CN106010500A - 一种具有核壳结构的磁性纳米发光材料及其制备方法 - Google Patents

一种具有核壳结构的磁性纳米发光材料及其制备方法 Download PDF

Info

Publication number
CN106010500A
CN106010500A CN201610406549.XA CN201610406549A CN106010500A CN 106010500 A CN106010500 A CN 106010500A CN 201610406549 A CN201610406549 A CN 201610406549A CN 106010500 A CN106010500 A CN 106010500A
Authority
CN
China
Prior art keywords
nano
sio
luminescent material
reactor
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610406549.XA
Other languages
English (en)
Inventor
范会涛
齐曙光
邱东方
杨昱涵
仲志国
冯玉全
刘克成
王聪聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanyang Normal University
Original Assignee
Nanyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanyang Normal University filed Critical Nanyang Normal University
Priority to CN201610406549.XA priority Critical patent/CN106010500A/zh
Publication of CN106010500A publication Critical patent/CN106010500A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7708Vanadates; Chromates; Molybdates; Tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)

Abstract

一种具有核壳结构的磁性纳米发光材料及其制备方法,该发光材料为球形形貌,首先制备Fe3O4纳米颗粒,再利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球,最后利用Fe3O4@SiO2纳米微球合成化学结构式为Fe3O4@SiO2@LaVO4:Bi3+的最终产品。本发明实现了Fe3O4磁学性质和LaVO4:Bi3+光学性质的有效集成,制备出以Fe3O4为核,以LaVO4:Bi3+为壳,SiO2为界面的多功能磁性纳米发光材料,在室温条件下表现出良好的铁磁性行为,磁敏感度强,有利于生物造影或药物载体应用后的样品分离和回收,表现出良好的超顺磁特性,而且具有荧光性能,发光强度强。

Description

一种具有核壳结构的磁性纳米发光材料及其制备方法
技术领域
本发明涉及到发光磁性材料领域,具体的说是一种具有核壳结构的磁性纳米发光材料及其制备方法。
背景技术
近年来,磁性、荧光纳米复合材料因为兼具磁性微粒的快速分离和荧光体的优异荧光特性,在生物、化学、医学等交叉科学领域具有广泛的应用,得到越来越多科研工作者的关注。
在已报道的各类磁性纳米材料中,由于 Fe3O4纳米材料比其他磁性纳米材料制备工艺简单、价格低廉、饱和磁化强度高,而且对人体不产生毒副作用,可随人体代谢排出体外并且容易穿过各种生理屏障到达指定部位。因此,在生命工程和临床诊断方面体现出其他材料无可比拟的优势,使得Fe3O4 纳米粒子的应用研究倍受重视。然而,Fe3O4由于尺寸效应、磁偶极子引力等作用,磁性粒子易于团聚,而且化学稳定性相对不太高,表面羟基不足,导致难以直接应用。表面涂层或表面改性已被公认为最有效的方法来解决以上问题。磁芯表面包覆上一层 SiO2后具有稳定性好,易于功能化,以及低毒性和优良的生物相容性的特点。
作为染料和量子点的合适替代品,掺杂稀土的无机纳米晶似乎是一种很有前途的荧光材料。由于其良好的光学性能、较高的化学和光化学稳定性、低毒性,作为新型纳米发光材料,稀土钒酸盐材料的研究一直引人注目,其中稀土钒酸镧(LaVO4)晶体因良好的物理化学性能已被广泛应用于平板显示器、激光、节能灯和光催化等领域。研究表明,钒酸镧主要存在四方锆石型结构和单斜独居型结构两种晶体结构,因La3+离子半径较大,易形成高配位数且稳定的单斜相结构。稳定的单斜相LaVO4,一方面具有优良的光学性能,另一方面通过Bi3+ 掺杂改变了其能带结构,使其光吸收边红移,展示出可见光催化有机污染物的能力。因此,在液相体系中实现铋掺杂钒酸镧的物相、形貌和尺寸的可控已成为光催化研究的热点。
