CN105957678B - 一种烧结钕铁硼废料再生的方法 - Google Patents

一种烧结钕铁硼废料再生的方法 Download PDF

Info

Publication number
CN105957678B
CN105957678B CN201610521209.1A CN201610521209A CN105957678B CN 105957678 B CN105957678 B CN 105957678B CN 201610521209 A CN201610521209 A CN 201610521209A CN 105957678 B CN105957678 B CN 105957678B
Authority
CN
China
Prior art keywords
waste material
iron boron
neodymium iron
metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610521209.1A
Other languages
English (en)
Other versions
CN105957678A (zh
Inventor
黄伟超
黎翻
甘家毅
陈东雯
刘韶炼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Rare Earth Guangxi Jinyuan Rare Earth New Material Co Ltd
Original Assignee
CHINALCO JINYUAN RARE-EARTH Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINALCO JINYUAN RARE-EARTH Co Ltd filed Critical CHINALCO JINYUAN RARE-EARTH Co Ltd
Priority to CN201610521209.1A priority Critical patent/CN105957678B/zh
Publication of CN105957678A publication Critical patent/CN105957678A/zh
Application granted granted Critical
Publication of CN105957678B publication Critical patent/CN105957678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了一种钕铁硼废料的再生方法,包含以下步骤:1)清洗:将钕铁硼废料表面油污、杂质清洗干净,烘干,并取样分析成分;2)配料:将经步骤1)处理过的废料装到真空熔炼炉中,并在废料中添加金属La或Ce;3)熔炼:熔炼得到钕铁硼合金;4)制粉:研磨成粒度为3~5微米的粉末;5)磁场成型:在磁场成型压机中取向、压制成型,得到压坯;6)烧结:在1050~1100℃下烧结3~5小时。本发明利用La、Ce等轻稀土比重稀土活泼的特点,在高温熔炼下,通过合理温度和保温工艺,使金属La、Ce充分置换废料中的氧化物,因此不会降低材料性能,同时金属La、Ce价格仅为金属钕的十分之一,因此降低了生产成本。

Description

一种烧结钕铁硼废料再生的方法
技术领域
本发明涉及钕铁硼废料处理技术领域,更具体地说,它涉及一种烧结钕铁硼废料再生的方法。
背景技术
钕铁硼废料中含有贵重稀土,通过综合利用钕铁硼废料极具经济价值和社会效益。传统钕铁硼废料的回收工艺是通过盐酸溶解、萃取分离、沉淀、灼烧,然后制备成金属氧化物,应用于生产钕铁硼材料。该工艺流程复杂、收率低、成本高,逐步遭到淘汰。为了解决这一问题,人们提出了将废料清洗、破碎后,直接进行氢碎,然后经过制粉、磁场成型、烧结得到新的钕铁硼材料。但该方法需在氢碎中添加一定含量的稀土或其他非磁性相,不但增加了成本,还由于添加一定比例的非磁性相,导致材料磁性能下降,不利于制备高性能产品。
发明内容
本发明要解决的技术问题是针对现有技术的上述不足,提供一种处理成本较低、工艺路线可行的烧结钕铁硼废料再生的新方法。
本发明采用的技术方案是这样的:一种钕铁硼废料的再生方法,包含以下步骤:
1)清洗:将钕铁硼废料表面油污、杂质清洗干净,烘干;
2)配料:将经步骤1)处理过的废料装到真空熔炼炉中,并在废料中添加金属La或Ce或La/Ce金属合金,得到混合物料;
3)熔炼:抽真空,同时加热混合物料至微红,直至真空度低于4pa,停止抽真空,充入保护气体,加热至1500~1580℃使混合物料融化,保温5~10分钟后进行浇注,得到钕铁硼合金;
4)制粉:对步骤3)中得到的钕铁硼合金进行氢破碎,然后在气流磨中研磨成粒度为2.5~3.5微米的粉末;
5)磁场成型:将步骤4)中形成的粉末在磁场成型压机中取向、压制成型,得到压坯;
6)烧结:将步骤5)中的压坯在1050~1100℃下烧结3~5小时,烧结完成后淬冷至常温得到钕铁硼永磁材料。
进一步的,步骤2)中添加的金属La或Ce或La/Ce金属合金占所述混合物料的重量比为1.5~2.5%。
进一步的,步骤5)中的压坯在1050~1100℃下烧结3~5小时后,在890~920℃和480~630℃的温度下进行两级回火处理,再淬冷至常温得到钕铁硼永磁材料。
更进一步的,所述步骤3)中的保护气体为氩气。
更进一步的,所述步骤5)中的粉末在1.4~2.0T的取向磁场进行取向、压制成型。
本发明与现有技术相比,具有以下技术效果:
1、使用La、Ce等轻稀土金属替换金属鐠、金属钕,实现了资源可持续性利用,降低了成本。
2、利用La、Ce等轻稀土比重稀土活泼的特点,在高温熔炼下,通过合理温度和保温工艺,使金属La、Ce充分置换废料中的氧化物,因此不会降低材料性能,同时金属La、Ce价格仅为金属钕的十分之一,因此降低了生产成本。
具体实施方式
下面结合具体实施例对本发明做进一步的说明。
实施例1
将钕铁硼废料表面油污、杂质清洗干净,在150℃下烘干,取样分析成分为(PrNd)31.5Al0.6Cu0.15B1.01Fe余,氧含量为5880ppm;然后装到真空熔炼炉中,并在废料中添加金属Ce,得到混合物料,金属Ce占混合物料的重量比为1.5%;对真空熔炼炉进行抽真空,同时加热混合物料至微红,直至真空度降低到低于4pa,停止抽真空,充入氩气保护,加大功率加热使混合物料熔化形成温度达到1500℃的钢液,降低加热功率至200KW,保温5分钟后进行浇注,得到钕铁硼合金,其成分为(PrNd)31.3Ce0.3Al0.58Cu0.14B1.01Fe余,氧含量为315ppm;将钕铁硼合金进行氢破碎,然后在气流磨中研磨成粒度为3.0微米的粉末;将粉末在1.4T的取向磁场进行取向、压制成型,得到压坯;将压坯在1050℃下烧结3小时,然后分别在890℃和480℃的温度下进行两级回火处理,再淬冷至常温得到钕铁硼永磁材料,分析磁性能。
作为对比,将该废料按上述步骤清洗干净后,加入金属Ce,使金属Ce的重量比占到1.5%,然后直接在氢碎炉中吸氢破碎,在气流磨中研磨成粒度为3.0微米的粉末。经磁场成型后,在1050℃下烧结4小时,然后分别在890℃和480℃进行两级回火处理,淬冷至常温得到钕铁硼永磁材料,分析磁性能。
通过上表及成分对比表面,实施例1在高温下进行置换,Ce基本不进入合金中,而是择优与废料的氧化杂质结合,从而降低了材料的氧含量,因而各项磁性能指标均优于对比样。而对比样在添加了金属Ce后,稀释了磁性相的体积分数,导致剩磁、磁能积下降,同时,经过高温烧结,Ce进入钕铁硼四方相的晶格,因为Ce的各向异性远低于Nd的各向异性,因此导致了矫顽力的下降。
实施例2
将钕铁硼废料表面油污、杂质清洗干净,在150℃下烘干,取样分析成分为(PrNd)30.1Dy0.85Al0.6Nb0.2Ga0.1B1.0Fe余,氧含量为4410ppm;然后装到真空熔炼炉中,并在废料中添加金属La,得到混合物料,金属La占混合物料的重量比为2.5%;对真空熔炼炉进行抽真空,同时加热混合物料至微红,直至真空度降低到低于4pa,停止抽真空,充入氩气保护,加大功率加热使混合物料熔化形成温度达到1580℃的钢液,降低加热功率至200KW,保温10分钟后进行浇注,得到钕铁硼合金,其成分为(PrNd)29.65Dy0.81La0.41Al0.59Nb0.2Ga0.09B1.0Fe余,氧含量为321ppm;将钕铁硼合金进行氢破碎,然后在气流磨中研磨成粒度为2.5微米的粉末;将粉末在2.0T的取向磁场进行取向、压制成型,得到压坯;将压坯在1100℃下烧结5小时,然后分别在920℃和630℃的温度下进行两级回火处理,再淬冷至常温得到钕铁硼永磁材料,分析磁性能。
作为对比,将该废料按上述步骤清洗干净后,加入金属La,使金属La的重量比占到2.5%,然后直接在氢碎炉中吸氢破碎,在气流磨中研磨成粒度为2.5微米的粉末。经2.0T的取向磁场取向、压制成型,在1100℃下烧结5小时,然后分别在920℃和630℃进行两级回火处理,淬冷至常温得到钕铁硼永磁材料,分析磁性能。
通过上表对比显示,实施例2与实施例1类似,同样在高温下进行置换,La基本不进入合金中,材料的氧含量较低,各项磁性能指标也均优于对比样。对比样剩磁、磁能积下降,矫顽力也下降。
实施例3
将钕铁硼废料表面油污、杂质清洗干净,在150℃下烘干,取样分析成分为(PrNd)27.5Dy2.5Tb1.5Al0.6Nb0.2Cu0.2Ga0.2B1.0Fe,氧含量为6045ppm;然后装到真空熔炼炉中,并在废料中添加La/Ce金属合金,得到混合物料,La/Ce金属合金占混合物料的重量比为2.0%;对真空熔炼炉进行抽真空,同时加热混合物料至微红,直至真空度降低到低于4pa,停止抽真空,充入氩气保护,加大功率加热使混合物料熔化形成温度达到1550℃的钢液,降低加热功率至200KW,保温8分钟后进行浇注,得到钕铁硼合金,其成分为(PrNd)27.1Dy2.32La0.21Ce0.17Tb1.43Al0.58Nb0.19Cu0.2Ga0.19B1.0Fe,氧含量为318ppm;将钕铁硼合金进行氢破碎,然后在气流磨中研磨成粒度为3.5微米的粉末;将粉末在1.8T的取向磁场进行取向、压制成型,得到压坯;将压坯在1060℃下烧结4.5小时,然后分别在900℃和500℃的温度下进行两级回火处理,再淬冷至常温得到钕铁硼永磁材料,分析磁性能。
作为对比,将该废料按上述步骤清洗干净后,加入La/Ce金属合金,使La/Ce金属合金的重量比占到2.0%,然后直接在氢碎炉中吸氢破碎,在气流磨中研磨成粒度为3.5微米的粉末。经1.8T的取向磁场取向、压制成型,在1060℃下烧结4.5小时,然后分别在900℃和500℃进行两级回火处理,淬冷至常温得到钕铁硼永磁材料,分析磁性能。
通过上表对比显示,实施例3与实施例1、2类似,同样在高温下进行置换,La/Ce金属合金基本不进入合金中,材料的氧含量较低,各项磁性能指标也均优于对比样。对比样剩磁、磁能积下降,矫顽力也下降。
以上所述的仅是本发明的优选实施方式,应当指出对于本领域的技术人员来说,在不脱离本发明结构的前提下,还可以作出若干变形和改进,这些都不会影响本发明实施的效果和专利的实用性。

