 景德镇陶瓷学院 一种用于工业废水处理的功能磁性吸附剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
熊珊等: ""高磁饱和强度Fe3O4纳米簇的制备和表征"", 《中国陶瓷》 *
薛永萍等: ""Fe3O4包覆聚苯乙烯磁性微球的制备及性能"", 《材料科学与工艺》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106475071A (zh) * 2016-11-24 2017-03-08 清华大学 一种磁性微球及其制备方法和在处理抗生素废水中的应用
CN108165233A (zh) * 2017-12-12 2018-06-15 王景硕 一种路面融雪剂及其制备方法
CN111138611A (zh) * 2020-01-06 2020-05-12 河北科技大学 一种磁性磺酸化聚苯乙烯分子刷的制备方法及其应用
CN113621112A (zh) * 2020-05-06 2021-11-09 N科研中心私人投资有限公司 一种单分散超顺磁粒子及制备方法
WO2021225519A1 (en) * 2020-05-06 2021-11-11 N-Lab Technology Center Pte. Ltd. Superparamagnetic monodisperse particles and method for the production thereof
CN115414949A (zh) * 2022-08-19 2022-12-02 东北电力大学 电子传递速率快、易回收的磁性“鸡米花”状CuS/Fe3O4催化剂的制备方法及应用

Similar Documents

Publication Publication Date Title
CN106040309A (zh) 一种改性聚苯乙烯磁性微球的制备方法
CN106085368B (zh) 一种纳米导热增强的微胶囊复合相变储能材料及其制备方法
CN101549270B (zh) 一种磁性高分子无机物复合微球的制备方法
CN103272648B (zh) 一种磁性多孔负载型金属手性催化剂及其应用
CN103992774B (zh) 一种磁性微胶囊相变储能材料及其制备方法
Yang et al. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field
CN105399889A (zh) 一种相变储能材料的杂化壁材纳米胶囊及其制备方法
CN102580701A (zh) 一种除砷树脂的制备方法
CN103058283A (zh) 一种尺寸、形貌和组成可调的铁氧化物颗粒的制备方法
CN107686719B (zh) 高导热水合盐相变材料及其制备方法
CN106698521A (zh) 一种三维花状的铁酸铋粉体及其制备方法
CN100522824C (zh) 单分散超顺磁四氧化三铁纳米粒子的制备方法
CN106040307B (zh) 一步水热法合成Fe3O4(PAA)@C-Au核壳结构微球的制备方法
CN105536688B (zh) 一种氢氧化铜包覆的磁性核纳米粒子及其制备和应用
Van Deemter Heat and mass transport in a fixed catalys bed during regeneration
CN106311278B (zh) 一种磁性材料的制备方法及其应用
CN104891513B (zh) 一种磁性膨润土的制备方法
CN105504310A (zh) 聚(n-异丙基丙烯酰胺)/四氧化三铁水凝胶制备方法
CN105967241A (zh) 一种制备Fe3O4纳米磁球的方法
CN109569650B (zh) 一种用于co偶联合成草酸酯催化剂及其制备方法
CN103877984B (zh) Fe3O4@C@PbMoO4核壳磁性纳米材料的制备方法
CN101444712B (zh) 一种制备尺寸可控磁性空心球的方法
CN105536741B (zh) 一种镉离子及其配合物吸附的磁性微球及其制备方法和应用与再生方法
CN110106170A (zh) 一种全血dna提取用纳米生物磁珠的制备方法
CN109364836A (zh) 一种基于金纳米粒子的温度敏感性纳米反应器的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161026