CN105914244B - 一种提高CZTS/CdS异质结整流比的方法 - Google Patents

一种提高CZTS/CdS异质结整流比的方法 Download PDF

Info

Publication number
CN105914244B
CN105914244B CN201610491387.4A CN201610491387A CN105914244B CN 105914244 B CN105914244 B CN 105914244B CN 201610491387 A CN201610491387 A CN 201610491387A CN 105914244 B CN105914244 B CN 105914244B
Authority
CN
China
Prior art keywords
czts
junctions
cds
commutating
ratios
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610491387.4A
Other languages
English (en)
Other versions
CN105914244A (zh
Inventor
程树英
董丽美
赖云锋
龙博
俞金玲
张红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610491387.4A priority Critical patent/CN105914244B/zh
Publication of CN105914244A publication Critical patent/CN105914244A/zh
Application granted granted Critical
Publication of CN105914244B publication Critical patent/CN105914244B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02425Conductive materials, e.g. metallic silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种提高CZTS/CdS异质结整流比的方法和应用,属于半导体材料与器件技术领域。在真空条件下,使Ar气等离子化,并且在CZTS薄膜表面进行等离子体处理。等离子体对CZTS薄膜表面即CZTS/CdS异质结界面进行处理,不仅可以修饰其界面、减少缺陷,而且操作简单,处理后的CZTS/CdS异质结整流比有明显提高,有利于提高太阳能电池的转化效率。

