CN105934535A - 制备uv光检测器的方法 - Google Patents

制备uv光检测器的方法 Download PDF

Info

Publication number
CN105934535A
CN105934535A CN201580006138.5A CN201580006138A CN105934535A CN 105934535 A CN105934535 A CN 105934535A CN 201580006138 A CN201580006138 A CN 201580006138A CN 105934535 A CN105934535 A CN 105934535A
Authority
CN
China
Prior art keywords
photodetector
metal
oxide
precursor
hydroxamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201580006138.5A
Other languages
English (en)
Inventor
R·胡克
R·D·德舒克
P·米希凯维奇
A·科尔司兹克
K·邦拉德
T·阿尔布雷特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of CN105934535A publication Critical patent/CN105934535A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1279Process of deposition of the inorganic material performed under reactive atmosphere, e.g. oxidising or reducing atmospheres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及制备基于具有液相的前体体系的沉积的光检测器的方法。所述光检测器的特征在于某组可用作日盲UV检测器中的吸收剂的半导体材料。公开了用于形成这种吸收剂材料薄层的简单的方法。

Description

制备UV光检测器的方法
本发明涉及制备基于具有液相的前体体系沉积的光检测器的方法。所述光检测器的特征在于某组可用作日盲UV检测器中的吸收剂的半导体材料。公开了用于形成这种吸收剂材料薄层的易行的方法。
背景
光检测器广义上被定义为响应入射电磁辐射,从而使得能够测量入射辐射强度的设备。光检测器通常包括某种光电导装置和外部测量电路。
在日光条件下的紫外(UV)光检测对于商业(家庭和专业)和防卫应用是一个重要的问题。具有在UV中敏感性的光检测器具有广泛地适用性。暴露于UV-A和UV-B辐射(分别为320-400nm和280-320nm)可以导致皮肤癌,出于健康原因使得UV-A和UV-B光的量化是重要的。在被称为“深UV”(DUV)的UV-C范围(200-280nm)内的检测在太阳辐射测量学、科学研究(例如在闪烁检测器)、环境研究和生物研究中是重要的。UV-C光传感器在火灾报警、燃烧监控、导弹尾焰检测和空间对空间传输具有商业应用(Peng等,Adv.Mater.2013,doi:10.1002/adma.201301802)。相比于UV-A和UV-B光,来自太阳的UV-C完全被地球大气所吸收并且因此不干涉DUV报告。
一个特别的挑战是对于非常低水平的UV-V辐射敏感并且对于可见光不敏感的“日盲”检测器的设计。由于太阳光谱在约290nm的波长λ处中断,日盲检测器应当被定义为仅响应285nm以下波长的装置或设备。
已经探索了多种UV光检测器的制造路线,范围由基于真空的方法,例如薄膜的外延生长和纳米线的气相沉积至以溶胶、纳米胶体油墨和喷雾热解形式的溶液加工。例如Ga2O3可以使用溅射、化学气相沉积CVD、脉冲激光沉积、喷雾热解和溶胶-凝胶方法制备(Appl.Phys.Lett.90,031912,2007)。各个方法具有某些成就,但也存在挑战。
一类装置是基于单晶吸收剂的UV光检测器。窄能带隙材料例如硅和III-V化合物可以用于UV光检测;然而,它们的光谱范围必须通过使用高通过光学滤镜或通过掺入磷光体以改变。为了进一步降低暗电流,这种装置通常在操作期间冷却。长期暴露于更高能量能带隙的辐射可能损坏活性材料(Peng等,Adv.Mater.2013,35,5321-5328)。