发明内容
本发明的目的是提供一种具有核壳结构的磁性纳米发光材料及其制备方法,该材料不仅磁性强,而且具有优异的荧光性能。
本发明为实现上述技术目的所采用的技术方案为:一种具有核壳结构的磁性纳米发光材料,该发光材料为球形形貌,其化学结构式为Fe3O4@SiO2@LaVO4:Bi3+
一种具有核壳结构的磁性纳米发光材料的制备方法,首先制备Fe3O4纳米颗粒,再利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球,最后利用Fe3O4@SiO2纳米微球合成最终产品,所述利用Fe3O4@SiO2纳米微球合成最终产品的步骤如下:
1)将La2O3和Bi(NO3)3·5H2O按照摩尔比为9.5:1的比例混合并溶于浓度为1mol/L的稀硝酸中,再向其中加入与金属离子总量摩尔比为1:1的NH4VO3,充分搅拌至完全溶解后,向其中加入已制得的Fe3O4@SiO2纳米微球,并使用浓度为1mol/L的氨水调节其pH值为5~9,备用;
2)将步骤1)中加入氨水后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在150℃条件下干燥15~18h,自然冷却至室温后取出反应釜,除去溶液得到沉淀,并将沉淀在60℃的条件下真空烘干10~12h,自然冷却后将沉淀取出,备用;
3)将步骤1)中烘干后自然冷却的沉淀在700℃的条件下焙烧2h,自然冷却至室温即得到产品Fe3O4@SiO2@LaVO4:Bi3+
所述制备Fe3O4纳米颗粒的步骤如下:
1)将六水合氯化铁、醋酸钠与乙二醇混合,并在常温下磁力搅拌1h,备用;
其中,六水合氯化铁与醋酸钠的质量比为1:5.4,且每克六水合氯化铁对应30 mL乙二醇;
2)将步骤1)中搅拌后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在200℃条件下干燥8~12h,然后自然冷却至室温取出反应釜,除去上层溶液得到黑色的Fe3O4颗粒,备用;
3)将步骤2)得到的Fe3O4颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干10~12h,自然冷却得到Fe3O4纳米颗粒。
所述反应釜为聚四氟乙烯反应釜,且反应釜内的填充量不超过其容积的80%。
所述利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球的步骤如下:
1)将Fe3O4纳米颗粒分散到乙醇和去离子水的混合液中超声波震荡30~40min,备用;
其中,混合液中乙醇与去离子水的体积比为4:1,每50~60mL的混合液中分散0.1~0.2gFe3O4纳米颗粒,超声波的频率为30~50KHZ;
2)向步骤1)的混合液中依次加入质量浓度25%的氨水和正硅酸乙酯,然后在40℃的条件下恒温反应4~6h,得到Fe3O4@SiO2磁性纳米颗粒,备用;
其中,每50~60mL的混合液中加入1.5~2mL的氨水和1~2mL的正硅酸乙酯;
3)将步骤2)中得到的Fe3O4@SiO2磁性纳米颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干8~10h,自然冷却得到灰色Fe3O4@SiO2纳米微球。
本发明中,Fe3O4@SiO2纳米微球与La2O3及Bi(NO3)3·5H2O的加入量没有必然联系,可以根据需要进行适时地调整,一般情况下,Fe3O4@SiO2纳米微球的加入量为La2O3质量的10%~30%。
本发明制备的Fe3O4@SiO2@LaVO4:Bi3+磁性纳米发光材料,TEM测试结果表明该复合物为球形形貌,具有明显的核壳结构,通过荧光光谱和 SQUID-VSM 测试结果分别表明该复合物发射良好的红色荧光,对应于 Bi3+3P1-1S0发射,并且具有较强的磁性。
有益效果:本发明实现了Fe3O4磁学性质和LaVO4:Bi3+光学性质的有效集成,成功的制备了以Fe3O4为核,掺杂稀土的无机荧光材料LaVO4:Bi3+作为壳,SiO2作为界面的多功能磁性纳米发光材料,该复合物在室温条件下表现出良好的铁磁性行为,磁敏感度强,都够被很小的外磁场磁化,有利于生物造影或药物载体应用后的样品分离和回收,剩余磁化强度几乎为零,表现出良好的超顺磁特性,而且该复合材料具有荧光性能,发光强度强。本发明的制备方法非常便捷,需要条件简单,合成装置简单,技术流程简单易懂。
附图说明
图1为本发明制备产品的X射线电子衍射(XRD)图;
图2为本发明制备产品的扫描电镜(SEM)图;
图3为本发明制备产品的透射电镜(TEM)图;
图4为本发明制备产品的室温磁滞回线(Loop)图;
图5为本发明制备产品的激发和发射光谱图。
具体实施方式
