CN105914290B - 基于3d打印制备侧壁反光镜duv led - Google Patents

基于3d打印制备侧壁反光镜duv led Download PDF

Info

Publication number
CN105914290B
CN105914290B CN201610324299.5A CN201610324299A CN105914290B CN 105914290 B CN105914290 B CN 105914290B CN 201610324299 A CN201610324299 A CN 201610324299A CN 105914290 B CN105914290 B CN 105914290B
Authority
CN
China
Prior art keywords
printing
layer
side wall
reflective mirror
type electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610324299.5A
Other languages
English (en)
Other versions
CN105914290A (zh
Inventor
卢太平
朱亚丹
周小润
许并社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610324299.5A priority Critical patent/CN105914290B/zh
Publication of CN105914290A publication Critical patent/CN105914290A/zh
Application granted granted Critical
Publication of CN105914290B publication Critical patent/CN105914290B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Abstract

本发明属于光电子器件领域,具体是一种基于3D打印制备侧壁反光镜DUV LED。提供MOCVD或MBE生长的具有AlN缓冲层、n‑AlGaN层、多周期的AlxGa1‑xN/AlyGa1‑yN有源层(其中x<y)、p‑AlGaN层及p‑GaN接触层的外延片,然后将外延片刻蚀成具有倾斜侧壁的微米级直条纹,然后将其作为基片,3D打印电极、紫外透光介质层及反光镜反光层。本发明中紫外透明介质层即是有源层和金属反射镜之间的电绝缘层又是侧壁的电钝化层,紫外透明介质层和反光镜反光层组合在一起形成全方位的反射镜可以把TM模侧向发射光反射向衬底,提高出光效率。而3D打印生产工艺简单,能够有效的提高生产效率。

