CN105907779B - 一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用 - Google Patents

一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用 Download PDF

Info

Publication number
CN105907779B
CN105907779B CN201610352024.2A CN201610352024A CN105907779B CN 105907779 B CN105907779 B CN 105907779B CN 201610352024 A CN201610352024 A CN 201610352024A CN 105907779 B CN105907779 B CN 105907779B
Authority
CN
China
Prior art keywords
spt15
py16tef1
recombinant plasmid
ala
lys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610352024.2A
Other languages
English (en)
Other versions
CN105907779A (zh
Inventor
秦义
杜青
宋育阳
刘延琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest A&F University
Original Assignee
Northwest A&F University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest A&F University filed Critical Northwest A&F University
Priority to CN201610352024.2A priority Critical patent/CN105907779B/zh
Publication of CN105907779A publication Critical patent/CN105907779A/zh
Application granted granted Critical
Publication of CN105907779B publication Critical patent/CN105907779B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/102Plasmid DNA for yeast
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明涉及基因工程技术领域,尤其是涉及一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1‑SPT15及其应用。本发明重组质粒pY16TEF1‑△SPT15包括重组质粒pY16TEF1‑△SPT15‑409和重组质粒pY16TEF1‑△SPT15‑619;所述的重组质粒pY16TEF1‑△SPT15‑409中的△SPT15‑409是SPT15基因经过突变后获得,△SPT15‑409碱基序列为SEQ ID No.2,其所翻译的转录因子spt15p的氨基酸序列为SEQ ID No.3;所述的重组质粒pY16TEF1‑△SPT15‑615中的△SPT15‑615是SPT15基因经过突变后获得,△SPT15‑615碱基序列为SEQ ID No.4,其所翻译的转录因子spt15p的氨基酸序列为SEQ ID No.5。本发明能降低酿酒酵母乙醇产率。

