CN105938830A - 半导体装置 - Google Patents

半导体装置 Download PDF

Info

Publication number
CN105938830A
CN105938830A CN201610115150.6A CN201610115150A CN105938830A CN 105938830 A CN105938830 A CN 105938830A CN 201610115150 A CN201610115150 A CN 201610115150A CN 105938830 A CN105938830 A CN 105938830A
Authority
CN
China
Prior art keywords
electrode
main
emitter stage
detection
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610115150.6A
Other languages
English (en)
Inventor
安田佳史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN105938830A publication Critical patent/CN105938830A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0635Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with bipolar transistors and diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0288Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using passive elements as protective elements, e.g. resistors, capacitors, inductors, spark-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0296Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices involving a specific disposition of the protective devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种半导体装置,其能够保护检测开关元件免受浪涌影响,并且能够使用检测开关元件而以较高精度来对主开关元件的电流进行检测。所述半导体装置具有:第一主电极和第二主电极,其与半导体基板的正面相接;背面电极,其与半导体基板的背面相接;第一电容器电极;其被配置在所述正面上;第一绝缘膜,其被配置在第一电容器电极上;第二电容器电极,其被配置在第一绝缘膜上。在第一主电极与背面电极之间形成有第一绝缘栅型开关元件。在第二主电极与背面电极之间形成有第二绝缘栅型开关元件。第一主电极和第二主电极中的任意一方与第一电容器电极导通,第一主电极和第二主电极中的另一方与第二电容器电极导通。