Description

基于3D打印制备侧壁反光镜DUV LED
技术领域
本发明属于光电子器件领域,具体是一种基于3D打印制备侧壁反光镜DUV LED。
背景技术
紫外发光二极管(LED)具有环保无毒、耗电低、体积小以及寿命长等优点,符合新时代下环保、节能等要求。AlGaN基LED发光波长可以覆盖210nm-360nm的范围,其中210nm-300nm属于深紫外波段。深紫外LED在印刷、医疗、净化、侦查、数据存储以及照明等方面都有重大应用价值。
与GaN基蓝光LED相比,波长短于300nm的深紫外LED的发光效率普遍较低。随着AlGaN基LED发光波长逐渐变短,发光层AlGaN中的Al组分要随之增加,材料外延生长、掺杂、以及器件制作的难度也随之增大,光输出功率则逐渐降低。一方面,当Al组分高于0.5时,晶体场分裂空穴带成为价带顶,使得正面出光的光发射(TE模)迅速被侧面出光的光发射(TM模)所取代,这就根本上限制了光提取效率。另一方面,随着Al组分的增加,施主/受主的激活能相应增加,导致载流子激活效率和浓度降低。Al组分高于0.5时,p-AlGaN中空穴浓度太低不能和电极之间形成良好的欧姆接触,需要引入p-GaN层,但是p-GaN会吸收光子而降低发光效率。这也是高AI组分AIGaN LED采用底部发光的倒装结构的原因。而传统的图形化衬底,表面粗化,减反射层,高反光镜等技术在提高深紫外LED光提取效率方面效果有限。
3D打印技术可以将计算机设计的三维模型数据分为层片模型数据,将特定原材料一层一层堆积成型直至完成整个实体的构建,具有工艺步骤简单、成型速度快、精密度高的特点。将这一理想工艺技术应用于LED器件的制造中还能够简化生产工艺,提高生产效率。
发明内容
本发明为了提高深紫外LED光提取效率,提供了一种基于3D打印制备侧壁反光镜DUV LED。
本发明是通过以下技术方案实现的:一种基于3D打印制备侧壁反光镜DUV LED,
步骤一:提供MOCVD或MBE生长具有AlN缓冲层、n-AlGaN层、多周期的AlxGa1-xN/AlyGa1-yN有源层(其中x<y)、p-AlGaN层及p-GaN接触层的外延片;
步骤二:于外延片上均匀平行刻蚀出若干微米级直条纹,刻蚀深度达到n-AlGaN层,直条纹的分布密度为5-50个/mm2,并对直条纹形成的侧壁进行刻蚀形成倾角0°﹥且﹤90°的倾斜侧壁;
步骤三:编写各3D打印头的运动路径程序,将清洁好的外延片作为基片放入3D打印机中,利用单个或阵列式3D N型电极打印头在暴露的n-AlGaN层上打印n型电极;
利用单个或阵列式3D P型电极打印头在各直条纹之间的p-GaN接触层上打印p型电极,p型电极位于p-GaN接触层中部,且其纵截面面积为p-GaN接触层纵截面面积的三分之一;
利用单个或阵列式3D 紫外光介质材料打印头在每个倾斜侧壁上打印紫外透光介质层,且该介质层一端延伸至n型电极台面,另一端延伸至p型电极台面;
利用单个或阵列式3D 高反射金属材料打印头在每个倾斜侧壁上的紫外透光介质层上打印反射镜反光层,且该反射镜反光层的一端延伸至倾斜侧壁与直条纹的交界处,另一端延伸至p-GaN接触层以上且止位于p型电极。
本发明基于3D打印制备侧壁反光镜DUV LED来增强LED的发光效率,透明介质层即是有源层和金属反射镜之间的电绝缘层又是侧壁的电钝化层,透明介质层和金属反射镜组合在一起形成全方位的反射镜可以把TM模侧向发射光反射向衬底,提高出光效率。而3D打印生产工艺简单,能够有效的提高生产效率。
附图说明
图1为本发明实施例的流程图。
图2为侧壁反光镜DUV LED的结构示意图。
图3为倾斜侧壁反射TM模发射光示意图,图中浅色部分为紫外透光介质层(MgF2),深色部分为反射镜反光层(Al)。如图所示,垂直于c轴传播的TM模发射光传播至MgF2/Al全方位反射镜上时被反射向衬底。此部分光可被提取出去,从而提高了倒装LED器件的出光效率。
具体实施方式
本发明在实现3D打印增强LED发光效率的过程中,采用的3D打印形式为熔融、激光烧结中的一种。采用熔融形式的3D打印时,各种打印材料实施步骤如下:
n型电极
n型电极的厚度为200nm-1000nm(例如200nm、600nm或1000nm),n型电极的材料为Ti/Al/Ni/Au、Ti/Al/Ti/Au、Ti/Al/Pt/Au中的任一一种。当采用的是Ti/Al/Ni/Au时,将金属钛粉末加入到3D打印机的金属钛熔融腔中进行速熔,控制温度在1675℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成金属钛膜;将金属铝粉末加入到3D打印机的金属铝熔融腔中进行速熔,控制温度在660℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成金属铝膜;将金属镍粉末加入到3D打印机的金属镍熔融腔中进行速熔,控制温度在1453℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成金属镍膜;将金属金粉末加入到3D打印机的金属金熔融腔中进行速熔,控制温度在1062℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成金属金膜。为防止金属氧化将打印头和基片置于惰性气体氛围中。为了形成良好的欧姆接触,在Ti/Al/Ni/Au薄膜打印完成后在氮气氛围中进行退火处理,温度为700-900℃(例如700℃、800℃或900℃);同理所述其他n型电极材料。