为了避免这些问题,已经探索了具有固有“可见盲区”的宽带隙半导体的外延生长用于UV光检测器。已经报道了基于结晶MgxZn1-xO(4.76eV,在括号中提供的带隙)、InGeO和ZnGeO(4.43和4.68eV)、β-Ga2O3(4.8eV)、AlxGa1-xN(>3.4eV)、AlN、BN和钻石的光检测器。这种方法的挑战在于在低成本基材上生长高质量、晶格匹配的膜。经常,得到的材料包含大密度的位错和晶界。光电导率取决于化学计量并且在金属氧化物的情况下取决于气体吸收现象。然而,通过掺杂调整能带隙的能力由晶格承载能力限定。许多多晶膜展现出慢的响应时间,范围由几分钟至若干小时(Jin等,Nano Lett.,Vol.8,No.6,2008)。
另一类装置是基于纳米结构的结晶吸收剂的UV光检测器。在该领域,原则上可以使用两种不同的方法,其中油墨含有分解以形成目标材料的分子前体或预先形成的结晶纳米颗粒。
与基于块体材料的UV光检测器相比,纳米结构的UV光检测器可能具有优势。载流子限制可以导致更高的响应性和增加的光导电性增益。对于金属氧化物,高的表面积与体积比促进了气体吸附和解吸附,这可以抑制暗电流(Peng等,Adv.Mater.2013,35,5321-5328)。
许多二元和三元金属氧化物的纳米线已经被掺入到这些UV光传感器中,包括用于UV-A传感的Nb2O5纳米带(Adv.Funct.Mater.2011,21,3907-3915)以及Zn2GeO4和In2Ge2O7纳米线(J.Mater.Chem.C,2013,1,131-137)。基于ZnO或Ga2O3纳米线桥接组件的装置可以在单一化学气相沉积步骤中制造(Li等,Adv.Funct.Mater.2010,20,3972)。基于使用化学气相沉积生长的单一Ga2O3纳米带的设备展现出对250nm光的高选择性,小于0.3s的快速响应时间以及大于4个数量级的S/N比(Li等,Nanoscale,2011,3,1120)。
高性能UV光检测器也已经被证明基于包含预先形成的结晶纳米结构的油墨。Jin等描述了(Nano Lett.,Vol.8,No.6,2008)通过旋涂胶体ZnO纳米颗粒和在空气中退火薄膜制造溶液加工的光检测器。该设备展现出具有370nm光的61A/W的响应性的高UV光电流效率和具有>1TΩ的电阻的低暗电流。值得注意的是,这些材料的响应时间相当快速,分别对于升高和下降在0.1s以下和约1s。在近UV下活跃的光检测器已经使用In2O3纳米颗粒得以证明(Shao等,AppSurface Science 261(2012)123)。
基于前体的方法:
金属氧化物薄膜可以容易地使用溶胶-凝胶产生。溶胶-凝胶膜与真空沉积膜的比较表明溶液加工的装置可能具有更优的性能(J.Vac.Sci.Technol.B 30,031206,2012)。通过在溶胶-凝胶沉积之后调整退火条件,可以获得各种纳米结构,包括垂直配向ZnO纳米线(Bai等,Current Applied Physics 13(2013)165e169)。
也已经报道使用溶胶凝胶法制备的Ga2O3深UV光检测器。在一种情况下,Ga2O3使用异丙醇镓作为前体和甲氧基乙醇和单乙醇胺分别作为溶剂和稳定剂制备。所述膜在400-1200℃的温度下退火。对于加热至600℃和以上的膜观察光谱响应,光电流的峰值随热处理温度的升高而增大,直至温度达到1000℃(Appl.Phys.Lett.90,031912,2007)。在另一项研究中,使用溶胶-凝胶制备的Ga2O3装置具有超过1A/W的高响应性(Appl.Phys.Lett.98,131114,2011)。文献JP2008282881 A和JP 2009044019 A同样报道了这种溶胶-凝胶方法用于制备含有氧化铟的膜。
喷雾热解是溶胶凝胶加工的可行的替代方案。已经报道了在450℃下通过喷雾热解的基于Ga-掺杂的ZnO沉积的光电导的检测器(Shinde和Rajpure,Mat.Res.Bull.,46(2011)1734)。在365nm光照下(2mW/cm2),产生了超过2mA的电流。
Ga2O3纳米颗粒也已经成功地使用硝酸镓的喷雾热解合成。在这种情况下,将Ga(NO3)3溶解在超纯水中并且与作为助熔剂(flux salt)的氯化锂合并。将得到的溶液雾化并且作为薄雾传输至氧化铝反应器中(700-1000℃)以形成Ga2O3纳米颗粒,作为GaN纳米颗粒的路线。没有制造光检测器(Ogi等,Advanced Powder Technology 20(2009)29-34)。Kim和Kim(J.Appl.Phys.62(5),1987)报道了较低温度的方法,其中将GaCl3由水性溶剂喷雾到加热至350℃的基板上。虽然在这种情况下没有制造装置,XRD数据匹配Ga2O3的XRD数据和光学测量表明4.23eV的能带隙。