Description

半导体装置
技术领域
本说明书所公开的技术涉及一种半导体装置。
背景技术
在专利文献1中公开了一种具有绝缘栅型开关元件的半导体装置。在该半导体装置的半导体基板上形成有主开关元件与检测开关元件。检测开关元件的尺寸与主开关元件的尺寸相比而较小。在半导体基板的正面上形成有第一主电极(第一发射极)与第二主电极(第二发射极)。在半导体基板的背面上形成有背面电极(集电极)。主开关元件对第一主电极与背面电极之间的电流进行开关。检测开关元件对第二主电极与背面电极之间的电流进行开关。主开关元件的第一主电极直接与基准电位(共用发射极)连接。检测开关元件的第二主电极经由检测电阻而与基准电位连接。因此,在检测电阻的两端输出有对应于流过检测开关元件的电流的电压。此外,流过检测开关元件的电流和流过主开关元件的电流之比,与检测开关元件的尺寸和主开关元件的尺寸之比大致相同。因此,能够通过对检测电阻的电压进行检测来对流过主开关元件的电流进行检测。
有时在第二主电极上会被施加有浪涌。当由于浪涌从而在第二主电极与检测开关元件的栅电极之间被施加有高电压时,检测开关元件的栅绝缘膜有时会发生劣化。为了解决该问题,在专利文献1的半导体装置中,在第一主电极与第二主电极之间连接有齐纳二极管。齐纳二极管被形成在半导体基板上。当在第二主电极上被施加有浪涌时,齐纳二极管会发生击穿,从而浪涌电流会从第二主电极向第一主电极流动。因此,第二主电极的电位的上升被抑制,从而检测开关元件的栅绝缘膜得到保护。
在先技术文献
专利文献
专利文献1:日本特开2003-229572号公报
发明内容
发明所要解决的课题
由于当本专利文献1的半导体装置导通时,在检测电阻的两端会产生电压,因此第二主电极的电位与基准电位相比而较高。另一方面,由于第一主电极与基准电位直接连接,因此第一主电极的电位与基准电位相等。因此,在第一主电极与第二主电极之间产生有电位差。该电位差被施加在齐纳二极管上。此外,当半导体装置导通时,半导体基板会成为高温。因此,形成在半导体基板上的齐纳二极管也会成为高温。当高温的齐纳二极管上被施加有电位差时,齐纳二极管中会流动有漏电流。当流动有漏电流时,检测开关元件中流动的电流与主开关元件中流动的电流的比率会发生变化。因此,无法根据检测电阻的电压来准确地对主开关元件的电流进行计算。即,专利文献1的半导体装置的主开关元件的电流的检测精度较低。因此,在本说明书中提供一种半导体装置,其能够保护检测开关元件免受浪涌的影响,并且能够使用检测开关元件而以较高精度对主开关元件的电流进行检测。
用于解决课题的方法
本说明书公开的半导体装置具有半导体基板、第一主电极、背面电极、第一电容器电极、第一绝缘膜、第二电容器电极。所述第一主电极和所述第二主电极与所述半导体基板的正面相接。所述背面电极与所述半导体基板的背面相接。所述第一电容器电极被配置在所述正面上。所述第一绝缘膜被配置在所述第一电容器电极上。所述第二电容器电极被配置在所述第一绝缘膜上。所述第一主电极和所述第二主电极在所述正面的不同范围内相接。在存在于所述第一主电极与所述背面电极之间的所述半导体基板上,形成有第一绝缘栅型开关元件。在存在于所述第二主电极与所述背面电极之间的所述半导体基板上形成有第二绝缘栅型开关元件。在所述正面上,所述第一绝缘栅型开关元件的面积与所述第二绝缘栅型开关元件的面积相比而较大。所述第一主电极和所述第二主电极中的任意一侧与所述第一电容器电极导通。所述第一主电极和所述第二主电极中的另一方与所述第二电容器电极导通。在该半导体装置中,能够将面积较小的第二绝缘栅型开关元件作为检测开关元件而使用。通过第一电容器电极、第一绝缘膜、第二电容器电极而形成了电容器。该电容器介于第一主电极与第二主电极之间。电容器相对于变化率较高的电压而言其阻抗较低。因此,当第二主电极上被施加有浪涌时,浪涌电流将从第二主电极经由电容器而向第一主电极流动。由此能够保护第二绝缘栅型开关元件免受浪涌的影响。此外,电容器相对于变化率较低的电压而言其阻抗较高。因此,在半导体装置进行动作时,即使第一主电极与第二主电极之间被施加由于检测电阻而产生的电压(变化率较低的电压(大致为直流电压)),电容器中也不会流动有电流。此外,在电容器中,即使是高温时也几乎不会流动有漏电流。因此,在该半导体装置中,第一绝缘栅型开关元件中流动的电流与第二绝缘栅型开关元件中流动的电流的比率不易发生变化。因此,能够准确地对半导体装置中所流动的电流进行检测。
附图说明
图1为半导体装置10的电路图。
图2为半导体装置10的俯视图。
图3为半导体装置10的检测发射极20a附近的范围的放大俯视图。
图4为图3中A-A线处的半导体装置10的纵剖视图。
图5为图3中B-B线处的半导体装置10的纵剖视图。