Description

一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15 及其应用
一、技术领域:
本发明涉及基因工程技术领域,尤其是涉及一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用。
二、背景技术:
随着全球气候的变暖,葡萄的糖含量在逐年升高,导致葡萄酒乙醇含量也随之增加,在过去的20年中,酒度平均升高了2%(V/V)。较高的酒度给葡萄酒带来辛辣等各种不良感官影响,也给司机、小孩、孕妇等群体造成饮酒限制。低醇葡萄酒不仅含有普通葡萄酒的营养物质,还避免了高酒精度对葡萄酒感官质量的损伤,能同时满足消费者对于健康和感官愉悦的追求。因此,在葡萄酒酿造过程中适当降低乙醇的合成,成为葡萄酒工业亟待解决的问题。生产低醇葡萄酒常用的方法如蒸馏、渗析等实施昂贵,并且可能产生乙醛、乙偶姻等物质,对葡萄酒感官质量造成不利影响。因此,利用物理/化学方法诱变,或者利用基因工程策略改造葡萄酒发酵用酿酒酵母,而后对酿酒酵母突变库进行筛选,获得乙醇合成能力弱化的酿酒酵母菌株,将是一种降低葡萄酒酒度最为经济和简便的方法。
通过单(多)基因的敲除或过量表达,试图在削弱乙醇合成途径代谢能力的同时,借助甘油合成途径实现胞内NADH氧化再生NAD+,维持胞内氧化还原平衡,从而将源于发酵底物的碳代谢流从乙醇合成转向过量合成甘油等其他末端代谢物。但是,非常遗憾的是,传统采用的单纯通过单(多)基因的敲除或过量表达, 不能降低或者难以显著降低酿酒酵母的乙醇合成能力,同时,还会导致乙酸和乙醛等代谢副产物的增加,这些代谢副产物将严重影响微生物细胞生长和损伤葡萄酒感官品质,以及导致工程菌株发酵特性的改变,如生长缓慢或者在以葡萄糖作为唯一碳源时不能生长等问题。这些问题说明,对乙醇合成途径或/和甘油合成途径的单(多)基因的改造,只是改变了细胞的局部原件,实现了包括氧化还原平衡系统及碳代谢网络的局部平衡,并没有触及和解决弱化乙醇代谢途径所涉及的复杂且本质问题。因此,在基因组层面上定向进化或同时改变多个相关基因群,使细胞在整体水平上优化氧化还原平衡体系及碳代谢网络,最终实现显著弱化乙醇合成能力的目的,将是一种可行的方法。
三、发明内容:
本发明为了解决上述背景技术中的不足之处,提供一种重组质粒pY16TEF1-△SPT15及其应用,可以降低酿酒酵母乙醇产率。
为实现上述目的,本发明采用的技术方案为:一种重组质粒pY16TEF1-△SPT15,其特征在于:所述的重组质粒pY16TEF1-△SPT15包括重组质粒pY16TEF1-△SPT15-409和重组质粒pY16TEF1-△SPT15-619;
所述的重组质粒pY16TEF1-△SPT15-409中的△SPT15-409是SPT15基因经过突变后获得,△SPT15-409碱基序列为SEQ ID No.2,其所翻译的转录因子spt15p的氨基酸序列为SEQ ID No.3;
所述的重组质粒pY16TEF1-△SPT15-615中的△SPT15-615是SPT15基因经过突变后获得,△SPT15-615碱基序列为SEQ ID No.4,其所翻译的转录因子spt15p的氨基酸序列为SEQ ID No.5。
所述的序列SEQ ID No.2中发生突变的碱基分别为138a>g,167a>g,352t>c、 408t>c、450t>g、561a>g、583t>c、614t>c;
所述的序列SEQ ID No.3中发生突变的氨基酸分别为Glu46Met,Lys56Gl,Lys118Pro,Lys195His,Lys205Ser。
所述的序列SEQ ID No.4中发生突变的碱基分别为41a>c、126t>c、136a>t、180a>g、181t>a、217a>g、299a>c、343a>g、354a>g、360a>g、406a>t、492t>c、519a>g、529t>c、569t>c、589a>g、697t>a。
所述的序列SEQ ID No.5中发生突变的氨基酸分别为Asn14Thr、Ile46Leu、Ser61Thr、Thr73Ala、Lys97Gln、Ile115Val、Ser136Cys、Phe177Leu、Phe190Ser、Met197Val、Val233Glu。
所述的携带重组质粒pY16TEF1-△SPT15-125的酿酒酵母在降低乙醇产率中的应用。
与现有技术相比,本发明具有的优点和效果如下:本发明可降低酿酒酵母乙醇产率。
四、附图说明:
图1酿酒酵母SPT15基因PCR扩增结果电泳图(M:DL2,000DNA Marker,泳道1:SPT15);
图2SPT15随机突变PCR扩增结果电泳图(M:DL2,000DNA Marker,泳道1:Spt15随机突变产物);
图3重组质粒pY16TEF1-△SPT15电泳图(M1:λ-HindⅢdigest Marker,泳道1:SPT15随机突变产物,泳道2:pY16TEF1-△SPT15酶切产物,M2:DL2,000DNA Marker)。
五:具体实施方式:
下面结合附图和具体实施例来对本发明作更进一步的说明,但并不以此限制本发明。
一种重组质粒pY16TEF1-△SPT15,所述的重组质粒pY16TEF1-△SPT15包括重组质粒pY16TEF1-△SPT15-409和重组质粒pY16TEF1-△SPT15-619;
所述的重组质粒pY16TEF1-△SPT15-409中的△SPT15-409是SPT15基因经过突变后获得,△SPT15-409碱基序列为SEQ ID No.2,其所翻译的转录因子spt15p的氨基酸序列为SEQ ID No.3;
所述的重组质粒pY16TEF1-△SPT15-615中的△SPT15-615是SPT15基因经过突变后获得,△SPT15-615碱基序列为SEQ ID No.4,其所翻译的转录因子spt15p的氨基酸序列为SEQ ID No.5。
所述的序列SEQ ID No.2中发生突变的碱基分别为138a>g,167a>g,352t>c、408t>c、450t>g、561a>g、583t>c、614t>c;
所述的序列SEQ ID No.3中发生突变的氨基酸分别为Glu46Met,Lys56Gl,Lys118Pro,Lys195His,Lys205Ser。
所述的序列SEQ ID No.4中发生突变的碱基分别为41a>c、126t>c、136a>t、180a>g、181t>a、217a>g、299a>c、343a>g、354a>g、360a>g、406a>t、492t>c、519a>g、529t>c、569t>c、589a>g、697t>a。
所述的序列SEQ ID No.5中发生突变的氨基酸分别为Asn14Thr、Ile46Leu、Ser61Thr、Thr73Ala、Lys97Gln、Ile115Val、Ser136Cys、Phe177Leu、Phe190Ser、Met197Val、Val233Glu。
所述的携带重组质粒pY16TEF1-△SPT15-125的酿酒酵母在降低乙醇产率中的应用。
上述重组载体的构建参照《分子克隆实验指南》(第四版)Joe Sambrook书中所述具体方法 进行。
本发明的携带有质粒pY16TEF1-△SPT15的酿酒酵母工程菌的构建方法,是将pY16TEF1-△SPT15质粒导入酿酒酵母中获得。
将质粒转化酿酒酵母的方法为电击转化法或氯化锂转化法。
序列表
SEQIDNo.1
Atggccgatgaggaacgtttaaaggagtttaaagaggcaaacaagatagtgtttgatccaaataccagacaagtatgggaaaaccagaatcgagatggtacaaaaccagcaactactttccagagtgaagaggacataaaaagagctgccccagaatctgaaaaagacacctccgccacatcaggtattgttccaacactacaaaacattgtggcaactgtgactttggggtgcaggttagatctgaaaacagttgcgctacatgcccgtaatgcagaatataaccccaagcgttttgctgctgtcatcatgcgtattagagagccaaaaactacagctttaatttttgcctcagggaaaatggttgttaccggtgcaaaaagtgaggatgactcaaagctggccagtagaaaatatgcaagaattatccaaaaaatcgggtttgctgctaaattcacagacttcaaaatacaaaatattgtcggttcgtgtgacgttaaattccctatacgtctagaagggttagcattcagtcatggtactttctcctcctatgagccagaattgtttcctggtttgatctatagaatggtgaagccgaaaattgtgttgttaatttttgtttcaggaaagattgttcttactggtgcaaagcaaagggaagaaatttaccaagcttttgaagctatataccctgtgctaagtgaatttagaaaaatgtga
SEQIDNo.2
SPT15-409基因核苷酸序列
atggccgatgaggaacgtttaaaggagtttaaagaggcaaacaagatagtgtttgatccaaataccagacaagtatgggaaaaccagaatcgagatggtacaaaaccagcaactactttccagagtgaagaggacatgaaaagagctgccccagaatctgaaaaaggcacctccgccacatcaggtattgttccaacactacaaaacattgtggcaactgtgactttggggtgcaggttagatctgaaaacagttgcgctacatgcccgtaatgcagaatataaccccaagcgttttgctgctgtcatcatgcgtattagagagccaaaaactacagctttaatttttgccccagggaaaatggttgttaccggtgcaaaaagtgaggatgactcaaagctggccagcagaaaatatgcaagaattatccaaaaaatcgggtttgctgcgaaattcacagacttcaaaatacaaaatattgtcggttcgtgtgacgttaaattccctatacgtctagaagggttagcattcagtcatggtactttctcctcctatgagccggaattgtttcctggtttgatccatagaatggtgaagccgaaaattgtgttgtcaatttttgtttcaggaaagattgttcttactggtgcaaagcaaagggaagaaatttaccaagcttttgaagctatataccctgtgctaagtgaatttagaaaaatgtga
SEQIDNo.3
SEQ ID No.3
Met Ala Asp Glu Glu Arg Leu Lys Glu Phe Lys Glu Ala Asn Lys Ile ValPhe Asp Pro Asn Thr Arg Gln Val Trp Glu
Asn Gln Asn Arg Asp Gly Thr Lys Pro Ala Thr Thr Phe Gln Ser Glu GluAsp Met Lys Arg Ala Ala Pro Glu Ser
Glu Lys Gly Thr Ser Ala Thr Ser Gly Ile Val Pro Thr Leu Gln Asn IleVal Ala Thr Val Thr Leu Gly Cys Arg Leu
Asp Leu Lys Thr Val Ala Leu His Ala Arg Asn Ala Glu Tyr Asn Pro LysArg Phe Ala Ala Val Ile Met Arg Ile Arg
Glu Pro Lys Thr Thr Ala Leu Ile Phe Ala Pro Gly Lys Met Val Val ThrGly Ala Lys Ser Glu Asp Asp Ser Lys Leu
Ala Ser Arg Lys Tyr Ala Arg Ile Ile Gln Lys Ile Gly Phe Ala Ala LysPhe Thr Asp Phe Lys Ile Gln Asn Ile Val
Gly Ser Cys Asp Val Lys Phe Pro Ile Arg Leu Glu Gly Leu Ala Phe SerHis Gly Thr Phe Ser Ser Tyr Glu Pro Glu
Leu Phe Pro Gly Leu Ile His Arg Met Val Lys Pro Lys Ile Val Leu SerIle Phe Val Ser Gly Lys Ile Val Leu Thr
Gly Ala Lys Gln Arg Glu Glu Ile Tyr Gln Ala Phe Glu Ala Ile Tyr ProVal Leu Ser Glu Phe Arg Lys Met
SEQIDNo.4
SPT15-615基因核苷酸序列
atggccgatgaggaacgtttaaaggagtttaaagaggcaaccaagatagtgtttgatccaaataccagacaagtatgggaaaaccagaatcgagatggtacaaaaccagcaactactttccagagcgaagaggacttaaaaagagctgccccagaatctgaaaaagacacctccgccacgacaggtattgttccaacactacaaaacattgtggcagctgtgactttggggtgcaggttagatctgaaaacagttgcgctacatgcccgtaatgcagaatataacccccagcgttttgctgctgtcatcatgcgtattagagagccaaaaactacagctttagtttttgcctcggggaagatggttgttaccggtgcaaaaagtgaggatgactcaaagctggcctgtagaaaatatgcaagaattatccaaaaaatcgggtttgctgctaaattcacagacttcaaaatacaaaatattgtcggttcgtgcgacgttaaattccctatacgtctagaggggttagcactcagtcatggtactttctcctcctatgagccagaattgtctcctggtttgatctatagagtggtgaagccgaaaattgtgttgttaatttttgtttcaggaaagattgttcttactggtgcaaagcaaagggaagaaatttaccaagcttttgaagctatataccctgagctaagtgaatttagaaaaatgtga
SEQIDNo.5
Met Ala Asp Glu Glu Arg Leu Lys Glu Phe Lys Glu Ala Thr Lys Ile ValPhe Asp Pro Asn Thr Arg Gln Val Trp Glu
Asn Gln Asn Arg Asp Gly Thr Lys Pro Ala Thr Thr Phe Gln Ser Glu GluAsp Leu Lys Arg Ala Ala Pro Glu Ser
Glu Lys Asp Thr Ser Ala Thr Thr Gly Ile Val Pro Thr Leu Gln Asn IleVal Ala Ala Val Thr Leu Gly Cys Arg Leu
Asp Leu Lys Thr Val Ala Leu His Ala Arg Asn Ala Glu Tyr Asn Pro GlnArg Phe Ala Ala Val Ile Met Arg Ile Arg
Glu Pro Lys Thr Thr Ala Leu Val Phe Ala Ser Gly Lys Met Val Val ThrGly Ala Lys Ser Glu Asp Asp Ser Lys Leu
Ala Cys Arg Lys Tyr Ala Arg Ile Ile Gln Lys Ile Gly Phe Ala Ala LysPhe Thr Asp Phe Lys Ile Gln Asn Ile Val Gly
Ser Cys Asp Val Lys Phe Pro Ile Arg Leu Glu Gly Leu Ala Leu Ser HisGly Thr Phe Ser Ser Tyr Glu Pro Glu Leu
Ser Pro Gly Leu Ile Tyr Arg Val Val Lys Pro Lys Ile Val Leu Leu IlePhe Val Ser Gly Lys Ile Val Leu Thr Gly Ala
Lys Gln Arg Glu Glu Ile Tyr Gln Ala Phe Glu Ala Ile Tyr Pro Glu LeuSer Glu Phe Arg Lys Met
下述实施例中所用的方法如无特殊说明均为本领域内的国际标准方法,参考《分子克隆实验指南》(第四版)Joe Sambrook书中所述具体方法进行。
实施案例1酿酒酵母SPT15基因突变文库构建
1)利用DNA提取试剂盒提取酿酒酵母YS59总DNA作为模板,设计上下游引物CTG459F/R,对SPT15基因进行PCR扩增,引物为:
上游引物核苷酸序列为:
5’-TAGAACTAGTGGATCCATGGCCGATGAGGAACGTTTAAAG-3’;
下游引物核苷酸序列为:
5’-GCTTGATATCGAATTCTCACATTTTTCTAAATTCACTTAGCACAG-3’
PCR扩增得到与文献报道相同的SPT15基因CDS区723bp,反应体系为50μL反应体系,由下列成分组成:
PCR反应条件如下:98℃变性10s,55℃退火15s,72℃延伸1min,共30个循环,再72℃延伸10min,12℃保温。
取5μL PCR扩增产物进行琼脂糖凝胶电泳,结果显示在750bp处有一清晰条带(图1)。
为了验证上述PCR扩增产物是否为SPT15基因,以及在扩增过程中是否发生了突变,因此对PCR产物进行了测序,结果显示在扩增过程中没有发生碱基突变。
2)将扩增得到的SPT15基因与经过BamH I与EcoR I双酶切的pY16TEF1质粒进行连接,构建重组质粒pY16TEF1-SPT15,质粒pY16TEF1双酶切反应体系如下:
在37℃条件下反应4小时。
酶切后的质粒pY16TEF1与扩增后的SPT15基因连接的反应体系如下:
在50℃条件下反应15分钟。
将连接产物转化大肠杆菌JM109,从而扩增重组质粒pY16TEF1-Spt15。对重组进行PCR,引物为:
上游引物核苷酸序列为:5’-ATAGGGACCTAGACTTCAGG-3’;
下游引物核苷酸序列为:5’-GACCTCCCATTGATATTTAAG-3’
反应体系如下:
PCR反应条件如下:98℃变性10s,55℃退火15s,72℃延伸1min,共30个循环,再72℃延伸10min,12℃保温。
对pY16TEF1-SPT15PCR产物进行测序,测序结果表明,SPT15基因连接正确,质粒构建成功。
3)对pY16TEF1-SPT15中SPT15基因进行易错PCR的反应体系如下:
反应条件:94℃预变性30s,94℃变性30s,68℃退火1min,共25个循环,再68℃延伸1min,12℃保温。
取5μL PCR产物进行琼脂糖凝胶电泳,结果如图2所示。
将突变后的△SPT15与质粒pY16TEF1按照2)中的方法进行酶切、连接,得到重组质粒pY16TEF1-△SPT15。将连接产物转化大肠杆菌JM109,从而扩增重组质粒pY16TEF1-△SPT15。分别取5μL未经过和经过酶切的质粒pY16TEF1-△SPT15进行琼脂糖凝胶电泳(图3)。由图3电泳结果可以推断,△SPT15成功的连接到了pY16TEF1。
将2.5μL突变后的重组质粒pY16TEF1-△SPT15热转化至E.coli JM109中,涂布平板,37℃过夜培养。挑选20个E.coli JM109阳性菌落,提取质粒并测序。利用Vector NTI软件对测序所得序列进行比对,由序列比对结果可以看出,SPT15基因已发生随机突变,突变位点个数在2~10个不等,且突变位点无偏好性。
因此,可以判断SPT15基因突变文库构建成功。
本实施案例中S.cerevisiae YS59为本研究室保藏,E.coli JM109感受态细胞购于大连宝生物公司,质粒pY16TEF1购于NTCC典型培养物保藏中心-BioVector质粒载体菌株细胞基因保藏中心。本实施案例中涉及的引物合成与基因测序由上海生工生物技术公司完成。本实施案例中涉及的DNA提取试剂盒,质粒提取试剂盒,胶回收试剂盒,酵母快速转化试剂盒购于美国Omega生物技术公司。
本实施案例中LB培养基:蛋白胨1%,酵母浸粉0.5%,NaCl 0.5%,琼脂1.5%,氨苄青霉素0.1%,pH7.4。YPD培养基:酵母浸粉1%,葡萄糖2%,蛋白胨2%,pH自然。SD-Ura培养基:葡萄糖20g/L,YNB6.7g/L,Ura do supplement0.77g/L,pH6.8。
实施案例2低产乙醇酿酒酵母工程菌株的筛选
1)将SPT15随机突变质粒文库pY16TEF1-△SPT15,转化到酿酒酵母YS59中。将转化液均匀涂布在SD-Ura固体培养基上,30℃培养96h左右,获得转化子,将所有转化子用液体SD-Ura培养基摇瓶培养后,进行菌种保藏,获得S.cerevisia YS59-pY16TEF1-△SPT15突变文库;
2)将获得的S.cerevisia YS59pY16TEF1-△SPT15突变文库菌株分别活化24h后,接种于SD-Ura液体培养基中,25℃条件下静置发酵。发酵结束后利用SBA生物传感分析仪测量其残糖与乙醇含量等指标,获得与S.cerevisiae YS59相比,乙醇产率降低30%的菌株S.cerevisiae pY16TEF1-△SPT15-409与乙醇产率降低20.3%的菌株S.cerevisiaepY16TEF1-△SPT15-615;
3)利用实施案例1(2)中对pY16TEF1-SPT15PCR的方法,对S.cerevisiaepY16TEF1-△SPT15-409与S.cerevisiae pY16TEF1-Spt15-615进行PCR扩增,并测序,与突变前的SPT15基因碱基序列(SEQ ID No.1)相比,pY16TEF1-△SPT15-409中△SPT15有8个碱基突变(SEQ ID No.2,加粗显示),pY16TEF1-△SPT15-409中△SPT15有17个突变点(SEQ IDNo.4,加粗显示)。
本实施案例中的模拟葡萄汁为:ergo stock:12.5mL Tween80,37.5mL 95%乙醇,0.125 g麦角固醇;溶液A:375mL去离子水中加100g葡萄糖,100g果糖,4mL ergo stock,溶解后去离子水补充到500mL;溶液B:250mL去离子水中加6g L(+)酒石酸,3g L(-)苹果酸,0.5g柠檬酸;溶液C:250mL去离子水中1.7g YNB(无氨基酵母氮源),2g水解酪蛋白,6mg肌醇,0.2g无水氯化钙,0.8g L-精氨酸,1g L-脯氨酸,0.1g色氨酸,1g磷酸铵;混合液:A、B、C混合后,用氢氧化钾调pH至3.25,过滤除菌,现配现用。
本实施案例中的SD-Ura液体培养基为:葡萄糖20g/L,YNB6.7g/L,Ura dosupplement0.77g,pH6.8。
实施案例3S.cerevisiae pY16TEF1-△SPT15-409和S.cerevisiae pY16TEF1-△SPT15-615在模拟葡萄汁中应用
将获得的S.cerevisia pY16TEF1-△SPT15-409和S.cerevisiae pY16TEF1-△SPT15-615菌株分别活化24h后,按照1%(V/V)接种量,分别接种于800mL模拟葡萄汁中(发酵容器体积为1L),25℃条件下静置发酵至残糖≦2g/L。发酵结束后利用SBA生物传感分析仪测量其残糖与乙醇含量等指标,获得与对照菌株S.cerevisiae YS59相比,乙醇产率分别降低16%和18%,见表1。
本实施案例中的模拟葡萄汁为:ergo stock:12.5mL Tween80,37.5mL 95%乙醇,0.125g麦角固醇;溶液A:375mL去离子水中加100g葡萄糖,100g果糖,4mL ergo stock,溶解后去离子水补充到500mL;溶液B:250mL去离子水中加6g L(+)酒石酸,3g L(-)苹果酸,0.5g柠檬酸;溶液C:250mL去离子水中1.7g YNB(无氨基酵母氮源),2g水解酪蛋白,6mg肌醇,0.2g无水氯化钙,0.8g L-精氨酸,1g L-脯氨酸,0.1g色氨酸,1g磷酸铵;混合液:A、B、C混合后,用氢氧化钾调pH至3.25,过滤除菌,现配现用。
表1低产乙醇酿酒酵母菌株的模拟葡萄汁的发酵特性
SEQUENCE LISTING
<110> 西北农林科技大学
<120> 一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用
<130> 1
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 723
<212> DNA
<213> 酿酒酵母YS59
<400> 1
atggccgatg aggaacgttt aaaggagttt aaagaggcaa acaagatagt gtttgatcca 60
aataccagac aagtatggga aaaccagaat cgagatggta caaaaccagc aactactttc 120
cagagtgaag aggacataaa aagagctgcc ccagaatctg aaaaagacac ctccgccaca 180
tcaggtattg ttccaacact acaaaacatt gtggcaactg tgactttggg gtgcaggtta 240
gatctgaaaa cagttgcgct acatgcccgt aatgcagaat ataaccccaa gcgttttgct 300
gctgtcatca tgcgtattag agagccaaaa actacagctt taatttttgc ctcagggaaa 360
atggttgtta ccggtgcaaa aagtgaggat gactcaaagc tggccagtag aaaatatgca 420
agaattatcc aaaaaatcgg gtttgctgct aaattcacag acttcaaaat acaaaatatt 480
gtcggttcgt gtgacgttaa attccctata cgtctagaag ggttagcatt cagtcatggt 540
actttctcct cctatgagcc agaattgttt cctggtttga tctatagaat ggtgaagccg 600
aaaattgtgt tgttaatttt tgtttcagga aagattgttc ttactggtgc aaagcaaagg 660
gaagaaattt accaagcttt tgaagctata taccctgtgc taagtgaatt tagaaaaatg 720
tga 723
<210> 2
<211> 723
<212> DNA
<213> 酿酒酵母YS59
<400> 2
atggccgatg aggaacgttt aaaggagttt aaagaggcaa acaagatagt gtttgatcca 60
aataccagac aagtatggga aaaccagaat cgagatggta caaaaccagc aactactttc 120
cagagtgaag aggacatgaa aagagctgcc ccagaatctg aaaaaggcac ctccgccaca 180
tcaggtattg ttccaacact acaaaacatt gtggcaactg tgactttggg gtgcaggtta 240
gatctgaaaa cagttgcgct acatgcccgt aatgcagaat ataaccccaa gcgttttgct 300
gctgtcatca tgcgtattag agagccaaaa actacagctt taatttttgc cccagggaaa 360
atggttgtta ccggtgcaaa aagtgaggat gactcaaagc tggccagcag aaaatatgca 420
agaattatcc aaaaaatcgg gtttgctgcg aaattcacag acttcaaaat acaaaatatt 480
gtcggttcgt gtgacgttaa attccctata cgtctagaag ggttagcatt cagtcatggt 540
actttctcct cctatgagcc ggaattgttt cctggtttga tccatagaat ggtgaagccg 600
aaaattgtgt tgtcaatttt tgtttcagga aagattgttc ttactggtgc aaagcaaagg 660