对于与低温处理和大面积集成相兼容的UV检测器的材料平台存在技术需求。寻求具有降低成本和允许柔性装置结构的潜力的处理方法。迄今为止,仍然需要用于真正日盲的深UV光检测器(280nm以下响应)的低温(<500℃)方法。
发明概述
本发明的一个实施方案涉及通过将液体载体、一种或多种金属离子沉积在基板上制备UV光检测器的方法,其中所述一种或多种金属离子结合至选自肟化物(oximate)和异羟肟酸化物(hydroxamate)的配体,
-处理沉积的组合物,得到UV光检测器材料,和
-向光检测器材料提供电极。
本发明的进一步的实施方案涉及化学前体用于制备UV检测器的用途,其中化学前体被处理成UV检测器中的UV光检测器材料。化学前体优选选自金属肟化物前体和金属异羟肟酸化物前体。
本发明的另一个实施方案涉及包含液体载体和具有一种或多种配体的金属前体的组合物,其中所述配体包括肟化物或异羟肟酸化物的配体,优选其特征在于所述金属前体包括在本发明中提及的某些金属,尤其是镓、或锌与另一种选自铟(In)、镓(Ga)、铝(Al)和镁(Mg)的金属的混合物。
本发明的再一个实施方案涉及通过本发明的方法制备的UV检测器。
本发明还涉及包括基板、金属氧化物的印刷层以及一对连接至氧化物层的电极的印刷UV光检测器,其中所述电极以入射UV光可以被电极之间的金属氧化物层吸收的方式配置。
本发明具体地公开了金属的肟化物和金属的异羟肟酸化物的前体用于产生适用于深UV光检测器的金属氧化物薄膜,如IZO和Ga2O3薄膜的用途。
发明详述
根据本发明制备的光检测器的一个实施方案描绘于图1。所述光检测器包括具有连接至外部电路的电极(任选相互交叉的)的装置。外部电路通常包括偏压(电压)源和测量仪器,例如电流计。在一个优选的实施方案中,所述源是在5-25V范围内操作的电压源。所述电流计可以是任何适当灵敏电流计。在操作中,光子(以入射光的形式)撞击装置的活性半导体表面。合适波长的光子被吸收并且产生电子空穴对。装置电导率正比于光子通量(每秒光子数)增加。通过施加偏压产生的外部电场引起电子和空穴在装置中传输,从而在外部电路中产生可由电流计测量的电流。然而,本领域技术人员将理解的是,体现本发明检测器的装置将在无施加电压下操作,因为电信号输出通过由吸收的光子创造的电子空穴对产生。这种设置可以通过将检测器并入晶体管结构实现,其中光活性层设置在栅电极之下或在沟道区域中。
所述光检测器活性材料可以通过将前体溶液沉积在基板上并且使前体热分解以获得吸收层来制造。
根据本发明的方法制造的光检测器对于UV辐射提供了高响应性,但对可见光盲。因此其高度适用于在日光条件下的UV检测。所述检测器显示了小的暗电流并且因此显示高信噪比。所述检测器显示了非常迅速的时间响应,允许无延迟的检测。峰值响应的波长可以通过选择在方法中使用的材料来调整。由本方法制备的材料是均匀稳定的。
所述方法本身是非常经济的,因为其是可规模化的,快速并且需要少量并且廉价的原料。不需要真空和昂贵的设备。本方法另外的特征在于温和的加工温度,因为由本发明的前体形成氧化物仅需要适中的温度。因此本方法已经适用于一些柔性基板,例如薄金属箔和具有良好高温强度的所选的聚合物。结合易于制造和温度行为,甚至卷对卷方法也是可以实现的。
总之,具有高增益、高空间和时间分辨率以及高敏感性的光检测器可以较小的成本实现。
在用于本发明方法的前体组合物中使用的液体载体优选包括有机溶剂,更优选二甲基甲酰胺(DMF)、二甲基亚砜(DMSO)、醇(例如乙醇、丁醇、2-甲氧基乙醇、二乙二醇)、N,N-二甲基甲酰胺或其与其它溶剂的混合物。
根据本发明的肟化物的种类包括2-肟基羧酸、通过改变以下式A的取代基R1和R2的它们的衍生物、和相应的阴离子。肟化物具体地代表阴离子,该阴离子同时是金属优选金属离子的配体(肟基配体)。优选的上下文提及的肟基配体(oximato ligand)的一般结构为以下式A:
其中R1选自H、CH3或CH2CH3,和R2选自H、C1至C6的烷基,苯基或苄基,优选H、CH3或CH2CH3。所述肟基配体通常是具有一个负电荷的螯合配体。作为螯合配体,其经由N和一个O原子连接至金属。根据本发明对于一种或多种金属复合物配体优选包含2-(甲氧基亚氨基)烷酸盐、2-(乙氧基亚氨基)烷酸盐或2-(羟基亚氨基)烷酸盐,更优选(C2-至C8-)烷酸盐中的乙酸盐、丙酸盐或丁酸盐,最优选丙酸盐。所述肟化物优选与铝、镓、钕、钌、镁、铪、锆、铟、锗、钛、锰、镍和/或锡结合使用。铟前体优选为三肟基铟(III)复合物。镓复合物优选三肟基镓(III)复合物。
优选的上下文提及的异羟肟酸基配体(hydroxamato ligand)的一般结构为以下式B:
其中R1选自C1至C15的烷基,苯基或苄基,优选C1至C6的烷基,包括甲基、乙基、正丙基、异丙基、叔丁基和R2选自H,C1至C6的烷基,优选H、CH3或CH2CH3。异羟肟酸基配体通常是具有一个负电荷的螯合配体。作为螯合配体,其经由两个氧原子结合到金属上。
金属异羟肟酸复合物为通式(R1C(=O)NR2O)mMnXoYp
其中R1代表C1至C10的脂肪族、烯属或芳族基团,R2代表H原子,C1至C10的烷基链或苯基,m为n与4n之间的数。尤其优选的是R1=甲基、乙基、正丙基、异丙基和叔丁基,并且R2=H、甲基和乙基。M代表族2、13或14 PSE的元素,或过渡金属,n为至少1(例如1、2、3,优选1),X代表带负电的配体,例如羟基或烷氧基,或末端或桥接氧代配体,o为0与2n之间的数,Y代表未带电的给体配体,例如水、醇、伯、仲或叔脂肪胺或吡啶,和p为0与2n之间的数。优选的金属异羟肟酸化物是式(R1C(=O)NR2O)mMYp。与异羟肟酸基配体结合作为前体的金属优选选自铝、镓、镉、铜、锗、钕、钌、镁、铪、铟、银、锡、锆和锌,优选铜、铟、镓、铟、锌、铝、锗或锡。
在沉积之后,根据本发明的方法包括处理沉积的前体组合物,其导致形成氧化物半导体。所述处理包括分解金属-配体复合物,在前体通过印刷的方式沉积的情况下,所得金属氧化物层被称为金属氧化物的印刷层。
分解金属肟化物和异羟肟酸基复合物(本文“前体”)的优选方式是通过加热,包括烘焙、微波和热辐射。前体在环境或惰性气氛中通过在150和600℃之间的热处理优选转化成各自二元金属氧化物MxOy,并且因此为沉积金属氧化物薄膜的通用的单源前体。优选地,加热在氧的存在下进行。优选的温度为200℃及以上,更优选240℃及以上。在分解之后,最终产物含有非常低量的杂质元素,如碳和氮(<1%)。前体的分解也可以通过UV光实现,优选来自高功率光源的UV光。
所述前体可以包括族IIA/B(IUPAC:2,12)、族IIIB(IUPAC:13)、族IVA/B(IUPAC:4,14)的任何元素或任何过渡金属Cu、Ni、Mn、Cr和Ti(以具有来自肟化物或异羟肟酸化物的至少一种配体的有机金属复合物的形式存在)。在这些族中优选的元素为Mg、Zn、Al、Ga、In和Sn。尤其优选的元素为锌、铟、锡和镓。在锌、铟和镓的情况下,肟化物类的优选的配体包括2-(甲氧基亚氨基)烷酸盐、2-(乙氧基亚氨基)烷酸盐或2-(羟基亚氨基)-烷酸盐。来自异羟肟酸化物种类的,优选的配体为新戊基异羟肟酸基(R1=叔丁基,R2=H),异丁基异羟肟酸基(R1=异丙基,R2=H)或N-甲基乙酰异羟肟酸基(R1=甲基,R2=甲基)。
在优选的实施方案中,前体(一种或多种)组成了可印刷的油墨或印刷浆以用于UV光检测器中的应用。前体优选在液体载体中是可溶的,或可以细分散。可印刷性被定义为通过印刷方法在液体相中被处理的能力。流变性能例如粘度和表面张力通常被调整至具体印刷方式所需的值。根据现有技术知识这种行为通过例如合适的添加剂如粘度改性剂和表面活性剂实现。
前体溶液可以旋涂、喷涂、喷墨印刷、浸涂、刮刃涂覆、凹版涂覆、狭缝涂覆或滴涂在基板上。合适的基板包括例如玻璃(包括石英玻璃)、金属箔或塑料。前体溶液可以沉积在预先加热的基板上以直接在沉积过程中分解前体以形成金属氧化物层。然后可以通过进一步的退火步骤以改善吸收层的电性能和结晶性。处理吸收层的另一种方法是保持在室温下将前体溶液沉积在基板上。紧接着该步骤的是在前体的分解温度下退火膜以将前体膜转化成相应的金属氧化物或混合金属氧化物。
根据本发明制备的UV检测器的吸收层优选具有结晶结构,更优选具有多晶结构,其具有1nm-200nm范围的单晶域。吸收剂层的厚度通常为80-250nm的范围。
提供与吸收剂层接触的电极,其通常在吸收剂层的顶部。沉积金属线(metal lines)的方法是本领域技术人员已知的,例如溅射或印刷。电极可以以平行线、叉指网格(梳状电极)或其它形状的形式制备。最佳的电极间隙随着光导体和应用而变化。优选的电极材料选自可以容易的沉积的金属和其它导体(例如导电氧化物),例如金、银、铜和任何可印刷的材料。
在活性半导体氧化物层以下或以上可以引入额外的层。例如,可以在本发明的方法期间或之后引入优化半导体和金属电极之间的肖特基势垒(Shottky barrier)的额外的材料。可以在基板和半导体氧化物层之间沉积缓冲层。
附图简要说明
图1说明了光检测器设备,包括例如石英的基板(1)、置于基板(1)上的光导体层(2)和连接光导体(2)的两个电极(3)。
图2描绘了在250℃下退火之后实施例1的IZO膜的吸收光谱。连续线表示由7个层组成的层的吸收度,并且在涂覆之前调整基线(点状线)至石英基板。
图3描绘了在254nm、302nm和365nm光辐射下以及在黑暗中实施例1的IZO膜的电流-电压曲线(IV曲线)。黑暗条件下的曲线与基线在0nA重叠。
图4描绘了在250℃下退火之后实施例2的Ga2O3膜的吸收光谱。点状线表明了6个层的吸收度,并且短划线是在涂覆之前调整至石英基板的基线。
图5描绘了在254nm光辐射下(上升曲线)和在黑暗下(与基线在0nA重叠)实施例2的Ga2O3膜的电流-电压曲线(IV曲线)。
以下实施例将阐明本发明,但不对其进行限制。技术人员将能够意识到未在说明书中明确提及的本发明的实际细节,能够由本领域一般知识归纳这些细节并且将它们作为解决方案应用于与本发明的技术问题相关的任何特殊问题或任务。
实施例
实施例1.形成具有通过旋涂含有铟和锌的肟化物的油墨形成的铟锌氧化物(IZO)活性层的UV光检测器。
在玻璃瓶中,将48.0mg的双(2-甲氧基亚氨基丙酸)锌溶解在3ml的甲氧基丙醇中。在单独的瓶中,将125.5mg的三(2-甲氧基亚氨基丙酸)铟溶解在3ml的甲氧基丙醇中。将溶液短暂超声处理直至澄清。在新的玻璃瓶中合并0.5ml各自溶液以获得3wt%的肟化物溶液,其In:Zn为5:2的比例。
使用每层50μL的油墨和2000rpm的旋转速度将油墨旋涂在清洁的石英片上(25mm x 25mm)上。在每层之后,将膜在250℃下退火4分钟以得到含有铟锌氧化物(IZO)的半导体材料。重复涂覆步骤直至形成7个层。观察到UV吸收度随着膜厚度而增加。
为了测试材料的光响应性,将两个金垫片溅射在基板上以形成大约20nm的最终厚度。使用3.3mm的线性掩膜以形成活性区域。因此,电极之间的活性区域为3.3mm宽和25mm长。沉积之后,使用四种不同的光条件测试装置的IV响应性:黑暗、6W 365nm光源,6W 302nm光源和6W 254nm光源(手持荧光灯管,VWR)。距灯的距离为约13cm。
图3显示了相比于在黑暗状态IV曲线,在用254nm/302nm/365nm光的辐射下IZO膜的IV响应。检测器在较深UV(254nm)显示了良好的响应性,但在较低能量或在黑暗下没有响应。UV检测器的敏感性倾向较短波长在254nm和301nm之间具有明显的截止。
实施例2.形成具有通过旋涂Ga-肟化物油墨形成的镓氧化物(Ga2O3)活性层的UV光检测器。
在玻璃瓶中,将282mg的三(2-甲氧基亚氨基丙酸)镓溶解在3.6ml的甲氧基乙醇中以得到4wt%的肟化物溶液。将混合物短暂超声处理直至澄清。
使用每层50μL的油墨和2000rpm的速度将油墨旋涂在清洁的石英片上。在每层之后,将膜在250℃下退火4分钟以得到含有氧化镓(III)的半导体材料。观察到UV吸收随着膜厚度即涂覆步骤的数目而增加。
图1描绘了在250℃下退火之后Ga2O3膜的吸收光谱作为膜厚度的函数。使用石英基板作为基线。
为了测试材料的光响应性,将两个金垫片溅射在基板上以形成大约20nm的最终厚度。使用3.3mm的线性掩膜以形成活性区域(3.3mm x25mm)。沉积之后,在黑暗和在6W 254nm光源的照射下测试装置的IV响应性。
在图4中描绘了相比于黑暗状态下的IV曲线,在254nm辐射下Ga2O3膜的IV响应性。
实施例3.形成具有通过旋涂Ga-异羟肟酸化物油墨形成的氧化镓(Ga2O3)活性层的UV光检测器
在玻璃瓶中,将144mg的三(N-甲基-乙酰异羟肟酸)镓溶解在3.6ml的甲氧基乙醇中以获得4wt%的异羟肟酸化物溶液。将溶液短暂超声处理直至澄清。使用每层50μL的油墨和2000rpm的速度将油墨旋涂在清洁的石英片上。在每层之后,将膜在350℃下退火4分钟以得到含有氧化镓(III)的半导体材料。
为了测试材料的光响应性,将两个金垫片溅射在基板上以形成大约20nm的最终厚度。使用3.3mm的线性掩膜以形成活性区域(3.3mm x25mm)。沉积之后,在黑暗和在6W 254nm光源的照射下测试装置的IV响应性。
本发明实施方案的进一步组合和本发明的变体通过以下权利要求公开。

Claims (10)

1.制备UV光检测器的方法,包括以下步骤:
-沉积包含液体载体、金属离子的液体组合物,其中所述金属离子的一种或多种结合至选自肟化物和异羟肟酸化物的配体,
-处理沉积的组合物得到UV光检测器材料,和
-向光检测器材料提供电极。
2.根据权利要求1的制备UV光检测器的方法,其特征在于处理沉积的组合物包括蒸发液体载体和任选地加热残留的材料。
3.根据权利要求1或2的制备UV光检测器的方法,其特征在于处理沉积的组合物包括在氧气的存在下加热。
4.根据权利要求1-3的一项或多项的制备UV光检测器的方法,其特征在于,处理沉积的组合物包括加热至150和600℃之间的温度。
5.根据权利要求1-4的一项或多项的制备UV光检测器的方法,其特征在于结合至选自肟化物和异羟肟酸化物的配体的金属离子选自元素Ga、In、Zn、Al、Be、Mg、Sn、Cu、Ni、Ti或Mn。
6.根据权利要求1-5的一项或多项的制备UV光检测器的方法,其特征在于所述液体组合物包含肟化物的配体。
7.根据权利要求1-6的一项或多项的制备UV光检测器的方法,其特征在于所述液体组合物包含异羟肟酸化物的配体。
8.印刷的UV光检测器,包括:
基板,
金属氧化物印刷层,和
连接至氧化物层的一对电极,其中所述电极以入射UV光可以被电极之间的金属氧化物层吸收的方式配置。
9.根据权利要求8的印刷的UV检测器,其特征在于所述氧化物层是氧化镓或氧化铟锌。
10.包含液体载体和具有一种或多种配体的金属前体的组合物,其中所述配体包括肟化物或异羟肟酸化物的配体,其特征在于所述金属前体是金属铟和锡的混合物。
CN201580006138.5A 2014-01-31 2015-01-16 制备uv光检测器的方法 Pending CN105934535A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461934102P 2014-01-31 2014-01-31
US61/934,102 2014-01-31
PCT/EP2015/000073 WO2015113737A1 (en) 2014-01-31 2015-01-16 Method for producing a uv photodetector

Publications (1)

Publication Number Publication Date
CN105934535A true CN105934535A (zh) 2016-09-07

Family

ID=52394231

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580006138.5A Pending CN105934535A (zh) 2014-01-31 2015-01-16 制备uv光检测器的方法

Country Status (6)

Country Link
US (1) US10431704B2 (zh)
EP (1) EP3099838A1 (zh)
JP (1) JP2017506000A (zh)
KR (1) KR20160118286A (zh)
CN (1) CN105934535A (zh)
WO (1) WO2015113737A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711270A (zh) * 2017-01-09 2017-05-24 福建农林大学 一种柔性氧化镓基日盲紫外光电探测器及其制备方法
CN107706253A (zh) * 2017-10-27 2018-02-16 朱秋华 一种紫外探测器及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160359060A1 (en) * 2014-01-31 2016-12-08 Merck Patent Gmbh Preparation of semiconductor films
CN109000790B (zh) * 2018-05-30 2021-09-07 金华紫芯科技有限公司 一种氧化镓基柔性日盲紫外火焰探测器及其制备方法
KR101946205B1 (ko) * 2018-07-16 2019-04-17 아주대학교산학협력단 태양광-블라인드 uv-c 광센서 및 이의 제조 방법
FR3084523B1 (fr) * 2018-07-27 2020-12-25 Soc Fr De Detecteurs Infrarouges Sofradir Dispositif de detection electromagnetique
KR102249830B1 (ko) 2019-07-24 2021-05-07 서울과학기술대학교 산학협력단 층상 이중 수산화물을 이용한 자외선 광검출기 및 그 제조방법
CN111081825A (zh) * 2019-12-20 2020-04-28 浙江大学 一种msm型日盲紫外探测器的制备方法
CN112909118B (zh) * 2021-01-28 2023-04-07 广州大学 一种微分转换型宽光谱光电探测器及其制备方法
CN113314641A (zh) * 2021-05-28 2021-08-27 吉林建筑大学 一种日盲紫外光敏晶体管的制备方法
CN113314642B (zh) * 2021-05-28 2022-06-21 吉林建筑大学 一种双绝缘层日盲紫外光敏薄膜晶体管的制备方法
CN113921627A (zh) * 2021-09-18 2022-01-11 厦门大学 一种(InxGa1-x)2O3日盲紫外光电探测器及其制备方法
WO2023163517A1 (ko) * 2022-02-23 2023-08-31 가천대학교 산학협력단 산화은/β-산화갈륨 이종접합 기반 태양광 블라인드 광검출기 및 그 제조 방법
KR20230143243A (ko) 2022-04-04 2023-10-12 연세대학교 산학협력단 Rf 신호를 이용한 uv광 검출기 및 이의 제조방법
KR20240033396A (ko) 2022-09-05 2024-03-12 연세대학교 산학협력단 Rf 신호를 이용한 광 검출기 및 이의 제조방법
EP4343432A1 (en) * 2022-09-22 2024-03-27 Paul Scherrer Institut Use of a metal and/or metalloid-comprising ketoacidoximate and/or a metal-compound-comprising ketoacidoximate as a patterning agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951207A1 (de) * 1999-10-15 2001-04-19 Twlux Halbleitertechnologien B Halbleiterbauelement
DE102009004491A1 (de) * 2009-01-09 2010-07-15 Merck Patent Gmbh Funktionelles Material für gedruckte elektronische Bauteile
WO2012000594A1 (en) * 2010-06-29 2012-01-05 Merck Patent Gmbh Preparation of semiconductor films
CN102460641A (zh) * 2009-06-16 2012-05-16 巴斯夫欧洲公司 用于改进颗粒间接触部位和填充半导体金属氧化物颗粒层中的间隙的热不稳定性前体化合物
WO2013110434A1 (de) * 2012-01-27 2013-08-01 Merck Patent Gmbh Verfahren zur herstellung elektrisch halbleitender oder leitender schichten mit verbesserter leitfähigkeit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3112496B2 (ja) 1991-03-29 2000-11-27 本荘ケミカル株式会社 透明性光導電性金属酸化物積層膜の製造方法
JP2008282881A (ja) * 2007-05-08 2008-11-20 Nippon Light Metal Co Ltd 紫外線センサ及びその製造方法
WO2010125011A2 (de) * 2009-04-28 2010-11-04 Basf Se Verfahren zur herstellung von halbleitenden schichten
JP2011199176A (ja) * 2010-03-23 2011-10-06 Kochi Univ Of Technology 紫外線センサ
DE102012006045A1 (de) * 2012-03-27 2013-10-02 Merck Patent Gmbh Verfahren zur Herstellung elektrisch halbleitender oder leitender Schichten mit verbesserter Leitfähigkeit
DE102012009045A1 (de) 2012-05-04 2013-11-07 Carl Freudenberg Kg Anordnung eines Filterelements zur Sicherstellung eines Fußgängerschutzes
US9112074B2 (en) * 2013-03-22 2015-08-18 University Of Central Florida Research Foundation, Inc. UV photodetectors having semiconductor metal oxide layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19951207A1 (de) * 1999-10-15 2001-04-19 Twlux Halbleitertechnologien B Halbleiterbauelement
DE102009004491A1 (de) * 2009-01-09 2010-07-15 Merck Patent Gmbh Funktionelles Material für gedruckte elektronische Bauteile
CN102272094A (zh) * 2009-01-09 2011-12-07 默克专利有限公司 用于印刷电子部件的功能材料
CN102460641A (zh) * 2009-06-16 2012-05-16 巴斯夫欧洲公司 用于改进颗粒间接触部位和填充半导体金属氧化物颗粒层中的间隙的热不稳定性前体化合物
WO2012000594A1 (en) * 2010-06-29 2012-01-05 Merck Patent Gmbh Preparation of semiconductor films
WO2013110434A1 (de) * 2012-01-27 2013-08-01 Merck Patent Gmbh Verfahren zur herstellung elektrisch halbleitender oder leitender schichten mit verbesserter leitfähigkeit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郭玉彬等: "《光纤通信技术》", 30 September 2008, 西安:西安电子科技大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711270A (zh) * 2017-01-09 2017-05-24 福建农林大学 一种柔性氧化镓基日盲紫外光电探测器及其制备方法
CN107706253A (zh) * 2017-10-27 2018-02-16 朱秋华 一种紫外探测器及其制备方法

Also Published As

Publication number Publication date
US10431704B2 (en) 2019-10-01
JP2017506000A (ja) 2017-02-23
WO2015113737A1 (en) 2015-08-06
US20170170345A1 (en) 2017-06-15
EP3099838A1 (en) 2016-12-07
KR20160118286A (ko) 2016-10-11

Similar Documents

Publication Publication Date Title
CN105934535A (zh) 制备uv光检测器的方法
Wu et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors
Li et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core–shell microwire heterojunction
Inamdar et al. High-performance metal–semiconductor–metal UV photodetector based on spray deposited ZnO thin films
Lee et al. High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films
Shaikh et al. Chemical bath deposited ZnO thin film based UV photoconductive detector
Prabhu et al. Fabrication of p-CuO/n-ZnO heterojunction diode via sol-gel spin coating technique
Oh et al. Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake
Shewale et al. Ti doped ZnO thin film based UV photodetector: Fabrication and characterization
Inamdar et al. ZnO based visible–blind UV photodetector by spray pyrolysis
Selman et al. A high-sensitivity, fast-response, rapid-recovery p–n heterojunction photodiode based on rutile TiO2 nanorod array on p-Si (1 1 1)
Selman et al. Fabrication and characterization of metal–semiconductor–metal ultraviolet photodetector based on rutile TiO2 nanorod
Zhang et al. Development of solution-processed ZnO nanorod arrays based photodetectors and the improvement of UV photoresponse via AZO seed layers
Bae et al. Solar-blind UV photodetector based on atomic layer-deposited Cu2O and nanomembrane β-Ga2O3 pn oxide heterojunction
Nguyen et al. Practical demonstration of deep-ultraviolet detection with wearable and self-powered halide perovskite-based photodetector
Devi et al. An effect of precursor concentrations on the photodetection capabilities of CdS thin films for high-efficiency visible-light photodetector applications
Pintor-Monroy et al. Nanocrystalline and polycrystalline β-Ga2O3 thin films for deep ultraviolet detectors
Han et al. Self-powered Au/MgZnO/nanolayered Ga-doped ZnO/In metal–insulator–semiconductor UV detector with high internal gain at deep UV light under low voltage
Chen et al. Photoelectrical and low-frequency noise characteristics of ZnO nanorod photodetectors prepared on flexible substrate
Selman et al. Fabrication of Cu2O nanocrystalline thin films photosensor prepared by RF sputtering technique
Kasirajan et al. Structural, morphological, optical and enhanced photodetection activities of CdO films: An effect of Mn doping
Lin et al. Brushed crystallized ultrathin oxides: Recrystallization and deep-ultraviolet imaging application
CN105655442A (zh) 一种ZnO纳米晶薄膜晶体管型紫外探测器的制备方法
Ravikumar et al. Effect of Gd 3+ doping on key structural, morphological, optical, and electrical properties of CdO thin films fabricated by spray pyrolysis using perfume atomizer
Alsultany et al. Low-power UV photodetection characteristics of ZnO tetrapods grown on catalyst-free glass substrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160907