图6为图3中C-C线处的半导体装置10的纵剖视图。
图7为改变例的半导体装置的对应于图4的纵剖视图。
图8为实施例2的半导体装置的检测发射极20a附近的范围的放大俯视图。
具体实施方式
图1中图示了实施方式所涉及的半导体装置10的电路图。半导体装置10具有IGBT(Insulated Gate Bipolar Transistor:绝缘栅双极性晶体管)12、电容器26、电容器28。IGBT12具有栅极衬垫14、集电极16、主发射极18a以及检测发射极20a。电容器26被连接在主发射极18a与检测发射极20a之间。电容器28被连接在主发射极18a与检测发射极20a之间。即,电容器26与电容器28并联连接。主发射极18a与外部电极22连接。检测发射极20a经由检测电阻24而与外部电极22连接。
如图2所示,半导体装置10具有硅制的半导体基板30。半导体基板30的正面30a上形成有主要由Al(铝)构成的金属层18、20、14及15等。另外,在包括图2在内的本说明书中所参照的图中,为了使图易懂而省略了栅极配线等一部分的配线的图示。此外,在下文中,将图2的左右方向(在对正面30a进行俯视观察时与半导体基板30的一个边平行的方向)称为x方向,将图2的上下方向(对正面30a进行俯视观察时与x方向正交的方向)称为y方向。
金属层18中的于图2中以斜线来表示的各范围内的金属层18a与半导体基板30的正面相接。在斜线范围内的金属层18a的下部处形成有主IGBT。斜线范围内的金属层18a构成了图1所示的主发射极18a。金属层18中的斜线范围外的部分为,其下表面未与半导体基板30相接的配线层。即,在配线层与半导体基板30之间配置有绝缘膜。配线层具有沿着半导体基板30的外周缘而以环状延伸的环状部18b。环状部18b与各主发射极18a连接。此外,配线层具有从环状部18b向金属层20的两侧的位置延伸的两个延伸部18c。
金属层20被配置在于y方向上和主发射极18a邻接的位置处。金属层20中的在图2中以斜线来表示的范围内的金属层20a与半导体基板30的正面相接。在斜线范围内的金属层20a的下部处形成有检测IGBT。斜线范围内的金属层20a构成了图1所示的检测发射极20a。金属层20中的斜线范围外的部分为其下表面未与半导体基板30相接的配线层20b。即,在配线层20b与半导体基板30之间配置有绝缘膜。配线层20b被配置在检测发射极20a的周围。
金属层14被配置在于x方向上和金属层20邻接的位置处。金属层14为图1的栅极衬垫14,并且通过未图示的栅极配线与主IGBT以及检测IGBT的各栅电极连接。此外,在半导体基板30的正面30a上形成有温度检测用的两个衬垫15。
图3中图示了图1的检测发射极20a的周边的放大图。此外,图4表示了图3的A-A线处的纵剖视图。另外,在图4以及后文所述的图5、6中,为了易于进行说明,将半导体基板30上的层间绝缘膜与配线的厚度图示为与实际的厚度相比而更厚。如图4所示,在半导体基板30的背面30b的全部区域上形成有集电极16。
如图4所示,在主发射极18a的下部的半导体基板30中形成有发射区40、体区41、漂移区42、集电区43。发射区40为n型区域。发射区40在露出于半导体基板30的正面30a上的范围内形成有多个。发射区40与主发射极18a欧姆接触。体区41为p型区域。体区41在与发射区40邻接的位置处,于半导体基板30的正面30a上露出。此外,在发射区40的下侧处也形成有体区41。正面30a附近的体区41内的p型杂质浓度与发射区40的下侧的体区41内的p型杂质浓度相比较高。体区41与主发射极18a欧姆接触。漂移区42为n型杂质浓度较低的n型区域。漂移区42形成在体区41的下侧。集电区43为p型区域。集电区43形成在漂移区42的下侧。集电区43在半导体基板30的背面30b上露出。集电区43在背面30b的大致整体区域上与集电极16欧姆接触。在主发射极18a的下部的半导体基板30的正面30a上形成有多个沟槽。各沟槽贯穿发射区40与体区41而到达至漂移区42。在各沟槽内形成有栅绝缘膜44与栅电极45。栅绝缘膜44对沟槽的内表面进行覆盖。栅电极45通过栅绝缘膜44而与半导体基板30绝缘。栅电极45隔着栅绝缘膜44而与发射区40、体区41以及漂移区42对置。栅电极45的上表面通过层间绝缘膜46而被覆盖。栅电极45通过层间绝缘膜46而与主发射极18a绝缘。栅电极45通过未图示的栅极配线而与图2的栅极衬垫14连接。主IGBT通过主发射极18a、发射区40、体区41、漂移区42、集电区43、集电极16、栅绝缘膜44以及栅电极45等构成。主IGBT被形成在主发射极18a与集电极16之间的半导体基板30上。主IGBT对流过主发射极18a与集电极16之间的电流进行开关。主IGBT被形成在图2所示的与主发射极18a重叠的全部范围内。