Description

一种提高CZTS/CdS异质结整流比的方法
技术领域
本发明属于半导体材料与器件技术领域,具体涉及一种提高CZTS/CdS异质结整流比的方法。
背景技术
目前,铜锌锡硫(Cu2ZnSnS4,简称CZTS)因其具有环境友好、明显P型半导体特性、适合的禁带宽度(1.5eV)、较高吸收系数(大于104cm-1)等优点而倍受关注,其太阳能电池最高效率达到12.6%(CZTSSe)。铜锌锡硫薄膜太阳能电池的典型结构是:底电极/吸收层(CZTS)/缓冲层(CdS)/透明导电层/上电极,其核心结构是CZTS/CdS异质结,所以提高CZTS/CdS异质结整流比是提高电池光电转换效率的核心关键。
目前,为了提高电池光电转换效率,对CZTS/CdS异质结界面进行处理,其方式有很多,例如:去离子水、稀盐酸、氨水刻蚀、紫外线照射CZTS薄膜表面。而等离子体处理在存储器件技术领域有广泛应用,并且对存储器件的稳定性能起积极作用,所以我们借鉴此研究思路,研究等离子体处理CZTS/CdS异质结界面对其整流特性的影响。这是本发明的关键所在。
发明内容
本发明的目的在于提供一种提高CZTS/CdS异质结整流比的方法,其采用等离子体对CZTS薄膜表面即CZTS/CdS异质结界面进行处理,并通过调整射频功率,以提高CZTS/CdS异质结整流比。
为实现上述目的,本发明采用如下技术方案:
一种提高CZTS/CdS异质结整流比的方法,包括以下步骤:
(1)选择柔性钼箔作为底电极,在浓硫酸和甲醇体积比1:7的混合溶液中进行清洗,最后用去离子水冲干净并用氮气吹干;
(2)利用溶胶凝胶法在钼箔上制备金属预制层薄膜,其后进行硫化从而得到CZTS薄膜,其具体步骤如下:
A、将一水合醋酸铜(Cu(CH3COOH)2•H2O)、二水合醋酸锌(Zn(CH3COOH)2•2H2O)、二水合氯化亚锡(SnCl2•2H2O)以及硫脲按贫铜富锌的比例混合后,加入到有机溶剂乙二醇甲醚中,并加入一定比例的稳定剂,50℃水浴加热搅拌1h,得到胶体;
B、利用旋涂法将步骤(A)制备的胶体涂覆在(1)所得的钼箔上, 经280℃高温烘烤制成铜锌锡硫预制层薄膜;重复数次以达到所需薄膜厚度,膜厚1~1.5µm;
C、把样品放进硫化炉中,抽真空到5Pa以下;让硫化炉升温,1h后升到580℃,往炉中通入N2和H2S气体, 流量分别为180sccm、20sccm;使预制层在N2和H2S的混合气体中保持1h;最后冷却到室温,其后进行硫化,得到铜锌锡硫薄膜;
(3)将(2)的CZTS薄膜进行等离子体处理,包括以下步骤:
A、 将所述CZTS薄膜放置于腔室中,并抽真空至0.1Pa以下;
B、 在所述真空腔室中通入气流为48 sccm的Ar气,并保持腔室气压为100Pa,然后起辉;
C、 调整节流阀使所述真空腔室保持在120Pa, 施加80~120W射频功率于腔室内的气体,使其等离子化,并保持等离子体对CZTS薄膜的作用时间为120s;
(4)采用化学水浴法在(3)所得的等离子体处理后的CZTS薄膜表面沉积CdS薄膜,其具体步骤如下:
A、将氯化铬和氯化铵按比例混合,滴加氨水调节pH值为10,搅拌均匀;
B、将(2)所得的CZTS薄膜垂直放入混合溶液中;
C、将混合溶液置于水浴锅中加热至80℃,加入适量的硫脲,保持10min后取出该样品;
D、用去离子水冲洗该样品表面;
(5)采用真空热蒸发法在(4)制得的样品表面沉积金属铝电极,所用铝的直径为1mm,长度为2cm,数量为25,用螺旋状钨舟加热铝丝,所得的‘主’状金属铝电极厚度为200~300nm;
所述方法制备的CZTS/CdS异质结可提高铜锌锡硫薄膜太阳能电池的光电转换效率。
本发明用于提高CZTS/CdS异质结整流比的方法具有以下特点和优点:
(1)使用本发明通过调整等离子体处理射频功率可以实现对CZTS/CdS异质结界面的缺陷进行准确修饰,以形成良好的导带阶。
(2)使用本发明工艺操作上相对简单,各参数易于精准控制,便于推广应用。
附图说明
图1为采用溶胶凝胶法所制备的CZTS薄膜的XRD谱。
图2为采用溶胶凝胶法所制备的CZTS薄膜的拉曼谱。
图3为采用化学水浴法所制备的CdS薄膜的XRD谱。
图4为经等离子体处理射频功率分别为0W(未处理)、80W、100W、120W的CZTS/CdS异质结的I-V图。
图5为CZTS/CdS异质结的整流比统计图。
具体实施方式
下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
(1):选择柔性钼箔作为底电极,在浓硫酸和甲醇体积比1:7的混合溶液中进行清洗,最后用去离子水冲干净并用氮气吹干;
(2):利用溶胶凝胶法在钼箔上制备金属预制层薄膜,其后进行硫化从而得到CZTS薄膜,其具体步骤如下:
A、将一水合醋酸铜(Cu(CH3COOH)2•H2O)、二水合醋酸锌(Zn(CH3COOH)2•2H2O)、二水合氯化亚锡(SnCl2•2H2O)以及硫脲按贫铜富锌的比例混合后,加入到有机溶剂乙二醇甲醚中,并加入一定比例的稳定剂,50℃水浴加热搅拌1h,得到胶体;