型电极
所述p型电极的厚度为100nm-500nm(例如100nm、300nm或500nm),p型电极的材料为Ni/Au。将金属镍粉末加入到3D打印机的金属镍熔融腔中进行速熔,控制温度在1453℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成金属镍膜;将金属金粉末加入到3D打印机的金属金熔融腔中进行速熔,控制温度在1062℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成金属金膜。为防止金属氧化将喷嘴和基板置于惰性气体氛围中。为了形成良好的欧姆接触,在Ni/Au薄膜打印完成后在空气中进行退火处理,温度为600-800℃(例如600℃、700℃或800℃)。
紫外透光介质层
所述紫外透光介质层的厚度为200nm-350nm(例如200nm、300nm或350nm),紫外透光介质层的材料为MgF2、SiO2、YF3、Al2O3中的任一一种。当采用MgF2时,将氟化镁粉末加入到3D打印机的氟化镁熔融腔中进行速熔,控制温度在1418℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成氟化镁薄膜;同理所述其他紫外透光介质层。
反射镜反光层
所述反射镜反光层的厚度为100nm-200nm(例如100nm、150nm或200nm),反射镜反光层的材料为高反射金属Al、Ag中的任一一种。当采用高反射金属Al时,将金属Al粉末加入到3D打印机的金属铝熔融腔中进行速熔,控制温度在660℃使其处于半固化状态,从3D打印头挤出后迅速固化,形成金属铝膜。为防止金属氧化将打印头和基片置于惰性气体氛围中;同理所述其他反射镜反光层材料。
实施例1
提供蓝宝石作为衬底。
步骤一:在衬底上依次生长AlN缓冲层、n-AlGaN层、多周期的AlxGa1-xN/AlyGa1-yN有源层(其中x<y)、p-AlGaN层及p-GaN接触层的外延片。
步骤二:于外延片上均匀平行刻蚀出微米级直条纹,刻蚀深度达到n-AlGaN层,直条纹的分布密度为5个/mm2,并对直条纹形成的侧壁进行刻蚀形成倾角80°的倾斜侧壁。
步骤三:编写各3D打印头的运动路径程序,将清洁好的外延片作为基片放入3D打印机中;利用单个或阵列式3D N型电极打印头在暴露的n-AlGaN层上打印n型电极。
利用单个或阵列式3D P型电极打印头在各直条纹之间的p-GaN接触层上打印p型电极,p型电极位于p-GaN接触层中部,且其纵截面面积为p-GaN接触层纵截面面积的三分之一。
利用单个或阵列式3D 紫外光介质材料打印头在每个倾斜侧壁上打印紫外透光介质层,且该介质层一端延伸至n型电极台面,另一端延伸至p型电极台面。
利用单个或阵列式3D 高反射金属材料打印头在每个倾斜侧壁上的紫外透光介质层上打印反射镜反光层,且该反射镜反光层的一端延伸至倾斜侧壁与直条纹的交界处,另一端延伸至p-GaN接触层以上且止位于p型电极。
实施例2
提供蓝宝石作为衬底。
步骤一:在衬底上依次生长AlN缓冲层、n-AlGaN层、多周期的AlxGa1-xN/AlyGa1-yN有源层(其中x<y)、p-AlGaN层及p-GaN接触层的外延片。
步骤二:于外延片上均匀平行刻蚀出微米级直条纹,刻蚀深度达到n-AlGaN层,直条纹的分布密度为50个/mm2,并对直条纹形成的侧壁进行刻蚀形成倾角20°的倾斜侧壁。
步骤三:编写各3D打印头的运动路径程序,将清洁好的外延片作为基片放入3D打印机中;利用单个或阵列式3D N型电极打印头在暴露的n-AlGaN层上打印n型电极。
利用单个或阵列式3D P型电极打印头在各直条纹之间的p-GaN接触层上打印p型电极,p型电极位于p-GaN接触层中部,且其纵截面面积为p-GaN接触层纵截面面积的三分之一。
利用单个或阵列式3D 紫外光介质材料打印头在每个倾斜侧壁上打印紫外透光介质层,且该介质层一端延伸至n型电极台面,另一端延伸至p型电极台面。
利用单个或阵列式3D 高反射金属材料打印头在每个倾斜侧壁上的紫外透光介质层上打印反射镜反光层,且该反射镜反光层的一端延伸至倾斜侧壁与直条纹的交界处,另一端延伸至p-GaN接触层以上且止位于p型电极。
实施例3
提供蓝宝石作为衬底。
步骤一:在衬底上依次生长AlN缓冲层、n-AlGaN层、多周期的AlxGa1-xN/AlyGa1-yN有源层(其中x<y)、p-AlGaN层及p-GaN接触层的外延片。
步骤二:于外延片上均匀平行刻蚀出微米级直条纹,刻蚀深度达到n-AlGaN层,直条纹的分布密度为30个/mm2,并对直条纹形成的侧壁进行刻蚀形成倾角50°的倾斜侧壁。
步骤三:编写各3D打印头的运动路径程序,将清洁好的外延片作为基片放入3D打印机中;利用单个或阵列式3D N型电极打印头在暴露的n-AlGaN层上打印n型电极。
利用单个或阵列式3D P型电极打印头在各直条纹之间的p-GaN接触层上打印p型电极,p型电极位于p-GaN接触层中部,且其纵截面面积为p-GaN接触层纵截面面积的三分之一。
利用单个或阵列式3D 紫外光介质材料打印头在每个倾斜侧壁上打印紫外透光介质层,且该介质层一端延伸至n型电极台面,另一端延伸至p型电极台面。
利用单个或阵列式3D 高反射金属材料打印头在每个倾斜侧壁上的紫外透光介质层上打印反射镜反光层,且该反射镜反光层的一端延伸至倾斜侧壁与直条纹的交界处,另一端延伸至p-GaN接触层以上且止位于p型电极。