此外,如图4所示,在检测发射极20a的下部的半导体基板30中形成有发射区31、体区32、漂移区42以及集电区43。发射区31为n型区域。发射区31在露出于半导体基板30的正面30a上的范围内形成有多个。发射区31与检测发射极20a欧姆接触。发射区31的n型杂质浓度与漂移区42的n型杂质浓度相比而较高。体区32为p型区域。体区32在与发射区31邻接的位置处,在半导体基板30的正面30a上露出。此外,体区32还被形成在发射区31的下侧。正面30a附近的体区32内的p型杂质浓度与发射区31的下侧的体区32内的p型杂质浓度相比而较高。体区32与检测发射极20a欧姆接触。在体区32的下侧形成有漂移区42与集电区43。体区32的下侧的漂移区42与体区41的下侧的漂移区42连通。体区32通过漂移区42而与体区41分离。体区32的下侧的集电区43与体区41的下侧的集电区43连通。集电区43在体区32的下侧的位置处也与集电极16欧姆接触。在主发射极20a的下部的半导体基板30的正面30a上形成有多个沟槽。各沟槽贯穿发射区31与体区32而到达至漂移区42。在各沟槽内形成有栅绝缘膜44与栅电极45。栅绝缘膜44对沟槽的内表面进行覆盖。栅电极45通过栅绝缘膜44而与半导体基板30绝缘。栅电极45隔着栅绝缘膜44而与发射区31、体区32以及漂移区42对置。栅电极45的上表面通过层间绝缘膜46而被覆盖。栅电极45通过层间绝缘膜46而与检测发射极20a绝缘。检测发射极20a的下部的栅电极45通过未图示的栅极配线而与图2的栅极衬垫14连接。检测IGBT通过检测发射极20a、发射区31、体区32、漂移区42、集电区43、集电极16、栅绝缘膜44以及栅电极45等构成。检测IGBT被形成在检测发射极20a与集电极16之间的半导体基板30上。检测IGBT对流过检测发射极20a与集电极16之间的电流进行开关。检测IGBT被形成在图2所示的与检测发射极20a重叠的全部范围内。由图2可明确看出,在半导体基板30的正面30a上,检测IGBT的面积(即,检测发射极20a的面积)远小于主IGBT的面积(即,主发射极18a的面积)。因此,在检测IGBT中流有远小于主IGBT的电流。
如图4所示,主IGBT的体区41的端部处,形成有从半导体基板30的正面30a起延伸至与体区41的下端相比而较深的位置处的深区48。深区48的p型杂质浓度与发射区40的下侧的体区41的p型杂质浓度相比而较高。深区48在图4所示的截面上与主IGBT的体区41连通。深区48经由体区41而与主发射极18a连接。深区48的上表面通过层间绝缘膜51而被覆盖。在图3中被涂灰的范围为形成有深区48的范围。如图3所示,在延伸部18c的下部也形成有深区48。
如图4所示,在检测IGBT的体区32的端部处形成有从半导体基板30的正面30a起延伸至与体区32的下端相比而较深的位置处的深区50。深区50与检测IGBT的体区32连通。深区50经由体区32而与检测发射极20a连接。深区50的上表面通过层间绝缘膜51而被覆盖。深区50被形成在与深区48分离的位置处。在深区50与深区48之间形成有n型的漂移区42,由此,深区50与深区48分离。深区50仅形成在检测IGBT的周边部分处。通过深区48与深区50,从而使主IGBT与检测IGBT之间的分界部中的电场集中的情况被抑制。
如图3、4所示,配线层20b从检测发射极20a朝向半导体基板30的外周侧而延伸。配线层20b被配置在层间绝缘膜51上。因此,配线层20b未与半导体基板30直接接触。在一部分的层间绝缘膜51上形成有由聚硅构成的配线层60。在配线层60上形成有层间绝缘膜52。配线层20b覆盖在层间绝缘膜52上。在层间绝缘膜52上形成有接触孔53。配线层60与配线层20b经由接触孔53而连接。如图3、5所示,配线层60从接触孔53的位置起而在x方向上延伸为较长。配线层60延伸至各延伸部18c的下部。如图3、6所示,配线层60在各延伸部18c的下部弯曲,并沿着延伸部18c而在y方向上延伸为较长。如图5、6所示,在配线层60与延伸部18c之间形成有层间绝缘膜52,并且配线层60通过所述层间绝缘膜52而与延伸部18c绝缘。更加详细而言,包括延伸部18c在内的金属层18的整体与和配线层60以及配线层60连接的金属层20绝缘。配线层60隔着层间绝缘膜52而与延伸部18c对置。即,通过配线层60、层间绝缘膜52、延伸部18c而形成有电容器。如上所述,延伸部18c与主发射极18a连接。此外,如上所述,配线层60与检测发射极20a连接。因此,通过配线层60、层间绝缘膜52、延伸部18c而构成的电容器为,如图1所示被连接在主发射极18a与检测发射极20a之间的电容器26。
此外,如图3、6所示,上述的深区48被形成于配线层60的下部的全部区域内。在配线层60与深区48之间形成有层间绝缘膜51,并且配线层60通过所述层间绝缘膜51而与深区48绝缘。更加详细而言,深区48与配线层60以及连接于配线层60的金属层20绝缘。配线层60隔着层间绝缘膜51而与深区48对置。通过配线层60、层间绝缘膜51、深区48而形成了电容器。即,深区48作为电容器的一侧的电极板而发挥功能。如上所述,深区48与主发射极18a连接。此外,如上所述,配线层60与检测发射极20a连接。因此,通过配线层60、层间绝缘膜51、深区48而构成的电容器为如图1所示被连接在主发射极18a与检测发射极20a之间的电容器28。
接下来,对半导体装置10的动作进行说明。当使图1的IGBT12(即,主IGBT与检测IGBT)导通时,电流从集电极16朝向外部电极22而流动。电流中的大部分会经由主IGBT(即,主发射极18a)而流动。电流中的一部分会经由检测IGBT(即,检测发射极20a)而流动。检测IGBT中流动的电流能够通过检测电阻24的两端的电位差来进行测量。此外,主IGBT中流动的电流与检测IGBT中流动的电流之比,和主IGBT的面积与检测IGBT的面积之比大致相等。因此,能够通过对检测IGBT的电流进行检测来对主IGBT的电流进行检测。
由于在检测电阻24的两端产生有电位差,因此在检测发射极20a与主发射极18a之间产生有电位差。该电位差被施加于电容器26、28上。在各IGBT中所流动的电流处于稳定的状态下,在检测电阻24的两端所产生的电位差大致为固定。即使将这样的大致固定的电位差施加于电容器26、28,电容器26、28中也不会流动有电流。此外,当IGBT12导通时,半导体基板30会成为高温。因此,在半导体基板30的正面上所形成的电容器26、28也会成为高温。然而,由于电容器26的两个电极板(即,延伸部18c与配线层60)通过层间绝缘膜52而被绝缘,因此即使电容器26成为高温,在电容器26中也几乎不会产生漏电流。此外,由于电容器28的两个电极板(即,配线层60与深区48)通过层间绝缘膜51而被绝缘,因此即使电容器28成为高温,在电容器28中也几乎不会产生漏电流。由于漏电流不易产生,因此检测IGBT的电流与主IGBT的电流的比率不易发生变化。因此,根据该半导体装置10,能够根据检测电阻24的电压来对主IGBT中所流动的电流准确地进行检测。
此外,有时半导体装置10的检测发射极20a中会被施加有浪涌。由于检测IGBT的发射极与栅电极之间电容较小,因此当由于浪涌从而使发射极与栅电极之间被施加有高电压时,检测IGBT的栅绝缘膜44有时会发生劣化。然而,在本实施例中,在检测发射极20a与主发射极18a之间安装有电容器26、28。由于相对于浪涌等的变化率较高的电压而言,电容器26、28的阻抗较低,因此当检测发射极20a上被施加有浪涌时,浪涌电流会从检测发射极20a起经由电容器26、28而向主发射极18a流动。由此,会抑制检测发射极20a的电位的上升,并防止在检测IGBT的发射极与栅电极之间被施加有较高电压。由此,在施加浪涌时检测IGBT的栅绝缘膜会得到保护。特别是在本实施方式中,在检测发射极20a与主发射极18a之间并联连接有两个电容器26、28。由此,检测发射极20a与主发射极18a之间的静电电容会变得较高。通过以此方式使静电容量较高,从而在浪涌被施加时检测发射极20a的电位会变得更加难以上升。因此,检测IGBT的栅绝缘膜会更好地得到保护。
如上文所说明的那样,根据实施例1的半导体装置10,能够准确地对主IGBT中流动的电流进行检测,并且能够在施加浪涌时对检测IGBT恰当地进行保护。
另外,在上述的实施例1的半导体装置10中,深区48与体区41直接连接。然而,例如如图7所示,深区48也可以经由配线层18d等导体而与体区41连接。即,只要能够从深区48向主发射极18a流有直流电流,则深区48可以以任意方式来进行连接。
在以下对上述的实施例1中的各结构元件与权利要求中的各结构元件之间的关系进行说明。实施例1中的主发射极18a为权利要求中的第一主电极的一个示例。实施例1中的检测发射极20a为权利要求中的第二主电极的一个示例。实施例1中的集电极16为权利要求中的背面电极的一个示例。实施例1中的配线层60为权利要求中的第一电容器电极的一个示例。实施例1中的层间绝缘膜52为权利要求中的第一绝缘膜的一个示例。实施例1中的延伸部18c为权利要求中的第二电容器电极的一个示例。实施例1中的层间绝缘膜51为权利要求中的第二绝缘膜的一个示例。第一实施例的深区48为权利要求中的电容器区域的一个示例。实施例1中的主IGBT为权利要求中的第一绝缘栅型开关元件的一个示例。实施例1中的检测IGBT为权利要求中的第二绝缘栅型开关元件的一个示例。
实施例2
在实施例2的半导体装置中,电容器的结构与实施例1的半导体装置10不同。实施例2的半导体装置的其他结构与实施例1的半导体装置10等同。在实施例2中,如图8所示,延伸部18c由聚硅层62构成。与图5、6的配线层60相同,聚硅层62通过层间绝缘膜51而与半导体基板30绝缘。聚硅层62的上表面通过层间绝缘膜52而被覆盖。聚硅层62的端部被形成在金属层18的环状部18b的下部处。在环状部18b的下部的层间绝缘膜51上形成有接触孔64,并且聚硅层62与环状部18b通过接触孔64而被连接在一起。因此,聚硅层62经由环状部18b而与主发射极18a连接。聚硅层62延伸至配线层20b的下部。配线层20b与聚硅层62之间通过层间绝缘膜52而被绝缘。
根据实施例2的结构,通过配线层20b、聚硅层62(延伸部18c)、以及配置在二者之间的层间绝缘膜52而构成了电容器。由于配线层20b与检测发射极20a连接,聚硅层62与主发射极18a连接,因此该电容器构成图1的电容器26。另外,在实施例2中,由于聚硅层62与其下部的深区48一起与主发射极18a连接,因此未形成图1的电容器28。
实施例2的结构也能够通过电容器26来保护检测IGBT而使其免受浪涌的影响。此外,由于在电容器26中不易流动有漏电流,因此能够准确地对主IGBT中所流动的电流进行检测。
在下文中,对上述的实施例2中的各结构元件与权利要求中的各结构元件的关系进行说明。实施例2中的主发射极18a为权利要求中的第一主电极的一个示例。实施例2中的检测发射极20a为权利要求中的第二主电极的一个示例。实施例2中的集电极16为权利要求中的背面电极的一个示例。实施例2中的聚硅层62为权利要求中的第一电容器电极的一个示例。实施例2中的层间绝缘膜52为权利要求中的第一绝缘膜的一个示例。实施例2中的配线层20b为权利要求中的第二电容器电极的一个示例。
另外,在上述的实施例2中,在聚硅层62的下部处形成有与主发射极18a连接的深区48。然而,也可以在聚硅层62的下部形成与检测发射极20a连接的深区50。根据该结构,能够通过聚硅层62、深区50、以及二者之间的层间绝缘膜51来形成图1的电容器28。
另外,虽然在上述的实施例1、2中,在半导体基板30上形成了IGBT,但也可以替代IGBT而形成其他绝缘栅型开关元件(例如,MOSFET(Metal OxideSemiconductor Field Effect Transistor:MOS场效应晶体管)等)。
此外,在于专利文献1中所公开的通过齐纳二极管来对开关元件进行保护以使其免受浪涌影响的结构中,齐纳二极管通过被配置在半导体基板上的聚硅层而构成。通过向聚硅层注入p型以及n型的杂质而形成齐纳二极管。通常情况下为了减少制造工序数目,会将用于形成齐纳二极管的杂质注入工序与用于在半导体基板内形成开关元件的杂质注入工序合并而实施。因此,齐纳二极管的特性会对应于开关元件所需的特性而发生变化,从而无法独立地控制齐纳二极管的保护性能。相对于此,在实施例1、2的方法中,由于通过电容器而实施相对于浪涌的保护,从而不会产生这样的问题。
对本说明书中所公开的技术要素进行说明。在本说明书所公开的一个示例的半导体装置中,第二绝缘膜介于第一电容器电极与半导体基板的正面之间。在隔着第二绝缘膜而与第一电容器电极对置的位置处的半导体基板上形成有电容器区域,所述电容器区域和与第二电容器电极导通一方的主电极导通
在该结构中,通过第一电容器电极、第二绝缘膜、电容器区域而形成了第二电容器。第二电容器被连接在第一主电极与第二主电极之间。即,在该结构中,在第一主电极与第二主电极之间并联连接有两个电容器。由此,第一主电极与第二主电极之间的电容会变得更大。因此,能够更好地保护绝缘栅型开关元件免受浪涌的影响。
虽然在以上对实施方式进行了详细说明,但这些只不过是示例,其并不会对权利要求书作出限定。权利要求书中所记载的技术包括对上文所例示的具体示例进行了各种改变、变更的内容。
本说明书或附图中所说明的技术要素为单独或通过各种组合来发挥技术上的有用性的技术,其并不限定于申请时权利要求中所记载的组合。此外,本说明书或附图中所例示的技术为能够同时实现多个目的的技术,并且实现其中一个目的本身也为具有技术上的有用性。
符号说明
10:半导体装置;14:栅极衬垫;16:集电极;18a:主发射极;18c:延伸部;20a:检测发射极;20b:配线层;22:外部电极;24:检测电阻;26:电容器;28:电容器;30:半导体基板;40:发射区;41:体区;42:漂移区;43:集电区;44:栅绝缘膜;45:栅电极;46:层间绝缘膜;48:深区;50:深区;51:层间绝缘膜;52:层间绝缘膜;53:接触孔。

Claims (2)

1.一种半导体装置,具有:
半导体基板;
第一主电极和第二主电极,其与所述半导体基板的正面相接;
背面电极,其与所述半导体基板的背面相接;
第一电容器电极,其被配置在所述正面上;
第一绝缘膜,其被配置在所述第一电容器电极上;
第二电容器电极,其被配置在所述第一绝缘膜上,
所述第一主电极和所述第二主电极与所述正面中的不同范围相接,
在存在于所述第一主电极与所述背面电极之间的所述半导体基板上,形成有第一绝缘栅型开关元件,
在存在于所述第二主电极与所述背面电极之间的所述半导体基板上,形成有第二绝缘栅型开关元件,
在所述正面上,所述第一绝缘栅型开关元件的面积与所述第二绝缘栅型开关元件的面积相比而较大,
所述第一主电极和所述第二主电极中的任意一方与所述第一电容器电极导通,
所述第一主电极和所述第二主电极中的另一方与所述第二电容器电极导通。
2.如权利要求1的半导体装置,其中,
在所述第一电容器电极与所述正面之间存在有第二绝缘膜,
在隔着所述第二绝缘膜而与所述第一电容器电极对置的位置处的所述半导体基板上,形成有与所述另一方导通的电容器区域。
CN201610115150.6A 2015-03-02 2016-03-01 半导体装置 Pending CN105938830A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015040710A JP2016162898A (ja) 2015-03-02 2015-03-02 半導体装置
JP2015-040710 2015-03-02