B、利用旋涂法将步骤(A)制备的胶体涂覆在(1)所得的钼箔上, 经280℃高温烘烤制成铜锌锡硫预制层薄膜;重复数次以达到所需薄膜厚度,膜厚为1~1.5µm;
C、把样品放进硫化炉中,抽真空到5Pa以下;让硫化炉升温,1h后升到580℃,往炉中通入N2和H2S气体, 流量分别为180sccm、20sccm;使预制层在N2和H2S的混合气体中保持1h;最后冷却到室温,其后进行硫化,得到铜锌锡硫薄膜。
(3):将(2)的CZTS薄膜进行等离子体处理,包括以下步骤:
A、 将所述CZTS薄膜放置于腔室中,并抽真空至0.1Pa以下;
B 、在所述真空腔室中通入气流为48 sccm的Ar气,并保持腔室气压为100Pa,然后起辉;
C、 调整节流阀使所述真空腔室保持在120Pa, 施加80W射频功率于腔室内的气体,使其等离子化,并保持等离子体对CZTS薄膜的作用时间为120s。
(4):采用化学水浴法在(3)所得的等离子体处理后的CZTS薄膜表面沉积CdS薄膜,其具体步骤如下:
A、将氯化铬和氯化铵按比例混合,滴加氨水调节pH值为10,搅拌均匀;
B、将(2)所得的CZTS薄膜垂直放入混合溶液中;
C、将混合溶液置于水浴锅中加热至80℃,加入适量的硫脲,保持10min后取出该样品;
D、用去离子水冲洗该样品表面;
(5)采用真空热蒸发法在(4)制得的样品表面沉积金属铝电极;所用铝的直径为1mm,长度为2cm,数量为25,用螺旋状钨舟加热铝丝,所得的‘主’状金属铝电极厚度为200~300nm;
实施例2
(1):选择柔性钼箔作为底电极,在浓硫酸和甲醇体积比1:7的混合溶液中进行清洗,最后用去离子水冲干净并用氮气吹干;
(2):利用溶胶凝胶法在钼箔上制备金属预制层薄膜,其后进行硫化从而得到CZTS薄膜,具体步骤如下:
A、将一水合醋酸铜(Cu(CH3COOH)2•H2O)、二水合醋酸锌(Zn(CH3COOH)2•2H2O)、二水合氯化亚锡(SnCl2•2H2O)以及硫脲按贫铜富锌的比例混合后,加入到有机溶剂乙二醇甲醚中,并加入一定比例的稳定剂,50℃水浴加热搅拌1h,得到胶体;
B、利用旋涂法将步骤(A)制备的胶体涂覆在(1)所得的钼箔上, 经280℃高温烘烤制成铜锌锡硫预制层薄膜;重复数次以达到所需薄膜厚度,膜厚为1~1.5µm;
C、把样品放进硫化炉中,抽真空到5Pa以下;让硫化炉升温,1h后升到580℃,往炉中通入N2和H2S气体, 流量分别为180sccm、20sccm;使预制层在N2和H2S的混合气体中保持1h;最后冷却到室温,其后进行硫化,得到铜锌锡硫薄膜;
(3):将(2)的CZTS薄膜进行等离子体处理,包括以下步骤:
A、 将所述CZTS薄膜放置于腔室中,并抽真空至0.1Pa以下;
B、 在所述真空腔室中通入气流为48 sccm的Ar气,并保持腔室气压为100Pa,然后起辉;
C、 调整节流阀使所述真空腔室保持在120Pa, 施加100W射频功率于腔室内的气体,使其等离子化,并保持等离子体对CZTS薄膜的作用时间为120s。
(4):采用化学水浴法在(3)所得的等离子体处理后的CZTS薄膜表面沉积CdS薄膜,其具体步骤如下:
A、将氯化铬和氯化铵按比例混合,滴加氨水调节pH值为10,搅拌均匀;
B、将(2)所得的CZTS薄膜垂直放入混合溶液中;
C、将混合溶液置于水浴锅中加热至80℃,加入适量的硫脲,保持10min后取出该样品;
D、用去离子水冲洗该样品表面;
(5)采用真空热蒸发法在(4)制得的样品表面沉积金属铝电极;所用铝的直径为1mm,长度为2cm,数量为25,用螺旋状钨舟加热铝丝,所得的‘主’状金属铝电极厚度为200~300nm;
实施例3
(1):选择柔性钼箔作为底电极,在浓硫酸和甲醇体积比1:7的混合溶液中进行清洗,最后用去离子水冲干净并用氮气吹干;
(2):利用溶胶凝胶法在钼箔上制备金属预制层薄膜,其后进行硫化从而得到CZTS薄膜,具体步骤如下:
A、将一水合醋酸铜(Cu(CH3COOH)2•H2O)、二水合醋酸锌(Zn(CH3COOH)2•2H2O)、二水合氯化亚锡(SnCl2•2H2O)以及硫脲按贫铜富锌的比例混合后,加入到有机溶剂乙二醇甲醚中,并加入一定比例的稳定剂,50℃水浴加热搅拌1h,得到胶体;
B、利用旋涂法将步骤(A)制备的胶体涂覆在(1)所得的钼箔上, 经280℃高温烘烤制成铜锌锡硫预制层薄膜;重复数次以达到所需薄膜厚度,膜厚为1~1.5µm;
C、把样品放进硫化炉中,抽真空到5Pa以下;让硫化炉升温,1h后升到580℃,往炉中通入N2和H2S气体, 流量分别为180sccm、20sccm;使预制层在N2和H2S的混合气体中保持1h;最后冷却到室温,其后进行硫化,得到铜锌锡硫薄膜;
(3):将(2)的CZTS薄膜进行等离子体处理,包括以下步骤:
(A1) 将所述CZTS薄膜放置于腔室中,并抽真空至0.1Pa以下;