Claims (8)

1.一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,
步骤一:提供MOCVD或MBE生长具有AlN缓冲层、n-AlGaN层、多周期的AlxGa1-xN/AlyGa1-yN有源层、p-AlGaN层及p-GaN接触层的外延片,其中x<y;
步骤二:于外延片上均匀平行刻蚀出若干微米级直条纹,刻蚀深度达到n-AlGaN层,直条纹的分布密度为5-50个/mm2,并对直条纹形成的侧壁进行刻蚀形成倾角大于0°且小于90°的倾斜侧壁;
步骤三:编写各3D打印头的运动路径程序,将清洁好的外延片作为基片放入3D打印机中,利用单个或阵列式3D N型电极打印头在暴露的n-AlGaN层上打印n型电极;
利用单个或阵列式3D P型电极打印头在各直条纹之间的p-GaN接触层上打印p型电极,p型电极位于p-GaN接触层中部,且其纵截面面积为p-GaN接触层纵截面面积的三分之一;
利用单个或阵列式3D 紫外光介质材料打印头在每个倾斜侧壁上打印紫外透光介质层,且该介质层一端延伸至n型电极台面,另一端延伸至p型电极台面;
利用单个或阵列式3D 高反射金属材料打印头在每个倾斜侧壁上的紫外透光介质层上打印反射镜反光层,且该反射镜反光层的一端延伸至倾斜侧壁与直条纹的交界处,另一端延伸至p-GaN接触层以上且止位于p型电极。
2.根据权利要求1所述的一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,所述n型电极的厚度为200nm-1000nm,n型电极的材料为Ti/Al/Ni/Au、Ti/Al/Ti/Au、Ti/Al/Pt/Au中的任意一种。
3.根据权利要求1所述的一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,所述p型电极的厚度为100nm-500nm,p型电极的材料为Ni/Au。
4.根据权利要求1所述的一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,所述紫外透光介质层的厚度为200nm-350nm,紫外透光介质层的材料为MgF2、SiO2、YF3、Al2O3中的任意一种。
5.根据权利要求1所述的一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,所述反射镜反光层的厚度为100nm-200nm,反射镜反光层的材料为高反射金属Al、Ag中的任意一种。
6.根据权利要求1至5任一权利要求所述的一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,3D打印采用的形式是熔融或激光烧结。
7.根据权利要求6所述的一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,熔融形式的3D打印为:将所需打印的材料加入到3D打印机内的熔融腔内进行速熔,控制温度使得材料处于半固化状态,然后从3D打印头挤出后迅速固化形成膜。
8.根据权利要求7所述的一种基于3D打印制备侧壁反光镜DUV LED,其特征在于,当所需打印的材料为金属时,3D打印头和基片需置于惰性气体氛围中。
CN201610324299.5A 2016-05-17 2016-05-17 基于3d打印制备侧壁反光镜duv led Active CN105914290B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610324299.5A CN105914290B (zh) 2016-05-17 2016-05-17 基于3d打印制备侧壁反光镜duv led

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610324299.5A CN105914290B (zh) 2016-05-17 2016-05-17 基于3d打印制备侧壁反光镜duv led

Publications (2)

Publication Number Publication Date
CN105914290A CN105914290A (zh) 2016-08-31
CN105914290B true CN105914290B (zh) 2018-05-25