Publications (1)

Publication Number Publication Date
CN105938830A true CN105938830A (zh) 2016-09-14

Family

ID=56738634

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610115150.6A Pending CN105938830A (zh) 2015-03-02 2016-03-01 半导体装置

Country Status (4)

Country Link
US (1) US20160260707A1 (zh)
JP (1) JP2016162898A (zh)
CN (1) CN105938830A (zh)
DE (1) DE102016103574A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7310343B2 (ja) * 2019-06-14 2023-07-19 富士電機株式会社 半導体装置
JP2021136241A (ja) * 2020-02-21 2021-09-13 富士電機株式会社 半導体装置および半導体装置の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150955A (ja) * 1986-12-15 1988-06-23 Hitachi Medical Corp X線ct装置用計測回路
JPH05122036A (ja) * 1991-10-25 1993-05-18 Toyota Autom Loom Works Ltd 半導体装置
JPH07221267A (ja) * 1994-01-31 1995-08-18 Sony Corp 半導体装置及びその製造方法
WO2014188570A1 (ja) * 2013-05-23 2014-11-27 トヨタ自動車株式会社 半導体装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5610954A (en) * 1979-07-05 1981-02-03 Nec Corp Semiconductor device
JP3067448B2 (ja) * 1992-03-18 2000-07-17 富士電機株式会社 半導体装置
JP3703435B2 (ja) 2002-02-05 2005-10-05 三菱電機株式会社 半導体装置
JP2003273230A (ja) * 2002-03-19 2003-09-26 Nec Electronics Corp 半導体装置及びその製造方法
JP2008235788A (ja) * 2007-03-23 2008-10-02 Sanyo Electric Co Ltd 絶縁ゲート型半導体装置
JP5175482B2 (ja) * 2007-03-29 2013-04-03 ルネサスエレクトロニクス株式会社 半導体装置
US20120256193A1 (en) * 2011-04-08 2012-10-11 Intersil Americas Inc. Monolithic integrated capacitors for high-efficiency power converters
EP2555241A1 (en) * 2011-08-02 2013-02-06 Nxp B.V. IC die, semiconductor package, printed circuit board and IC die manufacturing method
US9583556B2 (en) * 2012-07-19 2017-02-28 Taiwan Semiconductor Manufacturing Company, Ltd. Process-compatible decoupling capacitor and method for making the same
KR102038076B1 (ko) * 2013-04-04 2019-10-30 삼성디스플레이 주식회사 유기 발광 표시 장치
JP5497234B1 (ja) 2013-08-20 2014-05-21 株式会社辰巳菱機 負荷試験装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150955A (ja) * 1986-12-15 1988-06-23 Hitachi Medical Corp X線ct装置用計測回路
JPH05122036A (ja) * 1991-10-25 1993-05-18 Toyota Autom Loom Works Ltd 半導体装置
JPH07221267A (ja) * 1994-01-31 1995-08-18 Sony Corp 半導体装置及びその製造方法
WO2014188570A1 (ja) * 2013-05-23 2014-11-27 トヨタ自動車株式会社 半導体装置

Also Published As

Publication number Publication date
JP2016162898A (ja) 2016-09-05
US20160260707A1 (en) 2016-09-08
DE102016103574A1 (de) 2016-09-08

Similar Documents

Publication Publication Date Title
CN204680675U (zh) 半导体器件的结构
CN102646708B (zh) 超结半导体器件
US7977704B2 (en) Semiconductor device having insulated gate semiconductor element, and insulated gate bipolar transistor
CN107210299B (zh) 半导体装置
CN105556668B (zh) 半导体装置
CN103872046B (zh) 形成esd器件及其结构的方法
CN103681867B (zh) 具有场电极的晶体管器件
CN104995737B (zh) 半导体装置
CN102263124A (zh) 半导体器件
CN106133889A (zh) 半导体装置
US20110297934A1 (en) Semiconductor device
CN101740567A (zh) 半导体装置
CN105097905B (zh) 绝缘栅双极晶体管
CN103579224B (zh) Esd保护
CN104916673A (zh) 半导体装置以及绝缘栅极型双极晶体管
CN109923663A (zh) 半导体装置
CN108461546A (zh) 半导体装置
JP2010232335A5 (zh)
CN104409454B (zh) 一种nldmos防静电保护管
JP7176206B2 (ja) 炭化珪素半導体装置および炭化珪素半導体回路装置
CN207637805U (zh) 竖直沟道半导体器件
CN105938830A (zh) 半导体装置
WO2014188570A1 (ja) 半導体装置
CN103996704A (zh) 一种具有精确检测功能的igbt及其制造方法
CN103794599B (zh) 半导体装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160914