Claims (5)

1.一种钕铁硼废料的再生方法,其特征在于,包含以下步骤:
1)清洗:将钕铁硼废料表面油污、杂质清洗干净,烘干;
2)配料:将经步骤1)处理过的废料装到真空熔炼炉中,并在废料中添加金属La或Ce或La/Ce金属合金,得到混合物料;
3)熔炼:抽真空,同时加热混合物料至微红,直至真空度低于4pa,停止抽真空,充入保护气体,加热至1500~1580℃使混合物料融化,保温5~10分钟后进行浇注,得到钕铁硼合金;
4)制粉:对步骤3)中得到的钕铁硼合金进行氢破碎,然后在气流磨中研磨成粒度为2.5~3.5微米的粉末;
5)磁场成型:将步骤4)中形成的粉末在磁场成型压机中取向、压制成型,得到压坯;
6)烧结:将步骤5)中的压坯在1050~1100℃下烧结3~5小时,烧结完成后淬冷至常温得到钕铁硼永磁材料。
2.根据权利要求1所述的钕铁硼废料的再生方法,其特征在于,步骤2)中添加的金属La或Ce或La/Ce金属合金占所述混合物料的重量比为1.5~2.5%。
3.根据权利要求1所述的钕铁硼废料的再生方法,其特征在于,步骤5)中的压坯在1050~1100℃下烧结3~5小时后,在890~920℃和480~630℃的温度下进行两级回火处理,再淬冷至常温得到钕铁硼永磁材料。
4.根据权利要求1所述的钕铁硼废料的再生方法,其特征在于,所述步骤3)中的保护气体为氩气。
5.根据权利要求1所述的钕铁硼废料的再生方法,其特征在于,所述步骤5)中的粉末在1.4~2.0T的取向磁场进行取向、压制成型。
CN201610521209.1A 2016-06-30 2016-06-30 一种烧结钕铁硼废料再生的方法 Active CN105957678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610521209.1A CN105957678B (zh) 2016-06-30 2016-06-30 一种烧结钕铁硼废料再生的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610521209.1A CN105957678B (zh) 2016-06-30 2016-06-30 一种烧结钕铁硼废料再生的方法

Publications (2)

Publication Number Publication Date
CN105957678A CN105957678A (zh) 2016-09-21
CN105957678B true CN105957678B (zh) 2018-01-02

Family

ID=56902343

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610521209.1A Active CN105957678B (zh) 2016-06-30 2016-06-30 一种烧结钕铁硼废料再生的方法