下面结合具体实施例对本发明做进一步的阐述,以下实施例中所用到的原料均为本领域常规化学品。
实施例1
一种具有核壳结构的磁性纳米发光材料,该发光材料为球形形貌,其化学结构式为Fe3O4@SiO2@LaVO4:Bi3+
该发光材料的制备方法为,首先制备Fe3O4纳米颗粒,再利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球,最后利用Fe3O4@SiO2纳米微球合成最终产品,所述利用Fe3O4@SiO2纳米微球合成最终产品的步骤如下:
1)将La2O3和Bi(NO3)3·5H2O按照摩尔比为9.5:1的比例混合并溶于浓度为1mol/L的稀硝酸中,再向其中加入与金属离子总量摩尔比为1:1的NH4VO3,充分搅拌至完全溶解后,向其中加入已制得的Fe3O4@SiO2纳米微球,并使用浓度为1mol/L的氨水调节其pH值为5,备用;
其中,加入的Fe3O4@SiO2纳米微球为La2O3质量的10%;
2)将步骤1)中加入氨水后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在150℃条件下干燥15h,自然冷却至室温后取出反应釜,除去溶液得到沉淀,并将沉淀在60℃的条件下真空烘干10h,自然冷却后将沉淀取出,备用;
3)将步骤1)中烘干后自然冷却的沉淀在700℃的条件下焙烧2h,自然冷却至室温即得到产品Fe3O4@SiO2@LaVO4:Bi3+
以上为本发明的基本实施方式,可在以上基础上做进一步的限定和优化:
如,所述制备Fe3O4纳米颗粒的步骤如下:
1)将六水合氯化铁、醋酸钠与乙二醇混合,并在常温下磁力搅拌1h,备用;
其中,六水合氯化铁与醋酸钠的质量比为1:5.4,且每克六水合氯化铁对应30 mL乙二醇;
2)将步骤1)中搅拌后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在200℃条件下干燥8h,然后自然冷却至室温取出反应釜,除去上层溶液得到黑色的Fe3O4颗粒,备用;
3)将步骤2)得到的Fe3O4颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干10h,自然冷却得到Fe3O4纳米颗粒;
当然,除了用此方法制备出Fe3O4纳米颗粒外,还可以用本领域技术人员所知道的其余方法;
进一步的,所述反应釜为聚四氟乙烯反应釜,且反应釜内的填充量不超过其容积的80%;
又如,所述利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球的步骤如下:
1)将Fe3O4纳米颗粒分散到乙醇和去离子水的混合液中超声波震荡30min,备用;
其中,混合液中乙醇与去离子水的体积比为4:1,每50mL的混合液中分散0.1gFe3O4纳米颗粒,超声波的频率为50KHZ;
2)向步骤1)的混合液中依次加入质量浓度25%的氨水和正硅酸乙酯,然后在40℃的条件下恒温反应4h,得到Fe3O4@SiO2磁性纳米颗粒,备用;
其中,每50mL的混合液中加入1.5mL的氨水和1mL的正硅酸乙酯;
3)将步骤2)中得到的Fe3O4@SiO2磁性纳米颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干8h,自然冷却得到灰色Fe3O4@SiO2纳米微球;
当然,除了用此方法制备出Fe3O4纳米颗粒外,还可以用本领域技术人员所知道的其余方法。
实施例2
一种具有核壳结构的磁性纳米发光材料,该发光材料为球形形貌,其化学结构式为Fe3O4@SiO2@LaVO4:Bi3+
该发光材料的制备方法为,首先制备Fe3O4纳米颗粒,再利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球,最后利用Fe3O4@SiO2纳米微球合成最终产品,所述利用Fe3O4@SiO2纳米微球合成最终产品的步骤如下:
1)将La2O3和Bi(NO3)3·5H2O按照摩尔比为9.5:1的比例混合并溶于浓度为1mol/L的稀硝酸中,再向其中加入与金属离子总量摩尔比为1:1的NH4VO3,充分搅拌至完全溶解后,向其中加入已制得的Fe3O4@SiO2纳米微球,并使用浓度为1mol/L的氨水调节其pH值为9,备用;
其中,加入的Fe3O4@SiO2纳米微球为La2O3质量的30%;
2)将步骤1)中加入氨水后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在150℃条件下干燥18h,自然冷却至室温后取出反应釜,除去溶液得到沉淀,并将沉淀在60℃的条件下真空烘干12h,自然冷却后将沉淀取出,备用;
3)将步骤1)中烘干后自然冷却的沉淀在700℃的条件下焙烧2h,自然冷却至室温即得到产品Fe3O4@SiO2@LaVO4:Bi3+
以上为本发明的基本实施方式,可在以上基础上做进一步的限定和优化:
如,所述制备Fe3O4纳米颗粒的步骤如下:
1)将六水合氯化铁、醋酸钠与乙二醇混合,并在常温下磁力搅拌1h,备用;
其中,六水合氯化铁与醋酸钠的质量比为1:5.4,且每克六水合氯化铁对应30 mL乙二醇;
2)将步骤1)中搅拌后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在200℃条件下干燥12h,然后自然冷却至室温取出反应釜,除去上层溶液得到黑色的Fe3O4颗粒,备用;
3)将步骤2)得到的Fe3O4颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干12h,自然冷却得到Fe3O4纳米颗粒;
当然,除了用此方法制备出Fe3O4纳米颗粒外,还可以用本领域技术人员所知道的其余方法;
进一步的,所述反应釜为聚四氟乙烯反应釜,且反应釜内的填充量不超过其容积的80%;
又如,所述利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球的步骤如下:
1)将Fe3O4纳米颗粒分散到乙醇和去离子水的混合液中超声波震荡40min,备用;
其中,混合液中乙醇与去离子水的体积比为4:1,每60mL的混合液中分散0.2gFe3O4纳米颗粒,超声波的频率为30KHZ;
2)向步骤1)的混合液中依次加入质量浓度25%的氨水和正硅酸乙酯,然后在40℃的条件下恒温反应6h,得到Fe3O4@SiO2磁性纳米颗粒,备用;
其中,每60mL的混合液中加入2mL的氨水和2mL的正硅酸乙酯;
3)将步骤2)中得到的Fe3O4@SiO2磁性纳米颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干10h,自然冷却得到灰色Fe3O4@SiO2纳米微球;
当然,除了用此方法制备出Fe3O4纳米颗粒外,还可以用本领域技术人员所知道的其余方法。
实施例3
一种具有核壳结构的磁性纳米发光材料,该发光材料为球形形貌,其化学结构式为Fe3O4@SiO2@LaVO4:Bi3+
该发光材料的制备方法为,首先制备Fe3O4纳米颗粒,再利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球,最后利用Fe3O4@SiO2纳米微球合成最终产品,所述利用Fe3O4@SiO2纳米微球合成最终产品的步骤如下:
1)将La2O3和Bi(NO3)3·5H2O按照摩尔比为9.5:1的比例混合并溶于浓度为1mol/L的稀硝酸中,再向其中加入与金属离子总量摩尔比为1:1的NH4VO3,充分搅拌至完全溶解后,向其中加入已制得的Fe3O4@SiO2纳米微球,并使用浓度为1mol/L的氨水调节其pH值为7,备用;
其中,加入的Fe3O4@SiO2纳米微球为La2O3质量的20%;
2)将步骤1)中加入氨水后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在150℃条件下干燥16.5h,自然冷却至室温后取出反应釜,除去溶液得到沉淀,并将沉淀在60℃的条件下真空烘干11h,自然冷却后将沉淀取出,备用;
3)将步骤1)中烘干后自然冷却的沉淀在700℃的条件下焙烧2h,自然冷却至室温即得到产品Fe3O4@SiO2@LaVO4:Bi3+
以上为本发明的基本实施方式,可在以上基础上做进一步的限定和优化:
如,所述制备Fe3O4纳米颗粒的步骤如下:
1)将六水合氯化铁、醋酸钠与乙二醇混合,并在常温下磁力搅拌1h,备用;
其中,六水合氯化铁与醋酸钠的质量比为1:5.4,且每克六水合氯化铁对应30 mL乙二醇;
2)将步骤1)中搅拌后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在200℃条件下干燥10h,然后自然冷却至室温取出反应釜,除去上层溶液得到黑色的Fe3O4颗粒,备用;
3)将步骤2)得到的Fe3O4颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干11h,自然冷却得到Fe3O4纳米颗粒;
当然,除了用此方法制备出Fe3O4纳米颗粒外,还可以用本领域技术人员所知道的其余方法;
进一步的,所述反应釜为聚四氟乙烯反应釜,且反应釜内的填充量不超过其容积的80%;
又如,所述利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球的步骤如下:
1)将Fe3O4纳米颗粒分散到乙醇和去离子水的混合液中超声波震荡35min,备用;
其中,混合液中乙醇与去离子水的体积比为4:1,每55mL的混合液中分散0.15gFe3O4纳米颗粒,超声波的频率为40KHZ;
2)向步骤1)的混合液中依次加入质量浓度25%的氨水和正硅酸乙酯,然后在40℃的条件下恒温反应5h,得到Fe3O4@SiO2磁性纳米颗粒,备用;
其中,每55mL的混合液中加入1.75mL的氨水和1.5mL的正硅酸乙酯;
3)将步骤2)中得到的Fe3O4@SiO2磁性纳米颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干9h,自然冷却得到灰色Fe3O4@SiO2纳米微球;
当然,除了用此方法制备出Fe3O4纳米颗粒外,还可以用本领域技术人员所知道的其余方法。

Claims (5)

1.一种具有核壳结构的磁性纳米发光材料,其特征在于:该发光材料为球形形貌,其化学结构式为Fe3O4@SiO2@LaVO4:Bi3+
2.根据权利要求1所述的一种具有核壳结构的磁性纳米发光材料的制备方法,首先制备Fe3O4纳米颗粒,再利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球,最后利用Fe3O4@SiO2纳米微球合成最终产品,其特征在于:所述利用Fe3O4@SiO2纳米微球合成最终产品的步骤如下:
1)将La2O3和Bi(NO3)3·5H2O按照摩尔比为9.5:1的比例混合并溶于浓度为1mol/L的稀硝酸中,再向其中加入与金属离子总量摩尔比为1:1的NH4VO3,充分搅拌至完全溶解后,向其中加入已制得的Fe3O4@SiO2纳米微球,并使用浓度为1mol/L的氨水调节其pH值为5~9,备用;
2)将步骤1)中加入氨水后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在150℃条件下干燥15~18h,自然冷却至室温后取出反应釜,除去溶液得到沉淀,并将沉淀在60℃的条件下真空烘干10~12h,自然冷却后将沉淀取出,备用;
3)将步骤1)中烘干后自然冷却的沉淀在700℃的条件下焙烧2h,自然冷却至室温即得到产品Fe3O4@SiO2@LaVO4:Bi3+
3.根据权利要求2所述的一种具有核壳结构的磁性纳米发光材料的制备方法,其特征在于:所述制备Fe3O4纳米颗粒的步骤如下:
1)将六水合氯化铁、醋酸钠与乙二醇混合,并在常温下磁力搅拌1h,备用;
其中,六水合氯化铁与醋酸钠的质量比为1:5.4,且每克六水合氯化铁对应30 mL乙二醇;
2)将步骤1)中搅拌后的混合溶液转入反应釜中,并将反应釜置于恒温干燥箱中在200℃条件下干燥8~12h,然后自然冷却至室温取出反应釜,除去上层溶液得到黑色的Fe3O4颗粒,备用;
3)将步骤2)得到的Fe3O4颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干10~12h,自然冷却得到Fe3O4纳米颗粒。
4.根据权利要求2或3所述的一种具有核壳结构的磁性纳米发光材料的制备方法,其特征在于:所述反应釜为聚四氟乙烯反应釜,且反应釜内的填充量不超过其容积的80%。
5.根据权利要求2所述的一种具有核壳结构的磁性纳米发光材料的制备方法,其特征在于:所述利用Fe3O4纳米颗粒制备Fe3O4@SiO2纳米微球的步骤如下:
1)将Fe3O4纳米颗粒分散到乙醇和去离子水的混合液中超声波震荡30~40min,备用;
其中,混合液中乙醇与去离子水的体积比为4:1,每50~60mL的混合液中分散0.1~0.2gFe3O4纳米颗粒,超声波的频率为30~50KHZ;
2)向步骤1)的混合液中依次加入质量浓度25%的氨水和正硅酸乙酯,然后在40℃的条件下恒温反应4~6h,得到Fe3O4@SiO2磁性纳米颗粒,备用;
其中,每50~60mL的混合液中加入1.5~2mL的氨水和1~2mL的正硅酸乙酯;
3)将步骤2)中得到的Fe3O4@SiO2磁性纳米颗粒用去离子水和乙醇反复洗涤并分散,而后在60℃的条件下真空烘干8~10h,自然冷却得到灰色Fe3O4@SiO2纳米微球。
CN201610406549.XA 2016-06-12 2016-06-12 一种具有核壳结构的磁性纳米发光材料及其制备方法 Pending CN106010500A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610406549.XA CN106010500A (zh) 2016-06-12 2016-06-12 一种具有核壳结构的磁性纳米发光材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610406549.XA CN106010500A (zh) 2016-06-12 2016-06-12 一种具有核壳结构的磁性纳米发光材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106010500A true CN106010500A (zh) 2016-10-12

Family

ID=57090183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610406549.XA Pending CN106010500A (zh) 2016-06-12 2016-06-12 一种具有核壳结构的磁性纳米发光材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106010500A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910426A (zh) * 2017-11-14 2018-04-13 广东金源照明科技股份有限公司 一种磁性荧光粉复合材料及其平面涂覆方法
CN109935430A (zh) * 2019-03-06 2019-06-25 湖南理工学院 一种磁性一维链状纳米复合物的制备和应用
CN111603572A (zh) * 2020-06-02 2020-09-01 珠海市人民医院 纳米造影剂及其制备方法、应用
CN113528118A (zh) * 2021-07-13 2021-10-22 复旦大学 一种磁性荧光纳米颗粒及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006131472A2 (en) * 2005-06-10 2006-12-14 Ciba Specialty Chemicals Holding Inc. Process for the treatment of particles using a plasma torch
CN103194222A (zh) * 2013-04-18 2013-07-10 扬州大学 Fe3O4/ZnO复合纳米颗粒的制备方法及其应用
CN104588027A (zh) * 2015-01-26 2015-05-06 太原理工大学 一种具有黄壳结构的多功能纳米复合物的制备方法
CN105462589A (zh) * 2015-10-29 2016-04-06 南阳师范学院 一种核壳结构的Fe3O4@GdVO4:Eu3+磁性纳米发光材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006131472A2 (en) * 2005-06-10 2006-12-14 Ciba Specialty Chemicals Holding Inc. Process for the treatment of particles using a plasma torch
CN103194222A (zh) * 2013-04-18 2013-07-10 扬州大学 Fe3O4/ZnO复合纳米颗粒的制备方法及其应用
CN104588027A (zh) * 2015-01-26 2015-05-06 太原理工大学 一种具有黄壳结构的多功能纳米复合物的制备方法
CN105462589A (zh) * 2015-10-29 2016-04-06 南阳师范学院 一种核壳结构的Fe3O4@GdVO4:Eu3+磁性纳米发光材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BO LI等: "Synthesis, Characterization and Cytotoxicity of Novel Multifunctional Fe3O4@SiO2@GdVO4:Dy3+ Core-Shell Nanocomposite as a Drug Carrier", 《MATERIALS》 *
HUITAO FAN等: "Multifunctional Fe3O4@SiO2@GdVO4:Eu3+ core-shell nanocomposite for a potential drug carrier", 《CERAMICS INTERNATIONAL》 *
JIANHUI SHI等: "Magnetic and photoluminescence properties of Fe3O4@SiO2@YP1−xVxO4:Dy3+ nanocomposites", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910426A (zh) * 2017-11-14 2018-04-13 广东金源照明科技股份有限公司 一种磁性荧光粉复合材料及其平面涂覆方法
CN107910426B (zh) * 2017-11-14 2020-01-03 广东金源照明科技股份有限公司 一种磁性荧光粉复合材料及其平面涂覆方法
CN109935430A (zh) * 2019-03-06 2019-06-25 湖南理工学院 一种磁性一维链状纳米复合物的制备和应用
CN109935430B (zh) * 2019-03-06 2020-11-10 湖南理工学院 一种磁性一维链状纳米复合物的制备和应用
CN111603572A (zh) * 2020-06-02 2020-09-01 珠海市人民医院 纳米造影剂及其制备方法、应用