(A2) 在所述真空腔室中通入气流为48 sccm的Ar气,并保持腔室气压为100Pa,然后起辉;
(A3) 调整节流阀使所述真空腔室保持在120Pa, 施加120W射频功率于腔室内的气体,使其等离子化,并保持等离子体对CZTS薄膜的作用时间为120s。
(4):采用化学水浴法在(3)所得的等离子体处理后的CZTS薄膜表面沉积CdS薄膜,其具体步骤如下:
A、将氯化铬和氯化铵按比例混合,滴加氨水调节pH值为10,搅拌均匀;
B、将(2)所得的CZTS薄膜垂直放入混合溶液中;
C、将混合溶液置于水浴锅中加热至80℃,加入适量的硫脲,保持10min后取出该样品;
D、用去离子水冲洗该样品表面;
(5)采用真空热蒸发法在(4)制得的样品表面沉积金属铝电极,所用铝的直径为1mm,长度为2cm,数量为25,用螺旋状钨舟加热铝丝,所得的‘主’状金属铝电极厚度为200~300nm;
图1为本发明实施例3采用溶胶凝胶法所制备的CZTS薄膜的XRD谱。从图1中可以看出所制备的CZTS薄膜衍射峰很好地对应于锌黄锡矿结构CZTS的标准卡号026-0575。样品出现了(112)、(200)、(220)(312)面的衍射峰,证明CZTS薄膜具有很好的结晶性。
图2为本发明实施例3采用溶胶凝胶法所制备的CZTS薄膜的拉曼光谱。其激发波长为532nm,从图中可以看出,位于284、335、367 cm-1的拉曼峰均可以很清楚地被观测到,这些峰与CZTS的拉曼峰相吻合。
图3为本发明实施例3采用化学水浴法所制备的CdS薄膜的XRD谱。从图中可以看出,此CdS薄膜结晶性良好,XRD谱中仅出现与CdS有关的(111)面择优取向,无任何杂相峰。
图4为本发明实施例3经等离子体处理射频功率分别为0W(untreated)、80W、100W、120W的CZTS/CdS异质结的I-V图。从图中可以看出,样品均表现出一定的整流特性,未经等离子体处理的异质结性能最差,而经等离子体处理过后的异质结性能明显变好。随着等离子体处理射频功率从0W增加到100W,异质结的性能在逐渐变好,而当功率继续增大到120W时,异质结性能相对减弱。其中,当等离子体处理射频功率为100W时,异质结性能最好。
图5为本发明实施例3经等离子体处理射频功率分别为0W(untreated)、80W、100W、120W的CZTS/CdS异质结的整流比统计图。经计算,等离子体处理射频功率分别为0W(untreated)、80W、100W、120W的CZTS/CdS异质结整流比分别为1.11、3.03、38.62、30.20。从折线统计图可以明显看出,随着等离子体处理射频功率从0W增加到100W,异质结的整流比在逐渐增大,而当功率继续增大到120W时,异质结性能相对减弱。其中当等离子体处理射频功率为100W时,异质结的整流比最大。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种提高CZTS/CdS异质结整流比的方法,其特征在于:包括以下步骤:
(1)选择柔性钼箔作为底电极,在浓硫酸和甲醇体积比1:7的混合溶液中进行清洗,最后用去离子水冲干净并用氮气吹干;
(2)利用溶胶凝胶法在钼箔上制备金属预制层薄膜,其后进行硫化从而得到CZTS薄膜;
(3)将(2)的CZTS薄膜进行等离子体处理,包括以下步骤:
A、将所述CZTS薄膜放置于腔室中,并抽真空至0.1Pa以下;
B、 在所述真空腔室中通入气流为48 sccm的Ar气,并保持腔室气压为100Pa,然后起辉;
C、调整节流阀使所述真空腔室保持在120Pa, 施加80~120W射频功率于腔室内的气体,使其等离子化,并保持等离子体对CZTS薄膜的作用时间为120s;
(4)采用化学水浴法在(3)所得的等离子体处理后的CZTS薄膜表面沉积CdS薄膜;
(5)采用蒸发法在(4)制得的样品表面镀一层铝电极。
2.一种如权利要求1所述的方法提高CZTS/CdS异质结整流比。
3.一种如权利要求1所述的方法提高CZTS/CdS异质结整流比的应用,其特征在于:该方法在提高铜锌锡硫薄膜太阳能电池的光电转换效率中的应用。
CN201610491387.4A 2016-06-29 2016-06-29 一种提高CZTS/CdS异质结整流比的方法 Expired - Fee Related CN105914244B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610491387.4A CN105914244B (zh) 2016-06-29 2016-06-29 一种提高CZTS/CdS异质结整流比的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610491387.4A CN105914244B (zh) 2016-06-29 2016-06-29 一种提高CZTS/CdS异质结整流比的方法