gaagaaattt accaagcttt tgaagctata taccctgtgc taagtgaatt tagaaaaatg 720
tga 723
<210> 3
<211> 240
<212> Protein
<213> 酿酒酵母YS59
<400> 3
Met Ala Asp Glu Glu Arg Leu Lys Glu Phe Lys Glu Ala Asn Lys 15
Ile Val Phe Asp Pro Asn Thr Arg Gln Val Trp Glu Asn Gln Asn 30
Arg Asp Gly Thr Lys Pro Ala Thr Thr Phe Gln Ser Glu Glu Asp 45
Met Lys Arg Ala Ala Pro Glu Ser Glu Lys Gly Thr Ser Ala Thr 60
Ser Gly Ile Val Pro Thr Leu Gln Asn Ile Val Ala Thr Val Thr 75
Leu Gly Cys Arg Leu Asp Leu Lys Thr Val Ala Leu His Ala Arg 90
Asn Ala Glu Tyr Asn Pro Lys Arg Phe Ala Ala Val Ile Met Arg 105
Ile Arg Glu Pro Lys Thr Thr Ala Leu Ile Phe Ala Pro Gly Lys 120
Met Val Val Thr Gly Ala Lys Ser Glu Asp Asp Ser Lys Leu Ala 135
Ser Arg Lys Tyr Ala Arg Ile Ile Gln Lys Ile Gly Phe Ala Ala 150
Lys Phe Thr Asp Phe Lys Ile Gln Asn Ile Val Gly Ser Cys Asp 165
Val Lys Phe Pro Ile Arg Leu Glu Gly Leu Ala Phe Ser His Gly 180
Thr Phe Ser Ser Tyr Glu Pro Glu Leu Phe Pro Gly Leu Ile His 195
Arg Met Val Lys Pro Lys Ile Val Leu Ser Ile Phe Val Ser Gly 210
Lys Ile Val Leu Thr Gly Ala Lys Gln Arg Glu Glu Ile Tyr Gln 225
Ala Phe Glu Ala Ile Tyr Pro Val Leu Ser Glu Phe Arg Lys Met 240
<210> 4
<211> 723
<212> DNA
<213> 酿酒酵母YS59
<400> 4
atggccgatg aggaacgttt aaaggagttt aaagaggcaa ccaagatagt gtttgatcca 60
aataccagac aagtatggga aaaccagaat cgagatggta caaaaccagc aactactttc 120
cagagcgaag aggacttaaa aagagctgcc ccagaatctg aaaaagacac ctccgccacg 180
acaggtattg ttccaacact acaaaacatt gtggcagctg tgactttggg gtgcaggtta 240
gatctgaaaa cagttgcgct acatgcccgt aatgcagaat ataaccccca gcgttttgct 300
gctgtcatca tgcgtattag agagccaaaa actacagctt tagtttttgc ctcggggaag 360
atggttgtta ccggtgcaaa aagtgaggat gactcaaagc tggcctgtag aaaatatgca 420
agaattatcc aaaaaatcgg gtttgctgct aaattcacag acttcaaaat acaaaatatt 480
gtcggttcgt gcgacgttaa attccctata cgtctagagg ggttagcact cagtcatggt 540
actttctcct cctatgagcc agaattgtct cctggtttga tctatagagt ggtgaagccg 600
aaaattgtgt tgttaatttt tgtttcagga aagattgttc ttactggtgc aaagcaaagg 660
gaagaaattt accaagcttt tgaagctata taccctgagc taagtgaatt tagaaaaatg 720
tga 723
<210> 5
<211> 240
<212> Protein
<213> 酿酒酵母YS59
<400> 5
Met Ala Asp Glu Glu Arg Leu Lys Glu Phe Lys Glu Ala Thr Lys 15
Ile Val Phe Asp Pro Asn Thr Arg Gln Val Trp Glu Asn Gln Asn 30
Arg Asp Gly Thr Lys Pro Ala Thr Thr Phe Gln Ser Glu Glu Asp 45
Leu Lys Arg Ala Ala Pro Glu Ser Glu Lys Asp Thr Ser Ala Thr 60
Thr Gly Ile Val Pro Thr Leu Gln Asn Ile Val Ala Ala Val Thr 75
Leu Gly Cys Arg Leu Asp Leu Lys Thr Val Ala Leu His Ala Arg 90
Asn Ala Glu Tyr Asn Pro Gln Arg Phe Ala Ala Val Ile Met Arg 105
Ile Arg Glu Pro Lys Thr Thr Ala Leu Val Phe Ala Ser Gly Lys 120
Met Val Val Thr Gly Ala Lys Ser Glu Asp Asp Ser Lys Leu Ala 135
Cys Arg Lys Tyr Ala Arg Ile Ile Gln Lys Ile Gly Phe Ala Ala 150
Lys Phe Thr Asp Phe Lys Ile Gln Asn Ile Val Gly Ser Cys Asp 165
Val Lys Phe Pro Ile Arg Leu Glu Gly Leu Ala Leu Ser His Gly 180
Thr Phe Ser Ser Tyr Glu Pro Glu Leu Ser Pro Gly Leu Ile Tyr 195
Arg Val Val Lys Pro Lys Ile Val Leu Leu Ile Phe Val Ser Gly 210
Lys Ile Val Leu Thr Gly Ala Lys Gln Arg Glu Glu Ile Tyr Gln 225
Ala Phe Glu Ala Ile Tyr Pro Glu Leu Ser Glu Phe Arg Lys Met 240

Claims (3)

1.一种重组质粒pY16TEF1-△SPT15,其特征在于:所述的重组质粒pY16TEF1-△SPT15为重组质粒pY16TEF1-△SPT15-409和重组质粒pY16TEF1-△SPT15-615;
所述的重组质粒pY16TEF1-△SPT15-409中的△SPT15-409是SPT15基因经过突变后获得,△SPT15-409碱基序列为SEQ ID No.2,其所翻译的转录因子spt15p的氨基酸序列为SEQID No.3;
所述的重组质粒pY16TEF1-△SPT15-615中的△SPT15-615是SPT15基因经过突变后获得,△SPT15-615碱基序列为SEQ ID No.4,其所翻译的转录因子spt15p的氨基酸序列为SEQID No.5。
2.根据权利要求1所述的一种重组质粒pY16TEF1-△SPT15,其特征在于:所述的序列SEQ ID No.2中发生突变的碱基分别为138a>g,167a>g,352t>c、408t>c、450t>g、561a>g、583t>c、614t>c;
所述的序列SEQ ID No.3中发生突变的氨基酸分别为Glu46Met,Lys56Gl,Lys118Pro,Lys195His,Lys205Ser;
所述的序列SEQ ID No.4中发生突变的碱基分别为41a>c、126t>c、136a>t、180a>g、181t>a、217a>g、299a>c、343a>g、354a>g、360a>g、406a>t、492t>c、519a>g、529t>c、569t>c、589a>g、697t>a;
所述的序列SEQ ID No.5中发生突变的氨基酸分别为Asn14Thr、Ile46Leu、Ser61Thr、Thr73Ala、Lys97Gln、Ile115Val、Ser136Cys、Phe177Leu、Phe190Ser、Met197Val、Val233Glu。
3.如权利要求1所述的重组质粒pY16TEF1-△SPT15在降低重组酿酒酵母乙醇产率中的应用。
CN201610352024.2A 2016-05-25 2016-05-25 一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用 Expired - Fee Related CN105907779B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610352024.2A CN105907779B (zh) 2016-05-25 2016-05-25 一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610352024.2A CN105907779B (zh) 2016-05-25 2016-05-25 一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用

Publications (2)

Publication Number Publication Date
CN105907779A CN105907779A (zh) 2016-08-31
CN105907779B true CN105907779B (zh) 2019-07-09

Family

ID=56742440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610352024.2A Expired - Fee Related CN105907779B (zh) 2016-05-25 2016-05-25 一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用

Country Status (1)

Country Link
CN (1) CN105907779B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109797112B (zh) * 2018-12-24 2022-08-05 西北农林科技大学 酿酒酵母菌株及其在冰酒中的应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133665A2 (en) * 2006-12-07 2008-11-06 Massachusetts Institute Of Technology Global transcription machinery engineering
CN103820346A (zh) * 2014-03-12 2014-05-28 南京工业大学 一株酿酒酵母及其在发酵产乙醇中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133665A2 (en) * 2006-12-07 2008-11-06 Massachusetts Institute Of Technology Global transcription machinery engineering
CN103820346A (zh) * 2014-03-12 2014-05-28 南京工业大学 一株酿酒酵母及其在发酵产乙醇中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Construction of Saccharomyces cerevisiae Strains With Enhanced Ethanol Tolerance by Mutagenesis of the TATA-Binding Protein Gene and Identification of Novel Genes Associated With Ethanol Tolerance;Jungwoo Yang等;《Biotechnology and Bioengineering》;20110317;第108卷(第8期);第1776-1787页
Evaluation of gene modification strategies for the development of low-alcohol-wine yeasts;VARELA C D等;《Applied and Environmental Microbiology》;20121231;第78卷(第16期);第6068-6070页
Microbiological approaches to lowering ethanol concentration in wine;KUTYNA D R等;《Trends in Food Science & Technology》;20101231;第21卷(第6期);第293-300页
产乙醇工程菌构建方法的研究进展;常冬冬等;《中国农学通报》;20131231;第29卷(第2期);第120-124页

Also Published As

Publication number Publication date
CN105907779A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
Bisson The biotechnology of wine yeast
Williams et al. Cloning the gene for the malolactic fermentation of wine from Lactobacillus delbrueckii in Escherichia coli and yeasts
CN101177685B (zh) 酿酒酵母基因的筛选方法
CN107815458B (zh) 一种表达人源乙醛脱氢酶基因的基因工程菌及其应用
Dequin et al. How to adapt winemaking practices to modified grape composition under climate change conditions
Su et al. Interspecific hybridisation among diverse Saccharomyces species: A combined biotechnological solution for low-temperature and nitrogen-limited wine fermentations
Pacheco et al. The emerging role of the yeast Torulaspora delbrueckii in bread and wine production: using genetic manipulation to study molecular basis of physiological responses
CN108485996B (zh) 一种新型产乙酸乙酯的酿酒酵母菌株及构建方法
US20220127552A1 (en) Maltotriose metabolizing mutants of saccharomyces eubayanus
CN105907779B (zh) 一种可降低酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15及其应用
CN106916837A (zh) 高渗透压甘油蛋白激酶基因RkHog1及其重组表达载体
DK175010B1 (da) Intronfri struktursekvens, DNA-molekyle indeholdende denne, hermed transformeret værtsorganisme samt fremgangsmåde til fremstilling af en sådan intronfri struktursekvens
CN105950649B (zh) 一种可提高酿酒酵母乙醇产率的重组质粒pY16TEF1-△SPT15-125及其应用
CN102533574A (zh) 一种低产尿素黄酒酵母工程菌及其构建方法
CN106929438A (zh) 一株高产四甲基吡嗪的酿酒酵母及其构建方法
CN104711284B (zh) 转ssu1基因提升葡萄汁酵母耐硫能力的方法及鉴定方法
Pretorius et al. Designing wine yeast for the future
CN115838645A (zh) 一种高产乳清酸的酵母菌株及其应用
CN109234303A (zh) 一种啤酒酵母中表达苯丙酮酸脱羧酶Aro10的构建方法
CN109423483A (zh) 葡萄糖氧化酶突变体
JPH06245750A (ja) ビールの製造法
CN111378682A (zh) 一种代谢改造酿酒酵母降低黄酒中氨基甲酸乙酯含量的方法
CN113293107A (zh) 一种高有机酸耐受性能的工业生产用酿酒酵母及其构建方法
CN102719459B (zh) 生产葡聚糖内切酶、葡聚糖外切酶和β-葡萄糖苷酶的方法
CN106434700B (zh) 一种提高乙醇产率的酿酒酵母spt15定点饱和基因突变方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190709

Termination date: 20200525

CF01 Termination of patent right due to non-payment of annual fee