CN111603572B (zh) * 2020-06-02 2022-03-29 珠海市人民医院 纳米造影剂及其制备方法
CN113528118A (zh) * 2021-07-13 2021-10-22 复旦大学 一种磁性荧光纳米颗粒及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN104226337B (zh) 一种石墨烯负载片层状二硫化钼纳米复合物及其制备方法
Li et al. Synthesis of rhombic hierarchical YF 3 nanocrystals and their use as upconversion photocatalysts after TiO 2 coating
CN105289693B (zh) 一种Zn0.5Co0.5Fe2O4/g‑C3N4复合光催化剂的制备方法
CN105969331A (zh) 一种适用于靶向药物载体的纳米材料的制备方法
CN106010500A (zh) 一种具有核壳结构的磁性纳米发光材料及其制备方法
CN105802579B (zh) 一种具有电磁屏蔽功能的高饱和磁化强度纳米四氧化三铁/石墨烯复合材料及其制备方法
CN104058380B (zh) 表面多孔的椭球形离子掺杂型羟基磷灰石微球的制备方法
CN105062485A (zh) 钆离子掺杂氟化镥钠上转换纳/微米晶制备方法
CN108165265B (zh) 一种水溶性铽掺杂氟化钙纳米粒子、制备方法及其应用
Devaraju et al. Eu3+: Y2O3 microspheres and microcubes: A supercritical synthesis and characterization
CN103194222A (zh) Fe3O4/ZnO复合纳米颗粒的制备方法及其应用
Wang et al. Multiple irradiation triggered the formation of luminescent LaVO4: Ln 3+ nanorods and in cellulose gels
Le et al. Development of a fluorescent label tool based on lanthanide nanophosphors for viral biomedical application
CN111892922B (zh) 一种具有抗肿瘤效应的稀土上转换纳米颗粒/钒酸铋纳米复合材料的制备方法
CN110628431B (zh) 一种具有蛋黄-蛋壳结构的正硅酸铋纳米发光材料及制备方法
Campos-Goncalves et al. Superparamagnetic core-shell nanocomplexes doped with Yb3+: Er3+/Ho3+ rare-earths for upconversion fluorescence
Fan et al. Blue-and green-emitting hydrophobic carbon dots: preparation, optical transition, and carbon dot-loading
Hong et al. Controlled synthesis of gadolinium fluoride upconversion nanoparticles capped with oleic acid or polyethylene glycol molecules via one-step hydrothermal method and their toxicity to cancer cells
CN105733584A (zh) 钒酸钇纳米粒子和稀土离子掺杂钒酸钇纳米粒子及其制备方法
CN1847192A (zh) 一种纳米尖晶石型铁氧体粉末的制备方法
CN112408495A (zh) 超顺磁Ag/四氧化三铁纳米球的制备方法
CN103074066B (zh) 介孔直接包覆的荧光多功能纳米生物探针的制备方法
CN102757789B (zh) 一种用于磁光双模生物标记的稀土掺杂氟化钆钾纳米材料及其制备方法
Shi et al. Fabrication, structure, and properties of Fe 3 O 4@ C encapsulated with YVO 4: Eu 3+ composites
CN104925870B (zh) 一种溶剂热法制备纳米四氧化三铁的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161012

RJ01 Rejection of invention patent application after publication