Publications (2)

Publication Number Publication Date
CN105914244A CN105914244A (zh) 2016-08-31
CN105914244B true CN105914244B (zh) 2017-07-04

Family

ID=56759865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610491387.4A Expired - Fee Related CN105914244B (zh) 2016-06-29 2016-06-29 一种提高CZTS/CdS异质结整流比的方法

Country Status (1)

Country Link
CN (1) CN105914244B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106252432A (zh) * 2016-09-28 2016-12-21 中山瑞科新能源有限公司 一种可降低缺陷密度的碲化镉太阳能电池制备方法
CN106876507A (zh) * 2017-01-11 2017-06-20 深圳大学 一种表面改性Cu基薄膜及其制备方法
CN109616550B (zh) * 2018-11-16 2020-02-14 常州大学 一种提高Sb2Se3薄膜晶粒柱状生长趋势的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861213A (zh) * 2008-01-15 2010-10-13 第一太阳能有限公司 等离子体处理的光伏器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101175178B1 (ko) * 2011-03-16 2012-08-20 연세대학교 산학협력단 광 변환 효율을 개선할 수 있는 벌크 이종접합형 태양전지의 제조 방법 및 이에 따른 벌크 이종접합형 태양전지
US20130104983A1 (en) * 2011-10-31 2013-05-02 The Regents Of The University Of California Selective Reflector for Enhanced Solar Cell Efficiency
US8871560B2 (en) * 2012-08-09 2014-10-28 International Business Machines Corporation Plasma annealing of thin film solar cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861213A (zh) * 2008-01-15 2010-10-13 第一太阳能有限公司 等离子体处理的光伏器件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《铜锌锡硫(Cu_2ZnSnS_4)的制备及其光电化学性质的研究》;张艮;《CNKI》;20150228;正文第4页第12行-第8页最后一行,第14页第15行-第26页倒数第3行 *

Also Published As

Publication number Publication date
CN105914244A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN102071396B (zh) 锗量子点掺杂纳米二氧化钛复合薄膜的制备方法
CN105914244B (zh) 一种提高CZTS/CdS异质结整流比的方法
CN102522434A (zh) 铜铟镓硒薄膜光伏电池装置及其制备方法
JP2008078619A (ja) 半導体薄膜の製造方法、半導体薄膜の製造装置、光電変換素子の製造方法及び光電変換素子
CN107871795A (zh) 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
CN103700576B (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN114203848B (zh) 一种柔性硒化锑太阳电池及其制备方法
CN111933519B (zh) 一种非层状二维氧化镓薄膜的制备方法
CN106098844A (zh) 一种基于柔性钼衬底的铜锌锡硫太阳能电池的制备方法
CN108281550B (zh) 基于镁掺杂二氧化钛的钙钛矿太阳能电池及其制备方法
CN113097342A (zh) 一种太阳能电池、其AlOx镀膜方法、电池背钝化结构及方法
CN102582150B (zh) 一种太阳能选择性吸收膜系及其制备方法
CN104167469A (zh) 一种SnS2/SnS异质结薄膜太阳能电池的一次性制备方法
CN111370583A (zh) 聚乙烯吡咯烷酮掺杂的钙钛矿太阳能电池及其制备方法和应用
CN105161572B (zh) 一种铜锌锡硫太阳电池吸收层的墨水多层涂敷制备方法
CN107321347A (zh) 一种蜂窝状氧化锌纳米墙阵列的制备方法
CN113097341B (zh) 一种PERC电池、其AlOx镀膜工艺、多层AlOx背钝化结构及方法
CN103985783B (zh) 利用磁控溅射法在柔性衬底上制备铜锌锡硫薄膜的方法
CN110600617B (zh) 一种以氯化铵改性氧化锌作为电子传输材料的无机钙钛矿太阳能电池及其制备方法
CN105118883B (zh) 一种低镉cigs基薄膜太阳能电池及其制备方法
CN104716222A (zh) 射频裂解硒蒸气制作铜铟镓硒薄膜的方法
CN104051577B (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
WO2020000599A1 (zh) Cigs太阳能电池及其制备方法
CN107634144A (zh) 一种无机有机(CuI/PEDOT:PSS)复合空穴传输层的柔性钙钛矿太阳能电池
CN109534285B (zh) 一种基于光子结构种子层的ZnO纳米柱及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170704

Termination date: 20200629