Country Status (1)

Country Link
CN (1) CN105957678B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564647A (zh) * 2017-08-14 2018-01-09 浙江东阳东磁稀土有限公司 一种稀土钕铁硼镀层废品回收再利用的方法
EP3807913A1 (en) * 2018-06-18 2021-04-21 ABB Schweiz AG Method for producing a magnetic powder
CN110257724B (zh) * 2019-07-16 2020-05-22 宁德市星宇科技有限公司 一种含镧和铈的钕铁硼磁体的制备方法
CN112233868B (zh) * 2020-09-25 2024-04-30 宁波科星材料科技有限公司 一种复合金多相钕铁硼磁体及其制备方法
CN113380528B (zh) * 2021-06-15 2022-08-19 中钢天源股份有限公司 一种烧结钕铁硼晶界重塑的方法
CN113436878B (zh) * 2021-07-05 2023-04-28 宁波市易赞磁业有限公司 一种利用钕铁硼废料制备的烧结钕铁硼及其制备方法
CN114101686B (zh) * 2021-11-09 2023-07-25 中磁科技股份有限公司 一种钕铁硼氧化毛坯的处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093914A (zh) * 2013-01-25 2013-05-08 宁波同创强磁材料有限公司 一种高性能钕铁硼磁体及其制备方法
CN104576019A (zh) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 一种利用废料制备钕铁硼磁体的方法
JP2016041839A (ja) * 2014-08-18 2016-03-31 日立金属株式会社 ホウ素を含む希土類元素の酸化物の再生方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103093914A (zh) * 2013-01-25 2013-05-08 宁波同创强磁材料有限公司 一种高性能钕铁硼磁体及其制备方法
JP2016041839A (ja) * 2014-08-18 2016-03-31 日立金属株式会社 ホウ素を含む希土類元素の酸化物の再生方法
CN104576019A (zh) * 2014-11-26 2015-04-29 宁波格荣利磁业有限公司 一种利用废料制备钕铁硼磁体的方法

Also Published As

Publication number Publication date
CN105957678A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105957678B (zh) 一种烧结钕铁硼废料再生的方法
CN108922710A (zh) 一种高韧性、高矫顽力含Ce烧结稀土永磁体及其制备方法
CN105575577B (zh) 烧结富铈稀土永磁材料及其制备方法
CN104900360B (zh) 一种添加复合低价稀土的永磁合金及其制备方法
CN103834863B (zh) 用共伴生混合稀土制造钕铁硼永磁材料的方法
CN102220538A (zh) 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法
CN103093916B (zh) 一种钕铁硼磁性材料及其制备方法
CN103077796A (zh) 一种耐蚀钕铁硼永磁材料及其制备方法
CN101826386A (zh) 一种稀土永磁材料的成分和制造工艺
CN107610865A (zh) 钕铁硼永磁材料的制备方法
CN106816249B (zh) 一种廉价轻稀土镧铈铁硼纳米晶永磁体的制备方法
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN104124052A (zh) 一种高性能稀土-铁-硼系烧结永磁体的制备方法
CN107958760B (zh) 一种稀土永磁材料及其制备方法
CN107689279A (zh) 一种提高烧结钕铁硼复合磁体矫顽力的方法
CN106920613A (zh) 镀防护层烧结钕铁硼废料再利用的方法
CN106298134B (zh) 一种双主相烧结永磁材料及制备方法和应用
CN101154489B (zh) 抗冲击铁基稀土永磁体及其制备方法
CN104275487B (zh) 一种添加mm合金的烧结钕铁硼的制备方法
CN106504838A (zh) 一种钕铁硼磁体的制备方法
CN103667920B (zh) 一种Nd-Fe-B系稀土永磁合金的制备方法
CN104821226A (zh) 一种铈钛钴锆复合添加制备高方形度烧结钕铁硼永磁体的方法
CN102592778A (zh) 低成本烧结钕铁硼磁体及其制备方法
CN109550945B (zh) 一种利用白云鄂博共伴生原矿混合稀土制备的永磁材料及其制备方法
CN108597707B (zh) 一种含Ce烧结磁体及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 542603 Wanggao Industrial Development Zone, Hezhou, the Guangxi Zhuang Autonomous Region

Patentee after: China Rare Earth (Guangxi) Jinyuan rare earth new material Co., Ltd

Address before: 542829 Wanggao Industrial Development Zone, Hezhou, the Guangxi Zhuang Autonomous Region

Patentee before: CHINALCO GUANGXI COLORED JINYUAN RARE EARTH Co.,Ltd.

CP03 Change of name, title or address