Family

ID=56749057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610324299.5A Active CN105914290B (zh) 2016-05-17 2016-05-17 基于3d打印制备侧壁反光镜duv led

Country Status (1)

Country Link
CN (1) CN105914290B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299050B (zh) * 2016-11-17 2018-08-17 河北工业大学 一种深紫外半导体发光二极管及其制备方法
CN107069431A (zh) * 2017-06-05 2017-08-18 太原理工大学 一种基于3D打印的GaAs基边发射激光器制备方法
CN107394015A (zh) * 2017-07-15 2017-11-24 太原理工大学 一种基于3D打印的AlGaInP反极性发光二极管制备方法
CN107768491B (zh) * 2017-10-31 2019-11-22 江苏新广联半导体有限公司 用于手环的MicroLED显示模块制作方法
CN110963676A (zh) * 2019-11-26 2020-04-07 北京理工大学深圳研究院 一种挤丝光固化与烧结成型的玻璃3d打印装置
CN111769188A (zh) * 2020-07-31 2020-10-13 佛山紫熙慧众科技有限公司 一种新型的紫外led芯片电极制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409172A (zh) * 2014-05-31 2015-03-11 福州大学 一种3d制造网格状导电阵列的方法
CN104401001A (zh) * 2014-05-31 2015-03-11 福州大学 一种基于3d打印的棱镜膜制备方法及装置
CN105576099A (zh) * 2016-03-04 2016-05-11 太原理工大学 基于3d打印制备led器件电极的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549490B1 (ko) * 2014-05-02 2015-09-04 한국표준과학연구원 3d 프린팅 기반의 곡면형 촉감소자 및 그 형성방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104409172A (zh) * 2014-05-31 2015-03-11 福州大学 一种3d制造网格状导电阵列的方法
CN104401001A (zh) * 2014-05-31 2015-03-11 福州大学 一种基于3d打印的棱镜膜制备方法及装置
CN105576099A (zh) * 2016-03-04 2016-05-11 太原理工大学 基于3d打印制备led器件电极的方法

Also Published As

Publication number Publication date
CN105914290A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105914290B (zh) 基于3d打印制备侧壁反光镜duv led
KR101041843B1 (ko) 질화물계 화합물 반도체 발광소자 및 그 제조방법
US20140319536A1 (en) Solid state lighting devices with cellular arrays and associated methods of manufacturing
JP6431013B2 (ja) 窒化アルミニウム系半導体深紫外発光素子
JP2007059418A (ja) 窒化ガリウム系化合物半導体発光素子
TW200924239A (en) Light emitting diodes with a p-type surface bonded to a transparent submount to increase light extraction efficiency
JP2005191110A (ja) 窒化物発光装置及び高発光効率窒化物発光装置
US20060186552A1 (en) High reflectivity p-contacts for group lll-nitride light emitting diodes
JP2007087973A (ja) 窒化物半導体素子の製法およびその方法により得られる窒化物半導体発光素子
KR20080073317A (ko) 반도체 발광 소자 및 반도체 발광 소자의 제조 방법
JP2008244425A (ja) GaN系LED素子および発光装置
CN103219442B (zh) 局域表面等离子体增强型垂直结构led结构及制造方法
WO2007136065A1 (ja) 半導体発光素子の製造方法
JP2011060966A (ja) 発光装置
CN105895759B (zh) 一种duv led外延片结构
JPWO2014058069A1 (ja) 半導体発光素子及びその製造方法
JP2006253670A (ja) 窒化物半導体発光素子及びその製造方法
CN105957931B (zh) 基于3d打印制备光子晶体结构led的方法
US20130341661A1 (en) Semiconductor light emitting element
JP2007208244A (ja) 窒化ガリウム系発光ダイオード素子の製造方法
WO2021129214A1 (zh) 垂直结构深紫外发光二极管及其制备方法
JP2009032958A (ja) 発光素子及び照明装置
JP2008130894A (ja) 発光素子及び照明装置
CN105957936B (zh) 一种duv led外延片结构
JP4998701B2 (ja) Iii−v族化合物半導体発光ダイオード

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant