CN101177685B - 酿酒酵母基因的筛选方法 - Google Patents

酿酒酵母基因的筛选方法 Download PDF

Info

Publication number
CN101177685B
CN101177685B CN2007101962668A CN200710196266A CN101177685B CN 101177685 B CN101177685 B CN 101177685B CN 2007101962668 A CN2007101962668 A CN 2007101962668A CN 200710196266 A CN200710196266 A CN 200710196266A CN 101177685 B CN101177685 B CN 101177685B
Authority
CN
China
Prior art keywords
dna
gene
yeast
sequence
saccharomyces cerevisiae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007101962668A
Other languages
English (en)
Other versions
CN101177685A (zh
Inventor
中尾嘉宏
中村规尚
儿玉由纪子
藤村朋子
芦刈俊彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suntory Holdings Ltd
Original Assignee
Suntory Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Holdings Ltd filed Critical Suntory Holdings Ltd
Publication of CN101177685A publication Critical patent/CN101177685A/zh
Application granted granted Critical
Publication of CN101177685B publication Critical patent/CN101177685B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1034Isolating an individual clone by screening libraries
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C12/00Processes specially adapted for making special kinds of beer
    • C12C12/002Processes specially adapted for making special kinds of beer using special microorganisms
    • C12C12/004Genetically modified microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C12/00Processes specially adapted for making special kinds of beer
    • C12C12/002Processes specially adapted for making special kinds of beer using special microorganisms
    • C12C12/006Yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

本发明的目标是提供对于参与所期望酿造特性的基因进行选择的方法,所述方法以这样的方式进行,即汇编了工业酵母尤其是用于酒精饮料如啤酒的酿酒酵母的全部基因组序列数据的数据库被制备;参与酿酒酵母所特异拥有的酿造特性的基因被从数据库中选出;以及基因的功能分析通过破坏或过表达而进行,并提供基于汇编了工业酵母或者尤其是酿酒酵母的全部基因组序列(被附着在固体平板上)数据的数据库的DNA阵列(其中寡核苷酸被选定)。另一目标是提供酵母(其具有基因参与的酿造特性)的培育方法,以及生产醇或酒精饮料的方法(其中产量和质量都应用酵母而被改善)。另一目标是提供酿酒酵母所特异的基因和基因所编码的肽。实现上述目标的手段是对在醇或酒精饮料生产中参与产量增加和/或风味改善的基因进行筛选的方法,其特征在于:(A)工业酵母的全部基因组序列得到分析,(B)基因组序列与啤酒糖酵母的全部基因组序列进行了比较,(C)与啤酒糖酵母的基因所编码的氨基酸序列有70到97%同一性的工业酵母的氨基酸序列的编码基因被选出,及(D)进行基因的功能分析,由此鉴定基因所赋予酵母的特性。

Description

酿酒酵母基因的筛选方法
本案为分案申请,母案申请号为2004800097891(PCT申请号为PCT/JP2004/002695),申请日为2004年3月3日,发明名称为“酿酒酵母基因的筛选方法”。
技术领域
本发明涉及用于生产酒精饮料如啤酒、日本米酒或燃料酒精等的工业酵母的基因尤其是用于生产酒精饮料的酿酒酵母的基因的筛选方法。更特别的是,它涉及酒精饮料生产中的一定方法,其中酿酒酵母的DNA序列信息被汇编到数据库中以便参与产量增长和/或风味改善例如风味的稳定化、增强等的基因被选出,也涉及适合酿造(其中基因表达受到控制)的酵母例如选定基因被破坏的酵母或基因过表达的酵母的培育方法,还涉及应用培育的酵母生产酒精饮料的方法。
背景技术
生产燃料酒精、酒精饮料如啤酒或日本米酒等的技术已应用工业酵母而得到发展。特别是在应用酿酒酵母的酒精饮料生产中,已在增加产量和改善风味例如酒精饮料风味的稳定化或强化的技术中见到活跃的发展。
全球消费最多的酒精饮料是啤酒,2001年全球生产的啤酒数量是大约140,000,000kL。啤酒类型根据酵母类型和发酵方法大致分成三类。这三类是,自然发酵型啤酒,其中发酵应用存活在啤酒厂中的酵母和微生物而进行;ale类型啤酒,其中发酵应用属于啤酒糖酵母(Saccharomyces cerevisiae)的表层发酵酵母在20到25℃的温度下进行,而随后的成熟时间被缩短;和Large类型啤酒,其中发酵应用属于巴斯德氏糖酵母(Saccharomyces pastorianus)的底部发酵酵母在6到15℃的温度下进行,然后经历低温成熟过程。现在,全球生产的啤酒不少于90%是Large类型啤酒,因此,用于酿制Large类型啤酒的底部发酵酵母已被最广泛地应用在啤酒酿造中。
在应用包括上述提及的酿酒酵母的微生物进行生产的所谓发酵生产中,重要的是发酵过程最优化以及有用的菌株被选出和培育,以增加产量和改善产品质量。
在啤酒酿造最优化的情形中,已实施了某一方法,其中一定量的酵母代谢物例如醇(如乙醇)、酯、有机酸等被监测,然后是温度、气流数量、原材料含量等被控制。在这一情形中,酵母细胞的材料吸收和排泄及细胞中的代谢进行暗箱操作,而只进行非常肤浅的控制。此外,为了例如对酒精饮料给出高风味的目的,用于抑制啤酒酿造过程中氧供应量等的过程控制方法已被尝试。然而在这一方法中,酵母自身的生长率因为供氧不足被降低,而负面效应例如发酵的阻滞和/或啤酒质量的退化可能出现。因此,通过优化发酵过程的方式对产量和啤酒质量进行改善方面,存在一定的限制。
另一方面,关于有用的工业酵母例如有用的啤酒酵母的培育方法,除了实际培育(actual breeding)外,用于选出合意株系的技术已被广泛应用。啤酒酿造本身在巴斯德发现微生物之前已很好地进行,并且在啤酒酿造中,从啤酒厂应用的多种酵母株中选出更适合的啤酒酵母株的方法一直传统性地实施,但是几乎没有具有良好特性的酵母被培育出。
作为阳性培育方法的实例,存在一种方法,其中应用化学物质或放射性射线所致的人工基因突变。然而,酿酒酵母尤其啤酒酿造中广泛应用的底部发酵酵母在许多情形中是多倍体。在那种情况下,不可能产生出合意的突变体,除非突变在所有将被突变的等位基因发生。因此,虽然在实验室单倍体酵母的情形中有可能诱导出合意的突变,但在多倍体的啤酒酵母的情形中,基本上是不可能的。
近年来已尝试一定的培育方法,其中突变或杂交培育通过应用从底部发酵酵母分离出的孢子而进行(参考,例如,非专利文献1)。然而,底部发酵酵母是多倍体,并具有复杂的染色体结构,因此,具有增殖能力的孢子的分离有困难,而且几乎不可能由此得到具有良好特性的菌株。
另一方面,所需的基因应用基因工程技术而被引入和在酿酒酵母中表达,近来已成为可能,由此也有可能通过应用基因功能分析的结果和已被进行功能分析的基因而培育具有所需特征的酵母。然而,与全部基因组序列已被阐明的面包酵母(啤酒糖酵母;参考,例如,非专利文献2)相比,底部发酵酵母的全部基因组序列尚未阐明,并且关于参与底部发酵酵母所特异的酿酒特性的基因和所述基因在啤酒酿造中的功能,只有非常少数的发现。
近年来,转录子分析已应用DNA微阵列进行,其中DNA片段或核苷酸寡聚物(每一个都具有结构基因或染色体的内区域的部分序列)被固定在固体支持物上。例如,Olesen,等人在酿造过程中应用GeneFilters(Research Genetics Co.制造)进行了底部发酵酵母的广泛的基因表达分析(参考,例如,非专利文献3)。然而,既然底部发酵酵母的全部基因组序列尚未被阐明,则什么基因被监控以精确地表达也是不明确的。因此,这类信息非常不充分,而无法应用于底部发酵酵母的代谢分析、有用酵母的培育及啤酒酿造过程的控制。
现在,超过100个微生物物种的全基因组序列已被确定(参考,例如,非专利文献6),包括啤酒糖酵母,大肠杆菌(Escherichia coli)(参考,例如,非专利文献4)和结核分枝杆菌(Mycobacteriumtuberculosis)(参考,例如,非专利文献5)。根据已确定的DNA序列,这些微生物的基因被鉴别,大量基因的功能在没有进行遗传、生化和分子生物学实验的情况下被预测。然而,工业酵母例如酿酒酵母具有高度多倍体性和复杂染色体结构,并因推测其装配(连接DNA序列的操作)将会有困难。因此,包含两种不同类型基因组(参考,例如,非专利文献7)的底部发酵酵母的全基因组序列尚未被报道。
在具体的醇或酒精饮料生产中,存在着在产品中增加亚硫酸(sulfite)浓度以控制风味的技术。亚硫酸已知为具有抗氧化活性的化合物,并在食品、饮料和制药以及酒精饮料领域中被广泛用作抗氧化剂。例如,对葡萄酒而言,需要较长的成熟期,亚硫酸对其质量的保存起重要作用。也已知,在啤酒酿造中,质量保存期根据产品中包含的亚硫酸的浓度增加而变长。因此,当产品中亚硫酸的数量增加时,有可能制备具有极佳的风味稳定性和质重保存期较长的产品。
增加产品中亚硫酸数量的最简单方式是添加亚硫酸。在日本,就葡萄酒而言,经健康、劳动和福利部(Ministry of Health,Labor andWelfare)允许,以残余亚硫酸浓度计,可添加亚硫酸至不超过350ppm的程度。然而在那种情形中,既然亚硫酸被归类为食品添加剂,当考虑到消费者对食品添加剂的负面印象时,添加亚硫酸到啤酒中就不太合适。
然而,用于酿造的酵母通过将介质中的硫酸盐还原而生成了硫化氢,以合成含硫的代谢物,例如含硫的氨基酸。亚硫酸是该途径的中间代谢物。如果发酵期间亚硫酸被有效地排出细胞,则麦芽汁和产品中的亚硫酸数量都会增加。
有两个方法可以在发酵过程中增加麦芽汁里的亚硫酸浓度。一是控制发酵过程而另一个是培育酿酒酵母。至于发酵过程的调控,发酵过程中产生的亚硫酸的数量与溶解氧的浓度成反比,因此,已尝试某一方法,其中溶解氧的浓度被减少,以便增加亚硫酸的数量,同时亚硫酸的氧化被抑制。然而,在该方法中,酵母的生长速率因氧气的缺乏而减少,这会具有负效应例如发酵的阻滞和质量的退化。因此,该方法不实用。
另一方面,如上面提及的,培育酿酒酵母的基因工程技术已得到发展。例如,有某些报道关注酵母的硫代谢。亚硫酸(SO2)是含硫氨基酸和维生素合成的中间产物,通过硫酸离子(SO4 2-)→APS(腺嘌呤硫酸)→PAPS(磷酸腺嘌呤硫酸)→亚硫酸离子(SO3 2-)的途径产生,其中硫酸离子从细胞外被整合。曾经尝试增加MET3基因和MET14基因的拷贝数量,以增强酵母产生亚硫酸的能力,所述MET3基因参与硫酸离子(SO4 2-)→APS(腺嘌呤硫酸)的反应,所述MET14基因参与APS(腺嘌呤硫酸)→PAPS(磷酸腺嘌呤硫酸)的反应(参考,例如,非专利文献8)。另一尝试的实例是亚硫酸离子(SO3 2-)的减少因MET10基因被破坏而被抑制,从而酵母所产生的亚硫酸的数量得到增加(参考,例如,非专利文献9)。根据这类尝试,MET10基因被破坏个体所产生的亚硫酸的数量将增加到不少于亲代菌株的10倍的程度,但另一方面,发酵中的阻滞现象加重,并且啤酒中乙醛与1-丙醇的数量增加,这已成为实际应用的一个问题。
因此,虽然工业酵母例如酿酒酵母的培育方法(应用基因工程)的发展正在进行中,但目前的状态是,由于酿酒酵母的基因组信息不充分,对参与酿酒酵母酿造特征的基因的挑选、对基因所编码蛋白质的功能的分析及那些发现对于培育的应用都没有充分开展。
因此,显示所期望特征而没有发酵速度和产品质量退化的酵母的培育方法尚未建立,并且,不仅酿造工业而且在应用酵母的其它工业都存在对于发展这样的方法的很大需求。
(非专利文献1)C.Gjermansen:″Construction of a hybrid brewingstrain of Saccharomyces carlsbergensis by mating of meioticsegregants″,Carlsberg Res.Commun.,卷46,页1-11(1981).
(非专利文献2)A.Goffeau等:″The Yeast Genome Directory″,Nature,卷387,页5-105(1997).
(非专利文献3)K.Olesen等:″The dynamics of the Saccharomycescarlsbergensis brewing yeast transcriptome during aproduction-scale lager beer fermentation″,FEMS Yeast Research,卷2,页563-573(2000).
(非专利文献4)F.R.Blattner等:″The Complete Genome Sequenceof Escherichia coli K-12″,Science,卷277,页1453-1462(1997).
(非专利文献5)S.T.Cole等:″Deciphering the biology ofMycobacterium tuberculosis from the complete genome sequence″.Nature,卷393,页537-544(1998).
(非专利文献6)The National Center for BiotechnologyInformation,http://www.ncbi.nlm.nih.gov/PMGifs/Genomes/micr.html.
(非专利文献7)Y.Tamai等:″Co-existence of two types ofchromosome in the fermenting yeast,Sacchaomyces cerevisiae″,Yeast,卷10,页923-933(1998).
(非专利文献8)C.Korch等:Proc.Eur.Brew.Conv.Congress,Lisbon,页201-208(1991).
(非专利文献9)J.Hansen等:″Inactivation of MET 10 in brewer′syeast specifically increases SO2 formation during beerproduction″,Nature Biotech.,卷14,页1587-1591(1996).
(非专利文献10)T.Sijen等:″Transcriptional andposttranscriptional gene silencing are mechanisticallyrelated″,Curr.Biol.,卷11,页436-440(2001).
(非专利文献11)N.Goto等:″SSU1-R,a sulphite resistance geneof wine yeast,is an allele of SSU 1 with a different upstreamsequence″,J.Ferment.Bioeng.,卷86,页427-433(1998).
(非专利文献12)D.Avram等:″SSU 1 encodes a plasma membraneprotein with a central role in a network of proteins conferringsulfite tolerance in Saccharomyces cerevisiae″,J.Bacteriol.,卷179,页5971-5974(1997).
(非专利文献13)H.Park等:″SSU 1 mediates sulphite efflux inSaccharomyces cerevisiae″,Yeast,卷16,页881-888(2000).
发明公开内容
本发明的目标是提供对于参与所期望酿造特性的基因进行选择的方法,所述方法以这样的方式实现,即汇编了工业酵母尤其是用于酒精饮料如啤酒的酿酒酵母的全部基因组序列的数据库(在此之后,可被缩写成基因组DB)被制备;酿酒酵母拥有的基因被从数据库中选出;基因的功能分析通过破坏或过表达而进行。另一目标是提供酵母(其显示所述基因参与的酿造特性)的培育方法,以及生产醇或酒精饮料的方法(其中产量和质量都因应用所述酵母而被改善)。另一目标是提供上述基因和所述基因编码的肽。
已知广泛用于工业目的的酿酒酵母是多倍体,特别是底部发酵酵母是异源多倍性,它由至少两种基因组所组成。一种基因组被认为是源自全部基因组序列已被阐明的啤酒糖酵母的基因组,而其它基因组的来源仍未被阐明。
为了找到未被鉴别的显示优良酿造所必需功能的基因,本发明者已测定底部发酵酵母的全部基因组序列。然后将底部发酵酵母的氨基酸序列与那些在啤酒糖酵母的基因组DB中登记的类型比较,而酿酒酵母基因所编码蛋白的功能被评估。结果,阐明了底部发酵酵母的基因大致分为显示几乎与啤酒糖酵母具有100%氨基酸同一性的Sc类型基因,和显示大约70到97%同一性的非Sc类型基因。此外也已阐明,底部发酵酵母具有由Sc类型染色体、非Sc类型染色体和Sc/非Sc类型嵌合染色体组成的复杂染色体。底部发酵酵母整个染色体的结构在图1中显示。基于本发明阐明的基因组信息,本发明者已发现这样一个出乎意料的复杂染色体结构,并发展出了对底部发酵酵母基因的筛选方法。更具体而言,已完成了对酿酒酵母特异的酿造特性的参与基因进行筛选的方法,其特征在于:(A)工业酵母尤其是属于酿酒酵母中的一种的底部发酵酵母的全部基因组序列得到分析,(B该)基因组序列与啤酒糖酵母的全部基因组序列进行了比较,(C)与啤酒糖酵母的基因所编码的氨基酸序列具有70到97%同一性的底部发酵酵母的氨基酸序列的编码基因被选出,及(D)进行选定基因的功能分析,由此基因所赋予酵母的酿造特性被鉴定。本发明者已基于那些发现重复地进行了精深的研究,并完成了本发明。
因此,本发明涉及:
(1)对在醇或酒精饮料生产中参与产量增加和/或风味改善的基因的筛选方法,特征在于:(a)分析工业酵母的全部基因组序列,(b)这些序列与啤酒糖酵母的那些进行了比较,(c)选择与啤酒糖酵母的基因所编码的氨基酸序列具有70到97%同一性的工业酵母的氨基酸序列的编码基因,及(d)进行选出基因的功能分析,由此鉴定基因所赋予酵母的特性。
(2)根据上述(1)的筛选方法,其中DNA阵列被用于上述1(d)中的功能分析。
(3)根据上述(2)的方法,其中应用了DNA阵列,在所述DNA阵列中,一种或多种包含下列DNA序列或其互补DNA序列的寡核苷酸被粘附到固体支持物;
DNA序列:(1)具有10到30个存在于工业酵母的全部基因组序列的开放阅读框中的核苷酸,及(2)不存在于全部基因组序列中除所述10到30个核苷酸区域之外的区域中。
(4)根据上述(2)的方法,其中应用了DNA阵列,在所述DNA阵列中,一种或多种在严格条件下与上述(3)中所定义的寡核苷酸杂交的寡核苷酸被粘附到固体支持物。
(5)根据上述(2)的方法,其中应用了DNA阵列,在所述DNA阵列中,一种或多种包含下列DNA序列或其互补DNA序列的寡核苷酸被粘附到固体支持物;
DNA序列:(1)具有10到30个存在于工业酵母的全部基因组序列的非编码区域中的核苷酸,及(2)不存在于所述全部基因组序列中除所述10到30个核苷酸区域之外的区域中。
(6)根据上述(2)的方法,其中应用了DNA阵列,在所述DNA阵列中,一种或多种在严格条件下与上述(5)中所定义的寡核苷酸杂交的寡核苷酸被粘附到固体支持物。
(7)根据上述(2)的方法,其中应用了DNA阵列,在所述DNA阵列中,选自下列四组中的两组或更多组的寡核苷酸被粘附到固体支持物:一种或多种上述(3)所定义的寡核苷酸;一种或多种上述(4)所定义的寡核苷酸;一种或多种上述(5)所定义的寡核苷酸;及一种或多种上述(6)所定义的寡核苷酸。
(8)根据上述(1)到(7)中任意项的筛选方法,其中工业酵母是酿酒酵母。
(9)根据上述(1)到(8)中任意项的筛选方法,其中酿酒酵母是啤酒酵母。
(10)根据上述(1)的筛选方法所得到的基因。
(11)根据上述(10)的基因,其特征在于,当上述(10)提及的基因在酵母中表达时,酵母的培养基中的亚硫酸浓度增加。
(12)包含SEQ ID NO:1或2所代表的DNA序列的DNA,和在严格条件下与所述DNA杂交的DNA。
(13)具有SEQ ID NO:3或4所代表的氨基酸序列的多肽的编码DNA,和具有一定氨基酸序列的多肽的编码DNA,在所述氨基酸序列中,SEQ ID NO:3或4所代表的氨基酸序列具有一到数个氨基酸残基的缺失和/或替代和/或添加。
(14)包含上述(9)到(12)中任意项所提及的基因或DNA的重组载体。
(15)根据上述(9)的重组载体,其中启动子和/或终止子位于上述(10)到(13)中任意项所提及的基因或DNA的邻近位置。
(16)根据上述(15)的重组载体,其中启动子是显示组成性表达的启动子。
(17)根据上述(15)或(16)的重组载体,其中启动子是甘油醛-3-磷酸脱氢酶基因的启动子。
(18)包含上述(10)到(17)中任意项所提及的基因或DNA或重组载体的转化子。
(19)根据上述(18)的转化子,其中转化子属于糖酵母属的酵母。
(20)上述(10)到(13)中任意项提及的基因或DNA所编码的多肽或具有一定氨基酸序列的多肽,在所述氨基酸序列中,所述多肽的氨基酸序列中的一到数个氨基酸残基被缺失和/或替代和/或添加。
(21)具有SEQ ID NO:3或4所代表的氨基酸序列的多肽或具有一定氨基酸序列的多肽,在所述氨基酸序列中,SEQ ID NO:3或4所代表的氨基酸序列具有一到数个氨基酸残基的缺失和/或替代和/或添加。
(22)用于醇或酒精饮料生产的方法,特征在于应用了上述(18)或(19)所提及的转化子。
(23)适合生产醇或酒精饮料的酵母的培育方法,特征在于上述(10)或(11)所提及的基因或上述(12)或(13)所提及的DNA上的基因的表达被调控。
(24)根据上述(23)的培育方法,其中酵母属于糖酵母属。
(25)根据上述(23)或(24)的培育方法所得到的酵母。
(26)应用上述(25)提及的酵母生产醇或酒精饮料的方法。
(27)应用根据上述(26)的生产醇或酒精饮料的方法所生产的醇或酒精饮料。
(28)DNA阵列,其中一种或多种包含下列DNA序列或其互补DNA序列的寡核苷酸被粘附到固体支持物;
DNA序列:(1)具有10到30个存在于工业酵母的全部基因组序列的开放阅读框中的核苷酸,及(2)不存在于所述全部基因组序列中除所述10到30个核苷酸区域之外的区域中。
(29)DNA阵列,其中在严格条件下与上述(28)所定义的寡核苷酸杂交的一种或多种寡核苷酸被粘附到固体支持物。
(30)DNA阵列,其中一种或多种包含下列DNA序列或其互补DNA序列的寡核苷酸被粘附到固体支持物;
DNA序列:(1)有10到30个存在于工业酵母的全部基因组序列的非编码区域中的核苷酸,及(2)不存在于所述全部基因组序列中除所述10到30个核苷酸区域之外的区域中。
(31)DNA阵列,其中在严格条件下与上述(30)所定义的寡核苷酸杂交的一种或多种寡核苷酸被粘附到固体支持物;及
(32)DNA阵列,其中选自下列四组中的两组或更多组的寡核苷酸被粘附到固体支持物:一种或多种上述(28)所定义的寡核苷酸;一种或多种上述(29)所定义的寡核苷酸;一种或多种上述(30)所定义的寡核苷酸;及一种或多种上述(31)所定义的寡核苷酸。
附图简述
图1显示底部发酵酵母的总染色体结构。白杠代表Sc类型染色体而黑杠代表非Sc类型染色体。椭圆代表着丝粒。罗马数字显示对应的啤酒糖酵母染色体数字。在显示非Sc类型染色体的附图中,以黑色标出的部分显示连接发生在该区域。例如,在非ScII-非ScIV中,显示非ScII与非ScIV在黑色标出的部分(300kb)相连接。
图2显示从菌株34/70的基因组DNA制得的3648个粘粒两端的DNA序列与啤酒糖酵母的基因组序列的同一性的分布。X-轴表示与啤酒糖酵母的同一性,例如,X-轴上的84%表示超过82%而不超过84%的同一性。Y-轴表示显示同一性的粘粒末端序列的数目。
图3显示啤酒糖酵母基因组序列的粘粒和鸟枪克隆(shotgunclones)的图谱实例。①和②表示分别存在于啤酒糖酵母染色体XVI的Watson链和Crick链上的基因。③和④表示分别插入到粘粒克隆中的Sc类型和非Sc类型DNA片段。⑤和⑥表示分别插入到鸟枪克隆中的Sc类型和非Sc类型DNA片段。
图4显示啤酒糖酵母基因组序列的毗连群的图谱实例。(A)是对啤酒糖酵母的染色体XVI的示意性描述。(B)是其中啤酒糖酵母染色体XVI的857到886kb的部分被放大的插图。Y-轴指出毗连群对啤酒糖酵母基因组序列的%同一性。X-轴指出毗连群在啤酒糖酵母基因组序列中的位置。毗连群(实线)用分别来自鸟枪和粘粒读数(read)的正向和反向连接线(点线)连接。
图5显示基于DNA微阵列的比较性基因组杂交的结果。菌株34/70的基因组DNA与DNA微阵列(Affymetrix Gene Chip Yeast Genome S98Array)杂交,而每一ORF(开放阅读框)的信号相对于单倍体菌株S288C的信号进行标准化,并以Signal Log Ratio(2n)显示。SignalLog Ratios按染色体XVI中的基因顺序画出线条。非Sc类型基因不与此Sc类型阵列杂交,因此,Signal Log Ratios显示急剧改变处的点(用箭头指出)被认为是易位的位置。
图6显示从DNA微阵列和PCR的分析所推断出的菌株34/70染色体XVI结构。
图7显示SSU1破坏株和亲代株(BH96)的发酵特征。a)显示酵母的生长(OD 600),b)显示表观提取值(apparent extract)(w/w%)的变化,而c)显示亚硫酸浓度(ppm)。
图8显示SSU1过表达株和亲代株(BH225)的发酵特征。a)显示酵母的生长(OD 600),b)显示表观提取值(w/w%)的变化,而c)显示亚硫酸浓度(ppm)。
图9显示在应用MET14过表达株和亲代株(KN009F和FOY227)的发酵过程中的亚硫酸浓度变化。
图10显示ScSSU1和非-ScSSU1的DNA序列。
图11显示ScMET14和非-ScMET14的DNA序列。
图12显示菌株34/70的发酵特征。a)显示酵母的生长(OD 600),而b)显示表观提取值(w/w%)的变化。
实现本发明的最佳方式
关于本发明中的工业酵母,可例举啤酒、葡萄酒、日本米酒等的酿酒酵母和用于燃料酒精生产的酵母。更具体而言,糖酵母属的酵母等可被列出,而在本发明中,啤酒酵母例如巴斯德氏糖酵母Weihenstephan 34/70,BH 84,NBRC 1951,NBRC 1952,NBRC 1953,NBRC 1954,等可被应用。也有可能应用威士忌酒酵母如啤酒糖酵母NCYC 90等,葡萄酒酵母如Kyokai葡萄酒酵母No.1,No.3,No.4等,日本米酒酵母如Kyokai日本米酒酵母No.7,No.9等。
根据本发明的基因筛选方法的特征在于:(A)工业酵母尤其是作为酿酒酵母中的一种的底部发酵酵母的全部基因组序列被分析,(B)基因组DNA序列与啤酒糖酵母的全部基因组序列进行了比较,(C)与啤酒糖酵母的基因所编码的氨基酸序列有70到97%同一性的底部发酵酵母的氨基酸序列的编码基因被选出,及更进一步地,(D)进行选出基因的功能分析,由此鉴定基因所赋予酵母的酿造特性。
当通过本发明的筛选方法得到的基因被用于进行如下方式的表达调控,即基因在酵母中过表达和/或基因被破坏时,也有可能培育具有极佳酿造特性的酵母。因此,通过本发明的筛选方法得到的基因,该基因所编码的肽,应用该基因培育工业酵母的方法,通过该培育方法得到的酵母,及应用该酵母生产醇或酒精饮料的方法也在本发明的范围之内。
(A)工业酵母的全部基因组序列的测定
工业酵母的全部基因组序列的测定包括步骤有(a)来自酵母的基因组DNA被制备,(b)鸟枪文库和(c)粘粒文库从这些基因组DNA制得,(d)将用于DNA序列测定的DNA片段从那些文库克隆制得,(e)文库DNA片段的DNA序列通过测序反应测定,及(f)那些DNA片段的序列被组装,以重建全部基因组DNA序列。
对于用于(a)到(f)的方法,没有特别的限制,这些方法可根据已知方式操作,而它们的每一项的优选方法在下面提及。
(a)基因组DNA的制备例如提取、纯化等优选根据已知方法进行,例如″Yeast,a practical a pproach(IRL Press,6.2.1,p.228)″和″Seibutukagakujikkennhou,No.39,Experiments in YeastMolecular Genetics(Yasuharu Oshima编,Gakkai Shuppan Center,页84-85,1996)″。DNA制备的优选方法的具体实例在下面提及。
用于制备基因组DNA的酵母细胞通过普通方法培养。关于培养基,任何自然和合成的培养基都可被应用,只要培养基包含能被酵母所代谢的碳源、氮源、无机盐等,微生物的培养能通过这样而有效地进行。例如,YPD培养基(2%(w/w)葡萄糖,1%(w/w)酵母提取物和2%(w/w)聚胨)可被应用。关于培育的方法,推荐在约25-35℃振荡培育过夜。
培养后,细胞通过离心从培养基中提取出来。得到的细胞沉淀用清洗液清洗。清洗液的实例是缓冲液A(50mM磷酸钠,25mM EDTA和1%(v/v)β-巯基乙醇;pH7.5),等。从清洗后的细胞制备基因组DNA可根据基因组DNA的普通制备方法进行,其中细胞壁应用Zymolyase和SDS降解;蛋白质等应用苯酚和苯酚/氯仿溶液除去;而基因组DNA应用乙醇或类似物沉淀。更具体而言,下面的方法可作为实例。
培养的细胞被清洗和重悬浮于缓冲液A中,然后约5-10mg的Zymolyase 100T(Seikagaku Kogyo)被加入,而混合物在25-40℃轻微振荡大约30分钟到2小时。振荡后,含有SDS的缓冲液例如缓冲液B(0.2M Tris-HCl,80mM EDTA和1%SDS;pH9.5)被加入,而混合物被允许置于约60-70℃中大约30分钟以降解细胞。之后,细胞降解物在冰上冷却,与5M乙酸钾混合,并被允许进一步被置于冰上约60分钟。得到的溶液被离心(例如,15℃下以5,000g离心10分钟)以取走上清。等体积的乙醇被加入上清以沉淀DNA,而混合物立即离心(例如,15℃下以5,000g离心10分钟)以得到DNA。得到的沉淀用70%(v/v)乙醇清洗,进行自然干燥并溶解在溶液例如TE缓冲液(10mM Tris-HCl和1mM EDTA;pH8.0)中以给出基因组DNA粗溶液。氯化铯和二苯并亚胺被加入并溶解在基因组DNA粗溶液中,混合溶液进行超离心分离(例如,25℃下以100,000g离心17小时),进行紫外光照射以便DNA条带被看到,而较低的条带被回收。二苯并亚胺通过以氯化铯溶液所饱和的异丙醇提取提取出来的DNA溶液而被除去。然后4倍体积的0.3M乙酸钠被加入提取出的水层,随之混合,DNA通过乙醇沉淀,并通过离心被回收。回收的DNA以RNase处理,并以苯酚/氯仿提取,而DNA再次以乙醇从回收的水层中通过沉淀被纯化。通过离心回收的沉淀以70%(v/v)乙醇清洗,进行自然干燥并溶解在TE缓冲液中以制得基因组DNA溶液。
(b)鸟枪文库的制备
至于应用上述(a)所制得的酵母基因组DNA制备基因组DNA文库的方法,可应用在″Molecular Cloning,A Laboratory Manual,ThirdEdition(2001)″(在此之后缩写为″Molecular Cloning,ThirdEdition″)中提及的方法,而关于制备特别适合测定全部基因组序列的鸟枪文库的制备方法,下面的方法可作为实例。
TE缓冲液被加入(a)中制得的基因组DNA,而基因组DNA应用Hydroshear(GeneMachines制造)或类似物被片段化。基因组片段的末端应用DNA Blunting Kit(Takara Shuzo制造)或类似物被钝化,并通过琼脂糖凝胶电泳的方式分离。然后,约1.5-2.5kb的基因组片段从凝胶中被切出,用于洗脱DNA的缓冲液例如MG-洗脱缓冲液(0.5mol/L乙酸铵,10mmol/L乙酸镁,1mmol/L EDTA和0.1%SDS)或类似物被加入凝胶中,随后在约25-40℃振荡过夜以洗脱DNA。DNA洗脱液以苯酚/氯仿处理并用乙醇沉淀以给出基因组文库插入物。所有上述提及的插入物和某一适当的载体例如pUC18 SmaI/BAP(AmershamBiosciences制造)应用T4连接酶(Takara Shuzo制造)在约10-20℃连接约20-50小时。连接反应产物用乙醇沉淀,得到的重组载体DNA溶于适当数量的TE缓冲液。通过电穿孔方式或类似方式,重组载体DNA被转化到大肠杆菌例如Electro Cell DH5a菌株(Takara Shuzo制造)。推荐电穿孔在所附实验指南中提及的条件下进行。
含有基因组DNA片段的重组载体所插入的转化子在适当的选择性培养基上被选出。例如,当pUC 18 SmaI/BAP被用作载体时,转化子在含有约0.01-0.1mg/mL的氨苄青霉素,约0.1mg/mL的X-gal和约1mmol/L的异丙基-D-硫代吡喃型半乳糖苷(IPTG)的LB平板培养基(含有1.6%琼脂的LB培养基(10g/L细菌用胰蛋白胨,5g/L酵母提取物和10g/L氯化钠;pH7.0))上通过约30-37℃下培育过夜形成白色菌落,因此,选出很容易。转化子在含有约0.1mg/mL氨苄青霉素的LB培养基中约30-37℃下应用384-孔滴定平板培养过夜,与LB相同体积的50%甘油水溶液被加入其中,而混合物被搅拌以给出甘油贮存液。通常甘油贮存液能在约-80℃下保存。
(c)粘粒文库的制备
在(a)中制备的基因组DNA应用适当的限制性酶例如Sau3AI(Takara Shuzo制造)进行部分消化。有可能将Sau3AI所消化的DNA片段插入到质粒载体例如Super CosI载体(Stratagene制造)的BamHI位点中。限制性酶的处理和连接可根据所附的方案进行。通过这样的方法所得到的连接产物应用例如Gigapack III Gold(Stratagene制造)进行包装,并根据所附的实验程序指南将其引入大肠杆菌例如XL1-Blue MR菌株(Stratagene制造)。将其铺展到含有氨苄青霉素的LB平板培养基上,并在约30-37℃培育过夜以得到转化子。得到的转化子在含有约0.1mg/mL氨苄青霉素的LB培养基中约30-37℃下应用96孔滴定平板培养过夜,与LB相同体积的50%甘油水溶液被加入,混合物被搅拌以给出甘油贮存液。通常甘油贮存液能在约-80℃下保存。
(d)用于DNA序列测定的DNA片段的制备
酿酒酵母的全部基因组序列能主要应用全基因组鸟枪方法被测定。其DNA序列被测定的DNA片段能应用上述(b)中制得的鸟枪文库通过PCR制备。具体而言,基因组鸟枪文库的克隆应用复制器(GeneSolution制造)被转接到384孔的滴定平板并无晃动地在约30-37℃下培养过夜,在所述滴定平板上,每一孔都被放入约50μl含氨苄青霉素的LB培养基。应用复制器(Gene Solution制造)或类似物,培养物被转移到384孔的反应平板(AB Gene制造),在所述反应平板上,每一孔都被放入约10μl PCR反应溶液(Takara Shuzo制造的TaKaRaEx Taq),而PCR根据Makino等的方案(DNA Research,卷5,页1-9(1998))或类似方法应用GeneAmp PCR System 9700(AppliedBiosystems制造)或类似设备进行,其中插入的片段被扩增。
过量的引物和核苷酸应用用于PCR产物纯化的试剂盒(AmershamBioscience制造)等除去,而测序反应应用样本作为模板进行。
来自(c)的质粒文库的质粒DNA能以下面的方法制备。也就是,源于质粒文库的克隆被转接到96孔平板的每一孔中并在约30-37℃下振荡培养过夜,所述96孔平板上,每一孔中放入了约1.0mL含氨苄青霉素的适当的培养基例如2 x YT培养基(1.6%细菌用胰蛋白胨,1%酵母提取物和0.5g氯化钠;pH7.0)。来自所述培养物的粘粒DNA能应用KURABO PI-1100 AUTOMATIC DNA ISOLATION SYSTEM(KURABO制造)根据KURABO的指南或类似物而制备,而它们能被用作测序反应的模板。
(e)测序反应
测序反应能应用商业性可得的测序试剂盒等进行。本发明的优选实施例显示如下。
测序反应混合物能按下述制备。上述(d)中制得的PCR产物或粘粒DNA与约2μl的DYEnamic ET Terminator Sequencing Kit(AmershamBioscience制造)和合适的引物混合以给出约8μl的反应混合物。M13正向引物(M13-21)和M13反向引物(M13RV)(Takara Bio制造)等被用于源自鸟枪DNA的PCR产物的测序反应,而正向引物例如SS-cos F.1(SEQ ID NO:7)和反向引物例如SS-cos R.1(SEQ ID NO:8)等被用于粘粒DNA。引物和DNA片段的数量分别是大约1-4 pmole和约50-200ng。
约50到70个循环的染料终止测序反应能应用反应溶液和GeneAmp PCR System9700(Applied Biosciences制造)进行。当商业性可得的试剂盒例如DYEnamic ET Terminator Sequencing Kit被应用时,循环参数参照所附的指南。样本的纯化应用MultiScreen HV平板(Millipore制造)等根据Millipore的指南进行。纯化的反应产物用乙醇沉淀,而得到的沉淀被干燥并在暗处以约4℃储存。干燥的产物应用商业性可得的测序仪和分析仪例如MegaBACE 1000Sequencing System(Amersham Bioscience制造)和ABI PRISM 3700DNA Analyzer(Applied Biosystems制造)等根据所附的指南进行分析。
(f)基因组序列通过组装(其中确定了多个被测序的DNA片段的顺序)而重建
基因组DNA的重建能根据上述(4)中所得到的DNA片段的序列信息进行。基因组DNA序列重建的所有操作能在UNIX
Figure 2007101962668_0
平台上进行。Basecall能通过软件例如phred(The University of Washington)或类似物被操作,载体序列的屏蔽能通过软件例如Cross Match(TheUniversity of Washington)或类似物进行,而组装能通过软件例如Phrap(The University of Washington)或类似物进行。作为组装结果得到的毗连群能应用绘图编辑器例如consed(一个绘图编辑器,TheUniversity of Washington)或类似物而被分析。从base call到组装的系列工作能利用phredPhrap(consed所带的原本)而全部进行。(B)酿酒酵母的全部基因组序列与啤酒糖酵母的那些进行的比较
(A)中得到的全部基因组序列与啤酒糖酵母的那些所进行的比较包括:(g)汇编了质粒两个末端和鸟枪克隆及毗连群的DNA序列中的每一个与啤酒糖酵母基因组序列的比较数据而形成比较数据库,在啤酒糖酵母基因组序列上绘制了它们的图谱。
(g)汇编了质粒两个末端和鸟枪克隆的DNA序列及毗连群的DNA序列之中的每一个与啤酒糖酵母基因组序列的比较数据而形成比较数据库,在啤酒糖酵母基因组序列上绘制了它们的图谱。
广泛应用的工业酵母例如底部发酵酵母(巴斯德氏糖酵母)已被认为是啤酒糖酵母和其密切相关物种(例如巴扬氏糖酵母)的自然杂交体″Int.J.Syst.Bacteriol.volume 35,pages 508-511(1985)″。考虑到上述,(e)中制得的粘粒克隆两个末端的DNA序列通过同源性搜索算法针对啤酒糖酵母基因组序列进行同源性搜索,其中同源区域和每一DNA序列与啤酒糖酵母基因组序列的同一性能被测定,数据库由此能制得。粘粒DNA序列对应于啤酒糖酵母基因组DNA序列的同一性百分比分布图的实例显示在图2中。粘粒的DNA序列粗略分为显示与啤酒糖酵母基因组序列有超过94%同一性的DNA序列组,和显示与其有大约8 4%同一性的DNA序列组。因此,显示超过94%同一性的DNA序列被命名为源于啤酒糖酵母的Sc类型DNA,而显示大约84%同一性的DNA序列被命名为源于啤酒糖酵母密切相关物种的非Sc类型DNA序列,具有Sc类型DNA序列或非Sc类型DNA序列的基因被分别命名为Sc类型基因或非Sc类型基因。
类似地,(e)中制得的鸟枪克隆两端的DNA序列与啤酒糖酵母的基因组DNA序列的比较性数据库被制备。基于从制得的比较性数据库得到的信息,进行粘粒克隆和鸟枪克隆在啤酒糖酵母基因组序列上的图谱绘制(参见,例如图3)。(f)中制得的毗连群的DNA序列与啤酒糖酵母基因组序列的比较性数据库也被制备,而图谱绘制被完成。虽然图谱绘制技术几乎与上述提及的那种相同,但当毗连群通过来自相同粘粒和鸟枪克隆的配对的正向-反向DNA序列连接时,那些毗连群被连接(参见,例如图4)。
(C)与啤酒糖酵母的基因所编码的氨基酸序列具有70到97%同一性的底部发酵酵母的氨基酸序列的编码基因的选出
对与啤酒糖酵母的基因所编码的氨基酸序列具有70到97%同一性的底部发酵酵母的氨基酸序列的编码基因进行选择的方法包括:(h)鉴别ORF(开放阅读框)和功能分配的方法。
(h)ORF和其功能分配的鉴别
对(f)中所组装的DNA序列中的ORF的鉴别被完成。优选的实施例在下面具体提及。关于起始密码子和终止密码子所包围的一定长度DNA序列(例如不少于150个碱基),能应用程序例如用于在六种阅读框包括互补序列中鉴别ORF类型的ORF发现者(http://www.ncbi.nih.gov/gorf/gorf.html)或类似物,进行对存在于(f)中所组装的DNA序列中的ORF的鉴别。
所鉴别的ORF编码的蛋白质的功能分配,能应用例如BLAST(http://www.ncbi.nlm.nih.gov/BLAST/)或类似物针对啤酒糖酵母的ORF的氨基酸序列进行同源性搜索,所述啤酒糖酵母的ORF的氨基酸序列已在Saccharomyces Genome Database(SGD:http://genome-www.stanford.edu/Saccharomyces/)登记和公布。
另一方面,有可能通过基于DNA微阵列的比较性基因组杂交和PCR而分析酿酒酵母的染色体结构。
酵母基因组DNA应用Quiagen Genomic Tip 100/G(10243)和Qiagen Genomic DNA Buffer Set(19060)根据试剂盒所附的指南被制备。DNA(10μg)用DNaseI(Invitrogen制造)根据Winzeler等人的方法(Science,volume 281,pages 1194-1197(1998))而消化,应用末端转移酶(Roche制造)而生物素化,并与DNA微阵列(Affymetrix Gene ChipYeast Genome S98 Array)杂交。杂交和微阵列的信号强度的探测应用Gene Chip Analysis Basic System和Affymetrix制造的分析软件(Microarray Suite 5.0)进行。
与酿酒酵母DNA杂交的每一探针的信号应用分析软件(Microarray Suite 5.0)相对于单倍体实验室酵母株S288C的信号进行标准化,并以信号对数比(2n)显示。信号对数比应用电子制表软件(Microsoft Excel 2000)按每一染色体中的基因顺序画出线条,而信号对数比以柱状图显示(参见,例如图5)。非Sc类型基因不与啤酒糖酵母阵列杂交,因此,Sc类型基因用量影响信号对数比,而信号对数比显示急剧改变处的点被认为是在Sc类型和非Sc类型染色体之间的易位位置。
嵌合染色体结构能被PCR所证实,其中源自酿酒酵母的基因组DNA被用作模板,而Sc类型和非Sc类型鸟枪序列被用作引物。
PCR根据所附指南应用Takara PCR Thermal Cycler SP并使用所附的Takara LA TaqTM和缓冲液完成。
作为PCR的结果,通过0.8%琼脂糖电泳证实了来自酿酒酵母的一定长度的DNA片段被扩增。当实验室菌株的啤酒糖酵母的基因组DNA被用作PCR模板时,没有DNA片段的扩增被探测到。如果扩增自酿酒酵母的DNA片段两个末端的DNA序列被进一步确证,它将与通过鸟枪方法测定的基因组序列一致,而且可以证实这一区域内部发生了Sc类型和非Sc类型染色体之间的易位,嵌合染色体通过所述易位而形成。
(D)源自底部发酵酵母的基因的功能分析
基因功能分析的阶段包括:(i)基因的选出,(i′)基因的克隆,(j)通过破坏对基因进行功能分析,及(k)通过过表达对基因进行功能分析。
(i)基因的选出
对于选出基因进行功能分析的方法,没有特别限制,而优选的方法是,例如,应用上述(h)中得到的功能分配的方法和应用如下所述的DNA微阵列的方法。应用DNA微阵列的方法是,例如,进行基因表达分析以鉴别基因,所述基因在某些条件下显示特征性的表达特性;或者通过探测探针信号强度的差异进行比较性基因组杂交以鉴别基因,该基因具有不同的拷贝数目或不同的DNA序列。
(i′)基因的克隆
上述(i)中选出的基因能根据例如Molecular Cloning,ThirdEdition中提及的普通方法从底部发酵酵母得到。也就是,具有该基因邻近序列的寡核苷酸被合成,而普通PCR克隆方法应用从底部发酵酵母制得的基因组DNA作为模板进行,由此所选出的基因能被分离和得到。关于这样得到的DNA序列,例如有SEQ ID NO:1或NO:2。
当基因被命名为例如基因①时,基因①或用于通过PCR方法扩增基因①的引物也可基于上述序列信息而应用多核苷酸合成仪合成。此外,基因①不仅表示具有与基因①相同DNA序列的DNA片段,也表示在严格条件下与上面的基因杂交的DNA片段。在严格条件下杂交的DNA片段表示通过菌落杂交方法、斑块杂交方法、southern印迹杂交方法或类似方法,应用包含上面所鉴别的基因①序列的DNA片段作为探针而得到的DNA片段。具体而言,如下DNA片段可被列出:显示出与基因①的DNA序列至少具有不少于60%的同一性,优选与其具有不少于80%的同一性,而更优选与其具有不少于95%的同一性。杂交可根据″Molecular Cloning,Third Edition″,″Current Protocols inMolecular Biology,John Wiley & Sons(1987-1997)(在此之后缩写为Current Protocols in Molecular Biology),″DNA Cloning 1:Core Techniques,A Practical Approach,Second Edition,OxfordUniversity(1995)″等资料中提及的方法进行。
更具体而言,含有上述全长基因①的鸟枪克隆能应用(g)中得到的比较性数据库并基于同源性和位置信息等而获得。当鸟枪文库中没有包含所述全长基因的克隆时,编码所述全长基因的DNA片段通过PCR方法制备。例如,含有上述基因的DNA片段应用以SEQ ID NO:13和SEQ ID NO:14所代表的合成的DNA引物对而得到。类似地,应用基于公布的SGD信息所设计的引物对,并应用啤酒糖酵母或底部发酵酵母的基因组DNA作为模板进行FCR,由此制备对应于非Sc类型基因的全长Sc类型基因。例如,应用SEQ ID NO:15和NO:16的合成的寡核苷酸作为引物对,含有Sc类型基因的DNA片段能被得到。
按上述所制备的Sc或非Sc类型的DNA片段被插入,例如,附于TA克隆试剂盒(Invitrogen)的pCR 2.1-TOPO载体(应用了TA克隆试剂盒或类似物),由此制备了分别包含具有Sc和非Sc类型基因的DNA片段的重组载体TOFO/Sc基因和TOPO/非Sc基因。Sc和非Sc类型DNA片段的DNA序列能通过Sanger的方法(″F.Sanger,Science,volume 214,page 1215,1981″)证实。
(j)通过破坏对基因进行功能分析
根据文献″Goldstein,等人,Yeast,volume 15,page 1541,(1999)″的方法,有可能通过PCR制备用于基因破坏的DNA片段,其中含有药物抗性基因的质粒(例如pFA 6a(G418r),pAG 25(nat1))被用作模板。作为PCR的引物对,非-ScSSU1_for(SEQ ID NO:17)/非-ScSSU1_rv(SEQ ID NO:18)或类似物被用于非-ScSSU1破坏,而对于ScSSU1破坏,ScSSU1_for(SEQ ID NO:19)/ScSSU1_rv(SEQ IDNO:20)或类似物被应用。对于非Sc类型基因破坏,也有可能应用质粒例如pPGAPAUR(AUR1-C)和引物对例如非-ScSSU1_for+pGAPAUR(SEQ ID NO:21)/非-ScSSU1_rv+AURI-C(SEQ ID NO:22)。
底部发酵酵母以通过上述方法制得的用作基因破坏的DNA片段转化。转化可遵循Japanese Patent Laid-Open Gazette No.07/303,475中提及的方法。进一步地,用于选择转化子的药物的浓度可通过探查用作受体的酵母的敏感性而恰当地确定。
关于在此制得的转化子,已应用Southern分析证实每一药物抗性基因被引入而所述基因被正确地破坏。具体而言,从亲代菌株和转化子提取的基因组DNA首先被适当的限制性酶所消化,以区分Sc和非Sc类型基因(例如37℃下18小时),然后用1.5%琼脂糖凝胶电泳进行分离并转移到膜上。之后,它们与对Sc类型或非Sc类型基因特异的探针杂交,例如根据Alkphos Direct Labelling Reagents(Amersham)的方案在55℃下18小时,而信号通过CDP-Star探测。
(i′)中得到的基因的功能能通过应用亲代菌株和上述(j)中制得的SSU1破坏体的发酵试验及比较它们的发酵特性而被证实。发酵试验能被完成,例如在下面的条件下应用麦芽汁进行:
初始提取物:    约10-15%
发酵规模:      1-3升
溶解的氧浓度:  约8-10ppm
发酵温度:      约15℃
接种率:        约4-6g湿酵母细胞/L
麦芽汁被定时取样,并对细胞生长(OD 600),表观提取值,参与(i′)中所得到基因的功能的物质的浓度等进行分析。例如,当(i′)中所得到基因的功能参与亚硫酸释放时,发酵过程中麦芽汁里的亚硫酸浓度被分析。亚硫酸的定量分析以如下方式进行,即亚硫酸通过在酸性条件下的蒸馏被捕获在过氧化氢溶液中,并以碱进行滴定(theBrewing Society of Japan的用于BCOJ啤酒分析的修订方法)。
(k)通过过表达对基因进行功能分析
包含非Sc类型全长基因的DNA片段通过合适的限制性酶从(i′)中制得的质粒TOPO/非Sc基因切离。它被插入用于基因表达的载体例如pNI-NUT的克隆位点以构建用于非Sc类型基因过表达的载体(pYI-非Sc类型基因)。载体pNI-NUT包含作为同源重组位点的URA3和作为选择标记的诺尔丝抗性基因(natl)及氨苄青霉素抗性基因(Ampr)。另一方面,用于Sc类型基因(pNI-Sc类型基因)过表达的载体具有一定结构,在所述结构中上述pYI-非Sc类型基因被相应Sc类型基因所替代。对于此处引入的Sc或非Sc类型基因的过表达,优选被组成性表达的基因的启动子和终止子所驱动,例如甘油醛-3-磷酸脱氢酶基因(TDH3)。
底部发酵酵母应用由上述方法所制得的过表达载体转化。转化通过Japanese Patent Laid-Open Gazette No.07/303,475中提及的方法进行,而转化子在合适的选择性培养基上选出。过表达的证实可通过RT-PCR方法等进行。总RNA的提取可应用RNeasy Mini Kit(Qiagen)或类似物根据试剂盒所附的“用于从酵母中分离总RNA”的指南进行。例如,有可能应用ScSSU1_for331(SEQ ID NO:23)/ScSSU1_982rv(SEQ ID NO:24)和非Sc-SSU1_for329(SEQ ID NO:25)/非Sc-SSU1_981rv(SEQ ID NO:26)作为特异性引物对分别用于Sc和非ScSSU1基因的扩增。为扩增作为内在标准的组成性表达的基因,例如PDA1,PDA1_for1(SEQ ID NO:27)/PDA1_730rv(SEQ ID NO:28)等可用作特异性引物对。PCR产物用1.2%琼脂糖凝胶电泳进行分离并用溴乙锭染色探测。所述基因在转化子中的过表达通过PCR产物的数量比较而证实。
(i′)中得到的基因的功能分析能通过应用亲代菌株和上面(k)中制得的过表达菌株的发酵试验进行。发酵试验可在(j)中提及的条件下进行。
根据(j)中提及的相同方法,麦芽汁被定时取样并监测细胞生长(OD600),表观提取值和参与(i′)中所得基因功能的物质的浓度。
关于通过本发明的筛选方法得到的DNA,可以提及含有上面得到的非Sc类型基因的DNA序列的DNA和与所述DNA在严格条件下杂交的DNA。
通过本发明的筛选方法得到的DNA包括单链和双链的DNA,虽然它们是不受限的。与包含上面得到的非Sc类型基因的DNA序列的DNA在严格条件下杂交的DNA包括所述基因编码的蛋白质的密码子的简并突变体。简并突变体表示通过密码子简并而编码相同氨基酸序列的多核苷酸片段,虽然在DNA序列方面,它不同于被本发明所选出的非Sc类型的DNA序列。
其具体实例是具有由SEQ ID NO:1或2所显示的序列的DNA,在严格条件下与所述DNA杂交的DNA,等。在严格条件下杂交的DNA表示通过菌落杂交方法、斑块杂交方法、southern印迹杂交方法或类似方法,应用具有本文上面鉴别出的非Sc类型序列的DNA作为探针而制得的DNA。
杂交可根据″Molecular Cloning,Third Edition″,″CurrentProtocols in Molecular Biology″,″DNA Cloning 1:CoreTechniques,A Practical Approach,Second Edition,OxfordUniversity(1995)″等提及的方法进行。可杂交的DNA的具体实例是当通过用于同源性搜索的软件例如FASTA,BLAST(Smith-Waterman″Meth.Enzym.,volume 164,page 765(1988)″)等应用默认设置(初始设置)的参数进行计算时,与SEQ ID NO:1或2中所显示的DNA序列具有至少不少于60%同一性的DNA,优选具有不少于80%同一性的DNA,而更优选具有不少于95%同一性的DNA。
通过本发明的筛选方法得到的DNA的实例是包含SEQ ID NO:3或4所显示氨基酸序列的多肽的编码DNA或在严格条件下与所述DNA杂交的DNA。
通过本发明的筛选方法得到的DNA所编码的多肽的实例是包含上面所得ORF的DNA序列的DNA编码的多肽,和在严格条件下与所述DNA杂交的DNA编码的多肽,或包含SEQ ID NO:3或4所显示的氨基酸序列的多肽。
进一步地,包含一定氨基酸序列的多肽也包括在本发明中,在所述氨基酸序列中有一个或多个氨基酸残基被缺失和/或替代和/或添加且所述氨基酸序列具有与所述多肽本质上相同的活性。表述“与所述多肽本质上相同的活性”表示此活性与以在缺失、替代或添加之前多肽固有的酶活性或功能所代表的活性相同。所述多肽能通过″Molecular Cloning,Third Edition″,″Current  Protocols inMolecular Biology″,″Nuc.Acids.Res.,volume 10,page 6487(1982)″,″Proc.Natl.Acad.Sci.USA,volume 79,page 6409(1982)″,″Gene,volumn 34,page 315(1985)″,″Proc.Natl.Acad.Sci.USA,volume 82,page 488(1985)″等所提及的位点特异性突变引入法而制备。例如,它能通过引入位点特异性突变到包含SEQ ID NO:3或4所显示氨基酸序列的多肽的编码DNA中而被制备。虽然对缺失和/或替代和/或添加的氨基酸残基的数目没有特别的限制,但数目是在这样的程度之内,即能通过已知方法例如上述位点特异性突变方法而缺失和/或替代和/或添加的程度,也就是一个到数十个,优选1到20,更优选1到10,仍更优选的是1到5。
本发明的多肽氨基酸序列中出现一个或多个氨基酸残基的缺失和/或替代和/或添加表示在同一序列的氨基酸序列的任意一个或多个位置存在一个或多个氨基酸残基的缺失和/或替代和/或添加。那些缺失和/或替代和/或添加可同时发生,而替代或添加的氨基酸残基可以是自然发生的类型或非自然发生类型。自然类型的氨基酸残基的实例是L-丙氨酸,L-天冬酰胺,L-天冬氨酸,L-谷氨酰胺,L-谷氨酸,甘氨酸,L-组氨酸,L-异亮氨酸,L-亮氨酸,L-赖氨酸,L-甲硫氨酸,L-苯丙氨酸,L-脯氨酸,L-丝氨酸,L-苏氨酸,L-色氨酸,L-酪氨酸,L-缬氨酸和L-半胱氨酸等。
能互相替代的氨基酸残基的实例将在下面显示。同一组中的氨基酸残基可互相替代。
A组:亮氨酸,异亮氨酸,正亮氨酸,缬氨酸,正缬氨酸,丙氨酸,2-氨基丁酸,甲硫氨酸,O-甲基丝氨酸,叔丁基甘氨酸,叔丁基丙氨酸和环己基丙氨酸。
B组:天冬氨酸,谷氨酸,异天冬氨酸,异谷氨酸,2-氨基己二酸和2-氨基辛二酸.
C组:天冬酰胺和谷氨酰胺。
D组:赖氨酸,精氨酸,鸟氨酸,2,4-二氨基丁酸和2,3-二氨基丙酸。
E组:脯氨酸,3-羟脯氨酸和4-羟脯氨酸。
F组:丝氨酸,苏氨酸和高丝氨酸。
G组:苯丙氨酸和酪氨酸。
为了使得到的突变后多肽的活性与突变前多肽的活性本质上相同,当以用于分析的软件例如BLAST和FASTA并应用默认设置(初始设置)进行计算时,优选突变后的多肽与突变前多肽的氨基酸序列具有至少60%或更多,通常80%或更多,或者尤其是95%或更多的同一性。
也有可能通过化学合成方法例如Fmoc法(芴基甲氧基羰基方法)、tBoc法(叔丁氧基羰基方法)等生产本发明的多肽。有可能进一步通过应用Advanced ChemTech,Perkin-Elmer,Pharmacia,ProteinTechnology Ins trument,Synthecell-Vega,PerSeptive,Shimadzu等制造的肽合成仪进行化学合成。
当本发明的方法被应用时,有可能测定工业酵母的全部基因组序列,鉴别工业酵母的有用基因,及确定所述基因的功能。存在许多如下情形:工业酵母中的基因在工业上有用,而当基因基于确定的功能被分类时,酵母的特性被阐明,并且用于工业酵母培育的宝贵信息能被得到。例如,当工业酵母是酿酒酵母,那么在酒精饮料生产中参与产量增加和风味改善的基因被鉴别,且万一基因对产量增加或风味改善无益时,基因表达被基因的破坏、反义方法或RNAi方法(参考,例如,非专利文献10)所抑制,由此可以培育显示极佳酿造特性的酵母。如果基因对产量增加、风味改善等有利,那么基因将会,例如,在酵母中过表达,由此可以培育显示工业上有用的极佳的酿造特性的酿酒酵母。
通过本发明筛选方法得到的基因被用于培育有用酵母的实例显示如下。
如上述已经提及的,当产品中的亚硫酸浓度增加时,有可能生产具有极佳风味稳定性的产品。因此,如果通过本发明筛选方法得到的基因对亚硫酸的产生和外流作出贡献,则下述现在成为可能:转化子被培养并表达所述基因,而作为产品中亚硫酸浓度增加的结果,产生具有极佳风味稳定性的产品。
已知底部发酵酵母将从细胞外吸取的硫酸离子还原成亚硫酸离子(SO3 2-)。然而,亚硫酸抑制甘油醛-3-磷酸脱氢酶并降低细胞内ATP的浓度,因此,酵母具有排出亚硫酸的功能以便过量的亚硫酸不会在细胞中积累。SSU1是已被分离出并显示能互补亚硫酸敏感性突变(参考,例如,非专利文献11)的基因。SSU1基因产物包含485个氨基酸残基,结构分析暗示它是具有9-10跨膜结构域的转运体(参考,例如,非专利文献12)。此外,作为应用SSU1过表达菌株的实验的结果,SSU1基因产物参与排出亚硫酸已经得到证明(参考,例如,非专利文献13)。
底部发酵酵母通常具有亚硫酸的高产生能力,而表层发酵酵母则很少产生亚硫酸。通过应用本发明的筛选方法,除了在顶部和底部发酵酵母中都存在的ScSSU1基因之外,也有可能选出对底部发酵酵母特异的非ScSSU1基因。类似地,在编码参与亚硫酸产生的蛋白质的MET14基因的情形中,也可能选出对底部发酵酵母特异的非ScMET14。例如,底部发酵酵母特异的非ScSSU1和非ScMET14的功能强烈参与亚硫酸的高生产能力,其特异于底部发酵酵母,为了培育显示更高亚硫酸生产能力的酵母,强化那些非ScSSU1基因、非ScMET14等是有效的。
那些非ScSSU1基因和非ScMET14被强化的酵母培育方法在实施例中具体提及。
关于在本发明筛选方法所选出基因的引入中用作受体的酵母,没有特别的限制,只要它是酿造可用的酵母,而现在被广泛用作酿酒酵母的任何酵母例如啤酒酵母,包括BH84,NBRC1951,NBRC1952,NBRC1953和NBRC1954都可被应用。此外,威士忌酵母(例如啤酒糖酵母NCYC90),葡萄酒酵母(例如葡萄酒酵母Kyokai No.1,No.3,No.4等)和日本米酒酵母(例如日本米酒酵母Kyokai No.7,No.9等)也可被应用。
关于用于将基因引入上述受体的载体,没有特别的限制,只要它是能在酵母中表达基因的载体,而任何多拷贝质粒(YEp型)、单拷贝质粒(Ycp型)和染色体DNA整合质粒(Yip型)都可被应用。YEp载体的实例是YEp 51(J.R.Broach等,Experimental Manipulation of GeneExpression,Academic Press,New York,83,1983)等;YCp载体的实例是YCp 50(M.D.Rose等,Gene,volume 60,page 237,1987)等;而YIp载体的实例是YIp 5(K.Struhl,等人,Proc.Natl.Acad.Sci.USA,volume 76,page 1035,1979)等。那些质粒已被投入市场而很容易获得。
上述载体可具有其它用于调控基因在酵母中表达的序列,例如启动子、操纵子、增强子、沉默子、核糖体结合序列、终止子等。关于基因组成性表达的启动子和终止子,没有特别限制,只要它在酿酒酵母中发挥功能并独立于产物中的亚硫酸浓度,任何组合都可被应用。至于启动子,例如,有可能应用甘油醛-3-磷酸脱氢酶(TDH3)基因的启动子,磷酸甘油酸激酶(PGK1)基因的启动子等。那些启动子已为人知,例如,PGK1基因在公开已知的文献例如M.F.Tuite等,EMBOJ.,volume 1,page 603(1982)中被详细提及,且很容易获得。
调节所引入基因的表达的上述其它序列并不一定要由载体提供,只要通过本发明的筛选方法得到的DNA包括了它们。当这类其它序列不被包含在所述DNA中时,优选其它序列被分别制备并连接到所述DNA。或者,甚至在需要更高表达水平或表达的特异调节的情形中,适合这一目的的其它序列也被连接到所述DNA。
上面的载体转化到受体中的方法可按照已知的程序进行。例如,下面的方法可被应用:电穿孔方法″Meth.Enzym.,volume 194,page182(1990)″,原生质球方法″Proc.Natl.Acad.Sci.USA,volume75,page 1929(1978)″,醋酸锂方法″J.Bacteriology,volume 153,page163(1983)″,″Proc.Natl.Acad.Sci.USA,volume 75,page1929(1978)″中提及的方法,等。
更具体而言,受体被培养在标准酵母营养培养基(例如YEPD培养基″Genetic Engineering,vol.1,Plenum Press,New York,117(1979)″,等)中以便600nm处的吸收值成为1-6。细胞通过离心收集,清洗,并以碱金属离子或优选浓度为约1M-2M的锂离子进行预处理。细胞在约30℃培育约60分钟后,它们与将被引入的DNA(约1-20ug)在约30℃一起培育约60分钟。聚乙二醇或优选约4,000道尔顿的聚乙二醇被加入而最终浓度将是约20%-50%。培育在约30℃进行约30分钟后,细胞被进行约42℃下大约5分钟的加热处理。优选细胞悬浮液以标准酵母营养培养基清洗,并被放置在预定量的新鲜标准酵母营养培养基中,然后在约30℃培育约1小时。培育后,它被铺展在合适的选择性培养基平板上。
除上述之外,对于一般性克隆技术,参考″Molecular Cloning,Third Edition″,″Me thods in Yeast Genetics,A Labofatory Manual(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,NY)″,等。
关于用于转化的选择性标记,在酿酒酵母的情形中不可能应用营养缺陷型标记,因此,G 418-抗性基因(G418r),铜-抗性基因(CUP1)″M.Marin,等人,Proc.Natl.Acad.Sci.USA,volume 81,page337,1984″,serulenin-抗性基因(fas2m,PDR 4)″Atsushi Inogoshi,等人,Seikagaku,volume 64,page 660,1992″,″M.Hussain,等人,Gene,volume 101,page 149,1991″,等可被应用。
根据本发明培育的酿酒酵母并非与亲代菌株在酵母的生长和发酵能力方面有差异。因此,原料、生产设备、生产控制等可与传统方法中的那些完全相同,这是本发明的一个重要方面。然而不言而喻的是,如果需要,条件如发酵周期可依个案而改变。例如,当酿酒酵母的亚硫酸排出能力被强化且酒精饮料应用这种酵母生产时,只有产品中的亚硫酸含量发生变化,与应用亲代菌株的情形之间在酵母的生长和发酵能力方面的差异也就不存在。因此,原料、生产设备、生产控制等可与传统方法中的那些完全相同,而亚硫酸含量增加且风味被改善的酒精饮料生产的成本没有增加。
(E)本发明的DNA阵列的生产
本发明的DNA阵列能基于上面(f)中得到的ORF的DNA序列信息而产生。实例包括包含固体支持物的DNA阵列,以下多核苷酸中的至少一种附着于所述固体支持物:包含上面(f)项得到的DNA序列的多核苷酸;在严格条件下与所述多核苷酸杂交的多核苷酸;及包含所述多核苷酸的DNA序列中10到200个连续核苷酸的多核苷酸。实例还包括包含固体支持物的DNA阵列,以下多核苷酸中的至少一种附着于所述固体支持物:编码包含如上面(h)所得氨基酸序列的多肽的多核苷酸;在严格条件下与所述多核苷酸杂交的多核苷酸;包含所述多核苷酸的DNA序列中10到200个连续碱基的多核苷酸;及包含从上面(h)推导出的两个ORF间的基因间DNA序列的多核苷酸。
本发明的DNA阵列包括本领域已知的基底层如DNA芯片、多核苷酸阵列及DNA微阵列和DNA巨阵列(macroarray),或类似物,并包含固体支持物和附着于固体支持物表面的片段的多个多核苷酸。作为附着于固体支持物的多核苷酸或寡核苷酸,上面(f)项和(h)项中得到的本发明的多核苷酸或寡核苷酸能被应用。下述的分析能通过将多核苷酸或寡核苷酸以高密度附着至固体支持物而有效完成,虽然高固定密度并非总是必需。实现高密度的装置如阵列机器人或类似物可商业性地从Takara Shuzo(GMS417 Arrayer)获得,而商业性可得的产品能被应用。本发明的寡核苷酸也能在固体支持物上通过光蚀刻方法或类似方法(Nat.Genet.21,20-24(1999))被直接合成。在此方法中,能由光照射除去的具有保护性基团的连接物被首先附着于固体支持物如载玻片或类似物。然后,它通过遮光板(mask)(光蚀刻遮光板)(允许光只在附着部分的确定部分透过)被光照射。接下来,具有能由光照射除去的保护性基团的寡核苷酸被加到这部分。因此,核苷酸的连接反应只出现在被照射部分。通过重复此程序,每一个都具有所需序列的彼此不同的寡核苷酸能在各自的部分被合成。通常,将被合成的寡核苷酸具有10到30个核苷酸的长度。用于DNA阵列生产的方法没有特别的限制,而此方法可根据已知的方式被操作,而它们所有类型中优选的方法在下面被提及。
(l)DNA阵列的产生
(l)-1固体支持物
多核苷酸或片段能附着于其表面的任何材料都能用作本发明DNA阵列的固体支持物。固体支持物的材料和形状没有特别的限制,而优选的材料是某些作为材料的香树脂例如聚碳酸酯、塑料或类似物,作为固态的材料和板样和膜样。
(l)-2寡核苷酸的选择
将被固定在本发明DNA阵列的平板上的寡核苷酸的实例如下。基于上面(h)中得到的ORF的DNA序列和/或从上面(h)推导来的基因间DNA序列,独有和互补性的针对酿酒酵母全基因组序列的探针(PMProbe;Perfect Match Probe)能应用产生探针的一定方法如GeneChip
Figure 2007101962668_1
(Affymetrix)技术或类似物而设计。这些探针的实例是:(i)寡核苷酸,其具有10到30个存在于工业酵母的全部基因组序列的开放阅读框中的核苷酸,该核苷酸不存在于所述全部基因组序列中除所述10到30个核苷酸序列区域之外的区域中,(ii)寡核苷酸,其具有(i)中所述寡核苷酸的DNA序列的互补DNA序列,(iii)在严格条件下与(i)和(ii)中所述寡核苷酸杂交的寡核苷酸。这些探针的其它实例是:(iv)寡核苷酸,其具有10到30个存在于工业酵母的全部基因组序列的非编码区域中的核苷酸,该核苷酸不存在于所述全部基因组序列中除所述10到30个核苷酸序列区域之外的区域中,(v)具有(iv)中所述寡核苷酸的DNA序列的互补DNA序列的寡核苷酸,(vi)在严格条件下与(iv)和(v)中所述寡核苷酸杂交的寡核苷酸。这些寡核苷酸的核苷酸数目没有限制,但优选10到30个核苷酸。每个座位可以设计11-50个探针,但主要集中于每个座位的3′引物侧,因为每个座位使用多套探针能在探测和数据分析中提供冗余度,能减轻偶尔发生的交叉杂交所潜在的混淆效应,可以使所有探针不必为了获得定量信息而进行相同的杂交。为进一步增加探测的敏感度和特异性,每一PM探针能根据密切相关的错配探针(MM探针)而被设计,除了一个错配碱基也就是碱基13外,所述错配探针与PM探针一样。在本发明中应用的寡核苷酸的优选长度是26个碱基,但不存在对于寡核苷酸长度的特殊限制。
(l)-3将寡核苷酸附着于固体支持物
对于用来将寡核苷酸附着于固体支持物的方法,不存在特殊限制,此方法可根据已知的方式被操作,而优选的方法在下面提及。例如,所有按上面((l)-2)设计的PM和MM探针能应用一定方法如GeneChip
Figure 2007101962668_2
技术或类似物而被附着于固体支持物表面以产生DNA阵列。
对于应用DNA微阵列的分析所用的方法,不存在特殊限制,而对于它们每一个而言是优选的方法在下面提及,也就是,用于鉴别在一定条件下显示出特征性的表达特性的基因的基因表达分析、工业酵母的分类、核苷酸多态性的探测及选择进行功能分析的基因的实例在下面提及。
(m)基因表达分析
酿酒酵母的基因表达分析能应用本发明的根据(l)中所述方法而产生的DNA阵列进行。应用DNA阵列,根据培养基以及环境的变化,有可能鉴别高度可诱导或可还原的基因。也有可能应用DNA阵列在酿造中鉴别Larger酿酒酵母的特异性基因。但不限于这些实例。
基因表达分析包括工业酵母的培养,mRNA的制备,标记的cRNA(或cDNA)的合成,杂交和数据分析。对于基因表达分析的方法,不存在特殊限制,而对它们每一个而言是优选的方法在下面提及。
(m)-1在多种条件下培养工业酵母
工业酵母能在用于任何目的的多种条件下培养。例如,用于鉴别对培养基的组成变化起反应的基因的培养能按下述进行。工业酵母能在富含锌的培养基如LZMM培养基+40μM硫酸锌中于30℃振荡培养过夜。LZMM培养基含有0.17%酵母氮基w/o氨基酸(DIFCO制造),0.5%硫酸铵,20mM柠檬酸钠(pH4.2),125μM MnCl2,10μM FeCl2,2%麦芽糖,10mM EDTA(pH8.0)或类似物。收集细胞并以消毒过的蒸馏水清洗三次。足量的细胞在以下培养基中接种到光学密度(OD600)为0.25或类似:1)除去锌的培养基(LZMM培养基)或类似物,2)加入锌的培养基(LZMM+40uM硫酸锌)或类似物,3)氧化压力培养基(LZMM+40uM硫酸锌+2mM H2O2)或类似物,4)缺少碳源的培养基(从上面LZMM+40uM硫酸锌中除去了麦芽糖)或类似物。细胞在30℃下生长6小时左右,并被收集用于RNA制备。啤酒发酵条件下从发酵试管中提取出的细胞能被用于下面的实验。
(m)-2mRNA的制备
总RNA的制备能应用RNeasy
Figure 2007101962668_3
Mini Kit(QIAGEN制造)或类似物根据指南进行。Poly(A)+来自总RNA的mRNA的制备应用OligotexDirect mRNA试剂盒(QIAGEN制造)或类似物根据指南进行。用于制备mRNA的方法没有特别的限制,方法可根据已知的方式操作。
(m)-3标记cRNA的合成
标记cRNA的合成能应用BioArray HighYield RNA TranscriptLabeling Kit(Affymetrix制造)或类似物根据指南进行。生物素能被用于标记。用于标记cRNA的合成方法没有特别的限制,方法可根据已知的方式操作。
(m)-4杂交
5μg的生物素标记cRNA,1.7μl的3nM ControlOligonucleotide B2(Affymetrix制造),5μl的20X EukaryoticHybridization Controls(Affymetrix制造),1μl的10mg/mlHerring Sperm DNA(Affymetrix制造),1μl的50mg/ml乙酰化BSA(Affymetrix制造),50μl的2X Hybridization缓冲液(Affymetrix制造)被混合,并加水(Affymetrix制造)至终体积为100μl,并根据Affymetrix的技术指南与DNA阵列杂交。杂交16小时后,杂交混合物被除去,而DNA阵列应用GeneChip
Figure 2007101962668_4
Fludics Station(Affymetrix制造)或类似物清洗,并根据Affymetrix的技术指南用链霉亲和素藻红素(300μl的2X MES Stain Buffer(Affymetrix制造),24μl的50mg/ml乙酰化BSA(Affymetrix制造),6μl的1mg/ml链霉亲和素-藻红素(Affymetrix制造),270μl的水(Affymetrix制造))染色。用于杂交的方法没有特别的限制,方法可根据已知的方式操作。
(m)-5数据分析
DNA阵列的数据分析能根据技术指南应用商业性可得的软件(例如Affymetrix制造的GCOS(GeneChip Operating Software),SiliconGenetics制造的GeneSpring,Takara Shuzo制造的ImaGene,FujiPhoto Film制造的Array Gauge,Amer sham Pharmacia Biotech制造的ImageQuant或类似物)进行。显示特征性表达特性的基因能被鉴别,并被选出用于功能分析。
此外,被鉴别的基因能被用作基因标记以指出发酵过程中的酵母状态。
用于数据分析的方法没有特别的限制,方法可根据已知的方式操作。
(n)工业酵母的分类
有可能应用上面提及的DNA阵列对工业酵母分类。酵母基因组DNA的制备和与DNA阵列的杂交可如前所述进行。阵列信号强度的探测应用Affymetrix制造的Gene Chip Analysis Basic System和分析软件(GCOS;GeneChip Operating Software 1.0)进行。与酿酒酵母DNA杂交的探针的百分比被计算,而菌株34/70和被试验菌株之间的同一性被评估。工业酵母菌株能基于同一性而分类。
(o)核苷酸多态性的探测
有可能通过与上面提及的DNA阵列的比较性基因组杂交而探测核苷酸多态性。每一探针的一套寡核苷酸由完全匹配寡核苷酸(PM)和错配寡核苷酸(MM)组成,前者与菌株34/70的序列一致,后者包含单个碱基的错配,例如,在寡核苷酸的中心位置。有可能从其在MM中的信号强度高于(例如,超过5倍)PM中的信号强度的基因探测核苷酸多态性。
(p)用作功能分析的基因的选出
根据比较性基因组杂交分析的结果,具有显示低信号强度的探针组的基因可能被丢失了或具有与菌株34/70的序列不同的序列。相反地,具有显示高信号强度的探针组的基因可具有高拷贝数目。这类基因能被选用于功能分析,因为其基因座位可对菌株34/70和被试验菌株之间的发酵特性差异作出贡献。具有通过上面提及的方法而探测到的核苷酸多态性的基因也能被选用于功能分析。
实施例
本发明的细节以下面的实施例被提及,虽然本发明不局限于下面的实施例。
(实施例1)巴斯德氏糖酵母Weihenstephan 34/70(在此之后缩写成菌株34/70)的染色体DNA的制备
染色体DNA的制备通过″Yeast,a practical approach(IRLPress)6.2.1(pages 228-229)″中提及的方法进行,该方法被部分修改。细胞被接种并以30℃生长在200mL的YPD培养基(2%葡萄糖,1%酵母提取物和2%聚胨)中直到培养物的660nm处吸收值变成4。细胞通过离心收集,并以缓冲液A(50mM磷酸钾,25mM EDTA和1%(v/v)β-巯基乙醇;pH7.5)清洗,重悬浮在25mL的缓冲液A中,而7mg的Zymolyase 100T(Seikagaku Kogyo)被加入其中,混合物在37℃被适度振荡60分钟。25mL的缓冲液B(0.2M Tris-HCl,80mMEDTA和1%SDS;pH9.5)被加入其中,然后混合物被允许置于65℃下30分钟,冰上冷却,与12mL的5M醋酸钾混合,并被允许置于冰上又一个60分钟。得到的溶液以5,000g在15℃离心10分钟。相同体积的乙醇被加入到回收的上清以沉淀DNA,而混合物立即以5,000g在15℃离心10分钟以收集沉淀。得到的沉淀以70%(v/v)乙醇清洗,进行自然干燥并溶于5mL的TE缓冲液(10mM Tris-HCl和1mM的EDTA;pH8.0)以给出DNA的粗溶液。氯化铯(4.06g)和840μg的二苯并亚胺(Hoechst 33258)被加入并溶于3.5mL的DNA粗溶液,混合物以100,000g在25℃进行17小时的离心分离,并暴露于紫外光以使DNA条带可见,更低的条带被回收。回收的DNA溶液以用氯化铯溶液饱和的异丙醇进行提取以除去二苯并亚胺(Hoechst 33258)。4倍体积的0.3M醋酸钠被加入回收的水层,随后混合,然后3倍体积的乙醇被加入其中以沉淀DNA,所述DNA通过离心被回收。回收的DNA溶于包含75μg/mL RNase的TE缓冲液中,37℃保持5分钟,以苯酚/氯仿提取三次,水层被进一步以乙醇进行沉淀。通过离心回收的沉淀以70%(v/v)乙醇清洗,进行自然干燥并溶于TE缓冲液中以制备染色体DNA溶液。
(实施例2)鸟枪文库的制备
实施例1中制得的菌株34/70的基因组溶液浓度应用TE缓冲液被调至1mg/mL,而它的0.1mL被用Hydroshear(GeneMachines制造;速度:6;循环:20次)处理以片段化基因组DNA。基因组片段的末端应用DNA Blunting Kit(Takara Shuzo制造)钝化,以0.8%琼脂糖电泳分离,而1.5到2.5kb的基因组片段被从胶中切下,DNA被洗脱。DNA洗脱液用苯酚/氯仿处理,并用乙醇沉淀以给出基因组文库插入物。所有上面的插入物和0.5μg的pUC18 SmaI/BAP(AmershamBiosciences制造)在15℃应用T4连接酶(Takara Shuzo制造)进行连接,连接15小时。
连接反应产物以乙醇沉淀并溶于10μL的TE缓冲液中。连接溶液(1μL)以电穿孔方式在所附实验指南中提及的条件下被插40μL的大肠杆菌Electro Cell DH5a(Takara Shuzo制造)中。得到的产物铺展在含有0.1mg/mL的氨苄青霉素,0.1mg/mL的X-gal和1mmol/L的异丙基-D-硫代吡喃型半乳糖苷(IPTG)的LB平板培养基(含有1.6%琼脂的LB培养基(1%细菌用胰蛋白胨,0.5%酵母提取物和1%氯化钠;pH7.0)),并在37℃培养过夜。
从所述平板培养基上形成的菌落得到的转化子在加入了50μL含有0.1mg/mL的氨苄青霉素的LB培养基的384孔滴定平板中进行37℃下的无振荡培养过夜,然后50μL的50%甘油水溶液被加入其中,随后搅拌,混合物被用作甘油贮存液。
(实施例3)粘粒文库的制备
约0.1mg的实施例1中得到的基因组DNA以Sau 3AI(TakaraShuzo制造)部分消化。片段到Super CosI载体(Stratagene制造)的BamHI位点中的插入根据指南进行。通过此方法制得的连接产物应用Gigapack III Gold(Stratagene制造)进行包裹,并根据指南被引入大肠杆菌XL1-Blue MR菌株(Stratagene制造)。它在含有0.1mg/mL的氨苄青霉素的LB平板培养基上铺展,并在37℃培育过夜。得到的转化子应用96孔的滴定平板在含有0.1mg/mL的氨苄青霉素的LB培养基(每孔50μL)中37℃培养过夜,然后50μL的50%甘油溶液被加入其中,随后搅拌,混合物被用作甘油贮存液。
(实施例4)DNA序列的测定
(4-1)DNA片段的制备
菌株34/70的全部基因组序列主要应用全基因组鸟枪方法测定。其DNA序列将被通过那一方法测定的DNA片段从上面实施例2中制得的鸟枪文库通过PCR方法制备。具体而言,源于全基因组鸟枪文库的克隆应用复制器(Gene Solution制造)接种到384孔的滴定平板,50μL含有0.1mg/mL的氨苄青霉素的LB培养基被置于所述滴定平板的每一孔中,并在37℃无振荡培养过夜。所述培养液用复制器(GeneSolution制造)被转移到含有10μL用于PCR的反应混合物(TakaraShuzo制造的TaKaRa Ex Taq)的384孔反应平板(AB Gene制造),PCR根据Makino等″DNA Research,volume 5,pages 1-9(1998)″的方案应用GeneAmp PCR System 9700(Applied Biosystems制造)进行以扩增插入片段。之后,过量的引物和核苷酸通过PCR产物纯化试剂盒(Amersham Bioscience制造)除去,而测序反应应用纯化的PCR样品作为模板进行。
来自上面实施例3的粘粒文库的DNA片段根据下面的方法制备。也就是,源于整个粘粒文库的克隆被接种到96孔平板的每一孔(其中放入了1.0mL含有50μg/mL氨苄青霉素的2x YT培养基(1.6%bactotrypsin,0.1%酵母提取物和0.5%氯化钠;pH7.0))中,并进行30℃振荡培养过夜。粘粒DNA应用KURABO PI-1100 AUTOMATIC DNAISOLATION SYSTEM(KURABO制造)根据KURABO的指南由所述培养物制得,并被用作测序反应的模板。
(4-2)测序反应
测序反应混合物按下述制备。上面(4-1)中制得的PCR产物或粘粒DNA与约2μL的DYEnamic ET Terminator Sequencing Kit(Amersham Bioscience制造)及适当的引物混合以给出约8μL的反应混合物。M13正向引物(M13-21)和M13反向引物(M13RV)(Takara Bio制造)被用于源于鸟枪DNA的PCR产物的测序反应,而正向引物SS-cos F.1(SEQ ID NO:7)和反向引物SS-cos R.1(SEQ ID NO:8)被用于粘粒DNA。引物和DNA片段的数量分别是3.2pmol和50到200ng。所述反应溶液应用GeneAmp PCR System 9700进行60个循环的染色终止子测序反应。循环参数参照DYEnamic ET TerminatorSequencing Kit所附的指南。样品的纯化应用Multin Screen HV Plate(Millipore制造)根据Millipore的指南进行。纯化的反应物在暗处4℃保存。所述纯化的反应物应用Mega BACE 1000 Sequencing System(Amersham Bioscience制造)和ABI PRISM 3700 DNAAnalyser(Applied Biosystems制造)根据其所附指南进行分析。通过Mega BACE 1000 Sequencing System得到的332,592个序列的数据和通过3700 DNA Analyser得到的13,461个序列的数据被转移到服务器Enterprise 6500(Sun Microsystems制造)并保存。346,053个序列的数据对应于约7倍的全基因组大小。
实施例中所用的PCR引物的清单在表3中显示。
(实施例5)组装(确定多个被测序的DNA片段的顺序)
从上面实施例4中得到的346,053个序列的DNA片段的序列信息进行基因组DNA序列重建的所有工作在UNIX
Figure 2007101962668_5
平台上进行。Base call通过phred(The University of Washington)进行,载体序列的屏蔽应用Cross_Match(The University of Washington)进行,而组装应用Phrap(The University of Washington)或类似物进行。作为组装结果得到的毗连群应用绘图编辑器consed(The University ofWashington)而被分析。从base call到组装的系列工作全都利用consed所附的原本phredPhrap而进行。
(实施例6)相对于啤酒糖酵母全部基因组序列的比较性数据库的制备
巴斯德氏糖酵母被认为是啤酒糖酵母与其密切相关物种的自然杂交体″Int.J.Syst.Bacteriol.,volume 35,pages508-511(1985)″。因此,(4-2)中得到的粘粒DNA克隆的两端DNA序列(包含10,044个碱基)都通过同源性搜索算法针对啤酒糖酵母基因组序列进行同源性搜索,由此,对于每一DNA序列,在啤酒糖酵母基因组序列上的同源区域进行比对,并确定它们的同一性以制备数据库。相对于对应的啤酒糖酵母基因组DNA序列的粘粒DNA序列的同一性分布表在图2中显示。粘粒的DNA序列粗略分为显示与啤酒糖酵母基因组DNA序列有不少于94%同一性的DNA序列组,和显示与其有大约84%同一性的DNA序列组。显示不少于94%同一性的DNA序列组被命名为源于啤酒糖酵母的Sc类型的DNA序列,而显示大约84%同一性的DNA序列组被命名为源于密切相关物种的非Sc类型的DNA序列。类似地,(4-1)中得到的鸟枪克隆两端的DNA序列与啤酒糖酵母的基因组DNA序列的比较性数据库(表1)被制备。表1显示3,648-粘粒克隆两端DNA序列与啤酒糖酵母的基因组DNA序列的比较性数据库的实例。表1显示了每一啤酒糖酵母基因组DNA序列上进行DNA序列测定的粘粒正向序列和反向序列的同源区域及同一性。
表1
粘粒名称   正向链   反向链
匹配的啤酒糖酵母基因组碱基序列信息   匹配的啤酒糖酵母基因组碱基序列信息
  序列长度(碱基)   相同的长度(碱基) 染色体编号   起始位置(碱基)   终止位置(碱基)   同一性(%)   序列长度(碱基)   相同的长度(碱基) 染色体编号   起始位置(碱基)   终止位置(碱基)    同一性(%)
SSL052 A06   627   625 XVI   15,940   16,565   98.7   626   625 XVI   52,979   52,354     98.7
SSL023 D02   346   341 XVI   16,784   17,125   87.3   633   629 XVI   66,017   65,388     90.5
SSL015 E09   630   625 XVI   39,030   39,655   89.5   615   614 XVI   81,655   81,041     97.9
SSL029 B08   664   660 XVI   45,916   45,256   99.3   650   647 XVI   8,604   9,151     98.8
SSL028 G10   656   655 XVI   47,609   46,954   98.3   646   641 XVI   10,359   11,000     98.0
SSL008 E01   622   620 XVI   46,362   46,982   93.4   589   587 XVI   86,022   85,435     98.3
SSL030 G05   632   631 XVI   47,013   47,644   99.2   618   617 XVI   87,004   86,387     99.5
SSL032 H10   646   645 XVI   52,076   51,431   98.1   637   636 XVI   13,273   13,909     98.7
SSL041 G05   635   634 XVI   52,979   52,345   99.4   619   618 XVI   9,825   10,443     99.4
SSL031 D08   659   658 XVI   52,297   52,955   99.2   638   637 XVI   92,295   91,658     99.1
SSL069 F11   417   414 XVI   55,053   55,467   88.5   788   787 XVI   97,115   96,328     94.4
SSL005 A10   647   645 XVI   65,233   64,588   99.2   527   516 XVI   21,537   22,053     81.8
SSL01 4G07   628   627 XVI   65,229   65,856   99.8   621   620 XVI   103,674   103,054     99.2
基于由所制得的比较性数据库得到的信息,粘粒克隆和鸟枪克隆在啤酒糖酵母基因组序列上的图谱绘制被完成(图3)。此外,实施例5中得到的毗连群DNA序列和啤酒糖酵母基因组序列的比较性数据库(表1)被制备,然后进行图谱绘制。虽然用于图谱绘制的方式几乎与上面提及的方法相同,但如果粘粒和鸟枪克隆的正向和反向序列出现在不同毗连群中,则这些毗连群通过正向-反向连接而连接起来(图4)。
(实施例7)ORF功能的鉴别和分配
进行对实施例5所组装的DNA序列中的ORF(开放阅读框)的鉴别。实施例具体显示如下。对存在于实施例5所组装的DNA序列中的ORF的鉴别,应用可得的用于在六种阅读框中鉴别ORF类型的ORFfinder(http://www.ncbi.nih.gov/gorf/gorf.html)程序,在从起始密码子到终止密码子的长度不少于150个碱基的序列(包括其互补序列)中进行。所抽选ORF的功能的分配通过对啤酒糖酵母ORF的氨基酸序列(已在SGD中登记并公开)的同源性搜索而完成。表2显示了对应于非Sc基因组中所存在ORF的功能的分配结果的啤酒糖酵母ORF名称的例子。从表的左侧开始,酿酒酵母中存在的ORF的名称,多核苷酸中的ORF长度,多肽中的ORF长度,通过同源性搜索确定的啤酒糖酵母ORF的名称,同一性,吻合长度及基因的功能都被显示。
表2
ORF名称   ORF长度(bp)     ORF长度(aa) 同源基因名称 同一性(%)     吻合长度(aa) 功能
    nonSc-ATF2   1638     545 ATF2   71     535 醇O-乙酰转移酶
    nonSc-THI3   1305     434 THI3   94     431 转录活化子
    nonSc-FUS3   435     144 FUS3   90     139 MAP激酶
    nonSc-ILV5   1188     395 ILV5   97     395 乙酮醇-酸还原异构酶
    nonSc-MET2   1461     486 MET2   93     486 高丝氨酸O-乙酰转移酶
    nonSc-MET10   3108     1035 MET10   87     1035 亚硫酸还原酶(NADPH)
    nonSc-MET14   609     202 MET14   97     202 腺苷酰硫酸激酶
    nonSc-MET16   786     261 MET16   92     261 磷酸腺苷酰硫酸还原酶
    nonSc-TPI1   747     248 TPI1   96     248 丙糖磷酸异构酶
    nonSc-MET3   1536     511 MET3   94     511 硫酸腺苷酰转移酶(ATP)
    nonSc-MET10   3108     1035 MET10   87     1035 亚硫酸还原酶(NADPH)
    nonSc-SAM1   1149     382 SAM1   97     382 甲硫氨酸腺苷转移酶
ORF名称   ORF长度(bp)     ORF长度(aa) 同源基因名称 同一性(%)     吻合长度(aa) 功能
    nonSc-SSU1   1377     458 SSU1   78     457 亚硫酸转运物
(实施例8)通过基于DNA微阵列的比较性基因组杂交和PCR对染色体结构的分析
酵母基因组DNA的制备应用Qiagen Genomic Tip 100/G(#10243:QIAGEN制造)和Qiagen Genomic DNA Buffer Set(#19060:QIAGEN制造)根据试剂盒所附的指南进行。DNA(10μg)用DNase I(Invitrogen制造)根据Winzeler等″Science,volume 281,pages1194-1197(1998)″的方法消化,通过末端转移酶(Roche制造)生物素化,并0与DNA微阵列(Affymetrix Gene Chip Yeast Genome S98 Array:Affymetrix制造)杂交。杂交和阵列信号强度的探测应用Affymetrix制造的Gene Chip Analysis Basic System进行。
与菌株34/70的DNA杂交的每一探针的信号应用分析软件(Microarray Suite 5.0:Affymetrix制造)相对于单倍体实验室酵母株S288C进行标准化,并以信号对数比(2n)显示。信号对数比应用电子制表程序(Microsoft Excel 2000)按每一染色体中的基因顺序画出线条,而信号对数比以柱状图显示在图5中。非Sc类型基因不与啤酒糖酵母阵列杂交,因此,Sc类型基因用量影响信号对数比,而信号对数比显示急剧改变处的点被认为是在Sc类型和非Sc类型染色体之间的易位位置。
基于通过鸟枪法测定的菌株34/70基因组序列,嵌合基因结构被PCR证实,所述PCR中,具有一侧是Sc类型而另一侧是非Sc类型的DNA序列(XVI-1(L)cer-95894(SEQ ID NO:9)/XVI-1(R)nonSc-106302rv(SEQ ID NO:10)和XVI-2(L)cer-859737(SEQ ID NO:11)/XVI-2(R)nonSc-864595rv(SEQ ID NO:12)的两对引物被设计,源于菌株34/70的基因组DNA被用作模板。染色体XVI易位的两个实例显示如下。
PCR应用TaRara LS TaqTM和其所附的缓冲液根据所附指南通过Takara PCR Thermal Cycler SP进行。
作为PCR的结果,通过0.8%琼脂糖电泳证实了预期长度的DNA片段从菌株34/70得到扩增,而当实验株啤酒糖酵母X2180-1A的基因组DNA被用作PCR模板时,DNA片段的扩增无法探测。此外,当从菌株34/70扩增的DNA片段的两端DNA序列被证实时,它与通过鸟枪法测定的基因组序列一致,这证实了Sc类型和非Sc类型染色体之间的易位发生在这样一个区域内。
根据上面的结论估计出,至少两种染色体存在于染色体XVI中,如图6所示。根据同一技术,证实了Sc染色体和非Sc染色体之间的连接,或者换句话说,证实了存在嵌合染色体结构的区域。这类Sc染色体和非Sc染色体的嵌合染色体结构至少在菌株34/70总染色体的13个位置中被证实(图1)。
作为基因组分析的结果,发现了底部发酵酵母的染色体结构非常复杂,且在菌株34/70中至少存在37种染色体。
(实施例9)菌株34/70的SSU1基因的克隆
含有非ScSSU1基因的鸟枪克隆应用实施例6中得到的比较性数据库获得。存在含有约2.4kb片段(包含了全长的非ScSSU1 ORF)的SSS103_G08,其中鸟枪克隆的正向和反向序列与啤酒糖酵母的序列的同一性分别是62.9%和82.9%。
SSS103-G08被从基因组DNA文库中选出,然后全长的非ScSSU1通过PCR制备。合成的SacI-non-Sc-SSU1_for1(SEQ ID NO:13)和BglII-non-Sc-SSU1_rv 1460(SEQ ID NO:14)的DNA被用作引物。作为这一组合的结果,非ScSSU1的碱基1到1460被扩增,而给出了约1.5kb的SacI-BglII片段。
关于ScSSU1基因,全长基因应用基于SGD信息设计的引物对以菌株34/70基因组DNA作为模板由PCR得到。SacI-ScSSU1_for1(SEQID NO:15)和BglII-ScSSU1_rv1406(SEQ ID NO:16)的合成性DNA用作引物。作为这一组合的结果,ScSSU1基因的碱基1到1406被扩增,而给出了约1.4kb的SacI-BglII片段。
如上述得到的ScSSU1和非ScSSU1基因应用TA克隆试剂盒(Invitrogen)插入试剂盒所附的pCR 2.1-TOPO载体中,它们被分别命名为TOPO/ScSSU1和TOPO/非ScSSU1。得到的ScSSU1和非ScSSU1基因的序列通过Sanger″F.Sanger,Science,volume 214,page1215,1981″的方法得到证实(图10)。
(实施例10)每一SSU1基因的破坏
根据文献″Goldstein等人,Yeast,volume 15,page 1541(1999)″中提及的方法,用于基因破坏的DNA片段应用包含药物抗性标记的质粒(pFA6a(G418r),pAG 25(natl))作为模板通过PCR制备。作为PCR的引物,non-Sc-SSU1_for(SEQ ID NO:17)/non-Sc-SSU1_rv(SEQ ID NO:18)被用于非ScSSU1基因的破坏,而ScSSU1_for(SEQID NO:19)/ScSSU1_rv(SEQ ID NO:20)被用于ScSSU1基因的破坏。质粒pPGAPAUR(AUR1-C)和引物non-Sc-SSU1_for+pGAPAUR(SEQ IDNO:21)/non-Sc-SSU1_rv+AURI-C(SEQ ID NO:22)被进一步用于非ScSSU1基因的破坏。这样,用于ScSSU1和非ScSSU1基因破坏的两种和三种DNA片段被分别制备。
应用以上方法制备的用于基因破坏的DNA片段转化底部发酵酵母BH96。转化通过Japanese Patent Laid-Open Gazette No.07/303,475中提及的方法进行,而药物浓度是:遗传霉素为300mg/L,诺尔丝菌素为50mg/L,金担子素A为1mg/L。
关于所制得的转化子,基因破坏由Southern分析所证实。首先,从亲代菌株和破坏株提取到的基因组DNA进行限制性酶处理(37℃或18小时),证实ScSSU1基因破坏用NcoI,而证实非ScSSU1基因破坏用HindIII,然后用1.5%琼脂糖凝胶电泳进行分离并转移到膜上。之后,以对ScSSU1或非ScSSU1特异的探针按照Alkphos DirectLabelling Reagents(Amersham)的草案进行杂交(55℃ 18小时),而信号通过CDP-Star探测。
其基因破坏得到证实的每一菌株命名如下。
Sc-1(ScSSU1/Scssu1::G418r)
Sc-2(scssu1::G418r/Scssu1::natl)
非Sc-1(非ScSSU1/非ScSSU1/非Scssu1::G418r)
非Sc-2(非ScSSU1/非Scssu1::G418r/非Scssu1::natl)
非Sc-3(非Scssu1::G418r/非Scssu1::natl/非Scssu1::AUR1-C)
(实施例11)发酵试验中亚硫酸产生的定量分析
发酵试验应用亲代菌株和实施例10中制得的破坏株Sc-1至非Sc-3在下面条件下进行。
原始提取:12.75%
发酵规模:2升
溶解氧浓度:约9ppm
发酵温度:15℃
接种率:10g的湿酵母细胞/2L的麦芽汁
麦芽汁定期取样并监测细胞生长(OD600)(图7-(a))、表观提取值(图7-(b))和亚硫酸浓度(图7-(c))。麦芽汁中的亚硫酸的定量分析以这样的方法进行,即亚硫酸以酸性条件下蒸馏的方式在过氧化氢溶液中被捕获,并以碱进行滴定(the Brewing Society of Japan的修订的BCOJ啤酒分析方法)。
结果是麦芽汁中ScSSU1破坏株产生的亚硫酸几乎与亲代菌株所产生的相同,而非ScSSU1破坏株产生的亚硫酸显著减少。这暗示底部发酵酵母特异的非ScSSU1基因对麦芽汁中亚硫酸的产生起重要作用。
同时,生长率和提取物消耗率在非ScSSU1破坏株中显著减小,这支持了细胞中过量的亚硫酸导致细胞生长抑制的观点。
(实施例12)每一SSU1基因的过表达
包括全长非ScSSU1 ORF的约1.5kb的片段通过限制性酶(SacI-Bgl II)的处理从实施例9所提及的质粒TOPO/非ScSSU1中被切下。然后此片段插入已被限制性酶(SacI-Bgl II)类似处理的质粒pNI-NUT中,以构建非ScSSU1过表达载体pYI-non-ScSSU1。载体pNI-NUT包含作为同源重组位点的URA3及作为选择标记的诺尔丝菌素抗性基因(natl)和氨苄青霉素抗性基因(Ampr)。另一方面,ScSSU1过表达载体pNI-ScSSU1具有某一结构,其中上述pYI-non-ScSSU1的非ScSSU1基因被源于啤酒糖酵母的约2kb的SSU1-R置换″J.Ferment.Bioeng.,volume 86,page 427(1998)″。甘油醛-3-磷酸脱氢酶基因(TDH3)的启动子和终止子被用于每一SSU1基因的过表达。
底部发酵酵母BH225被按照上述方法制得的过表达载体所转化。转化通过Japanese Patent Laid-Open Gazette No.07/303,475中提及的方法进行,并在含有50mg/L的诺尔丝菌素的YPD平板培养基上进行选择。
过表达的证实通过RT-PCR进行。总RNA的提取应用RNeasy MiniKit(Qiagen)并根据试剂盒所附“用于从酵母分离总RNA”的指南进行。ScSSU1_for331(SEQ ID NO:23)/ScSSUI_982rv(SEQ ID NO:24)被用作ScSSU1特异引物;non-ScSSU1_for329(SEQ ID NO:25)/non-ScSSU1_981rv(SEQ ID NO:26)被用作非ScSSU1特异引物;而PDA1_for1(SEQ ID NO:27)/PDA1_730rv(SEQ ID NO:28)被用作组成性表达基因PDA1(其被用作内在标准)的特异引物。PCR产物用1.2%琼脂糖电泳分离,用溴乙锭溶液染色,转化子的每一SSUI基因的信号值以PDA1的信号值进行标准化并与亲代菌株的值进行比较。这样证实的过表达菌株被命名为ScSSU1过表达菌株和非ScSSU1过表达菌株。
(实施例13)发酵试验中亚硫酸产生的定量分析
应用亲代菌株和每一种实施例12中得到的SSU1过表达菌株的发酵试验在下面的条件下进行。
原始提取:12.83%
发酵规模:2升
溶解氧浓度:约9ppm
发酵温度:12℃
接种率:10g的湿酵母细胞/2L的麦芽汁
如在实施例11中的,麦芽汁被定期取样,并监测细胞生长(OD600)(图8-(a))、表观提取值(图8-(b))和亚硫酸浓度(图8-(c))。关于亚硫酸的产生,与亲代菌株的那些相比(发酵末期为12ppm),它在ScSSU1过表达菌株中只稍微高一些(发酵末期为19ppm),而非ScSSU1过表达菌株显示出明显的增加(同一阶段时为45ppm)。同时,生长速率和提取物消耗速率在亲代菌株和过表达菌株之间没有差异。
根据上面的结果,通过本发明中所示的底部发酵酵母特异的亚硫酸-排出泵编码基因的过表达,有可能增加啤酒中的亚硫酸浓度而不改变发酵过程和发酵周期。结果是,现在有可能生产具有极佳风味稳定性和更长保质期的酒精饮料。
(实施例14)菌株34/70的MET14基因的克隆
非Sc MET14基因的DNA序列从实施例6中得到的比较性数据库获得。含有约1.9kb(全长)的非Sc MET14基因的鸟枪克隆SSS134_021被得到;其正向和反向DNA序列与啤酒糖酵母的同一性分别是79.0%和56.0%。
鸟枪克隆134_021从鸟枪文库选出,而全长的非Sc MET14基因通过PCR得到。作为引物对,SacI-nonSc-MET14_for-21(SEQ ID NO:29)和BamHI-nonSc-MET14_rv618(SEQ ID NO:30)的合成性DNA被应用(表3)。作为这一组合的结果,得到了被SacI和BamHI限制性位点所包含的非Sc MET14基因(约0.6kb)。
(表3)
SEQ ID No. 序列名称 5′-碱基序列-3′
5 M13_for agtcacgacg ttgta
6 M13_rv caggaaacag ctatgac
7 SS-cosF.1 aggcgtatca cgaggccctt tc
8 SS-cosR.1 cttatcgatg ataagcggtc aaacatgag
9 XVI-1(L)cer-96894 cgcaagctcc gtacgttcaa cattcttatg aacggc
10 XVI-1(R)nonSc-106302rv gcatcat cgt cgtgatcctt ctttggcaaa tgcagg
11 XVI-2(L)cer-859737 gcgggtattt tgatggtaaa tctacaagcc ctcggc
12 XVI-2(R)nonSc-864595rv cccagacaca gtttccagta tcatcctcgc agaac
13 SacI-nonScSSU1 for1 gagctcatgg tcgctagttg gatgct
14 BglI1-nonScSSU1_rv1460 agatctcagc ttcagcccaa tccatt
15 SacI-ScSSU1_for 1 gagctcatgg ttgccaattg ggtact
16 BglII-ScSSU1_rv1 406 agatctctcc tacatgaaat gcttgc
SEQ ID No. 序列名称 5′-碱基序列-3′
17 nonScSSU1_for atggtcgcta gttggatgct cactgccaca agggatttcaaccctttcat atcgaatatt ctgtacagct gtttgtcatggttatggggg tcggtatttc ccttgacagt cttgacgtgc
18 nonScSSU1_rv tgttaaatat gtactatcga tagccgagtt tgattcctccacactttcga acagtcttct ccgtcccttc ctctgataaatgctgttgaa aggagaattg cgcacttaac ttcgcatctg
19 ScSSU1_for atggttgcca attgggtact tgctcttacg aggcagtttgaccccttcat gtttatgatg gtcatgggtg tcggcatttcatcgaatatt ctatatagct ccttgacagt cttgacgtgc
20 ScSSU1_rv ttatgctaaa cgcgtaaaat ctagagccga gtttgattcttccacgcttt caatgctgtt atacggagaa actgtcgtcttttccgtacc tgactctgaa cgcacttaac ttcgcatctg
21 nonScSSU1_for+pGAPAUR atggtcgcta gttggatgct cactgccaca agggatttcaaccctttcat gtttgtcatg gttatggggg tcggtatttcatcgaatatt ctgtacagct ccggagctta ccagttctca
SEQ ID No. 序列名称 5′-碱基序列-3′
22 nonScSSU1_rv+AUR1-C tgttaaatat gtactatcga tagccgagtt tgattcctccacactttcga tgctgttgaa aggagaattg acagtcttctccgtcccttc ctctgataaa tcgactctag aggatccaga
23 ScSSU1_for331 tcgaaagcga acacgacgaa
24 ScSSU1_982rv cgacagaaat cacggtgaaa a
25 nonScSSU1_329 tgtcacaaaa atttaccacg ac
26 nonScSSU1_981rv aagggaaatt accgtaaaga ag
27 PDA1_for1 atgtttgtcg cacctgtatc t
28 PDA1_730rv gattagaggc accatcac
29 SacI-nonSc-MET14_for-21 ctcgagctct cgtgaaattc attgaaacaaatg
30 BamHI-nonSc-MET14_rv618 ggatccttat aagatttata gatgcttccg
31 SacI-ScMET14_for ctcgagctca gaaaagttgg aattatttct cca
32 BamHI-ScMET14_rv ggatccaatg tacagtaatc ggtcaaatta
关于Sc MET14基因,全长的结构基因应用基于SGD信息设计的引物对并应用菌株34/70的基因组DNA作为模板通过PCR得到。SacI-ScMET14_for(SEQ ID NO:31)和BamHI-ScMET14_rv(SEQ ID NO:32)的合成性DNA被用作引物。作为这一组合的结果,得到了被SacI和BamHI限制性位点所包含的Sc MET14基因(约0.6kb)。
按上述得到的Sc MET14和非Sc MET14基因应用TA克隆试剂盒(Invitrogen制造)插入到试剂盒所附的pCR2.1-TOPO载体中,且它们被分别命名为TOPO/ScMET14和TOPO/非Sc-MET14。
得到的Sc MET14和非Sc MET14基因的DNA序列通过Sanger″Science,volume 214,page 1215(1981)″的方法核查(图11)。
(实施例15)Sc SSU1过表达菌株中的每一MET14基因的过表达
含有实施例14中提及的Sc MET14或非Sc MET14的约0.6kb的片段被插入表达载体pUP 3GLP(Japanese Patent Laid-OpenGazette No.2000/316,559)的多克隆位点中以构建过表达载体pUP3Sc MET14和pUP3nonSc-MET14,其中每一MET14基因都在甘油醛-3-磷酸脱氢酶启动子和终止子的调控下表达。顶部发酵酵母即菌株KN009F被实施例12中提及的Sc SSU1过表达载体pNI-SSU1转化,以制备作为Sc SSU1过表达菌株的菌株FOY227。菌株FOY227被上面的pUP3ScMET14和pUP3nonSc-MET14转化以制备菌株FOY306和菌株FOY307,在菌株FOY306和菌株FOY307中,Sc MET14和非Sc MET14以及Sc SSU1被分别过表达。
(实施例16)发酵试验中亚硫酸产生的定量分析
在下面的条件下应用实施例15中制得的菌株:作为Sc SSU1过表达菌株的菌株FOY227,作为菌株FOY227中的Sc MET14过表达菌株的FOY306,作为菌株FOY227中的非Sc MET14过表达菌株的菌株FOY307及亲代菌株KN009 F,进行发酵试验。
原始提取:12.84%
发酵规模:1.5升
溶解氧浓度:约9ppm
发酵温度:所有时间都在25℃
接种率:7.5g的湿酵母细胞/1.5L的麦芽汁
如在实施例11中的,麦芽汁被定期取样,并监测细胞生长(OD600)、表观提取值和亚硫酸浓度。关于酵母生长和提取物的消耗量,菌株间没有差异。然而,关于亚硫酸的产生,与亲代菌株KN009F的那些(发酵末期为0.32ppm)相比,它在Sc SSU1过表达菌株FOY227(发酵末期为3.4ppm)和Sc MET14与Sc SSU1过表达菌株FOY306(同一阶段时为6.4)中只稍微高一些,而非Sc MET14与Sc SSU1过表达菌株FOY307显示出明显的增加(同一阶段时为16.6ppm),如图9中所示。
根据上面的结果,发现了本发明中所示的底部发酵酵母特异的腺苷酰硫酸激酶的编码基因的过表达能有效增加啤酒中的亚硫酸浓度而不改变发酵过程和发酵时间。结果是,现在有可能生产具有极佳风味稳定性和更长保质期的酒精饮料。
(实施例17)底部发酵酵母DNA微阵列的生产
底部发酵酵母DNA微阵列基于以下二者的DNA序列信息而被生产:上面(h)中得到的ORF和从菌株34/70的全基因组序列推导出的ORF之间的基因间DNA序列。
DNA微阵列的生产
基于下面四组的DNA序列信息:(1)来自34/70菌株全部基因组序列信息的22483个区域,(2)不与34/70菌株中Sc类型ORF一样的来自SGD的403个啤酒糖酵母ORF,(3)来自Genbank提供的巴斯德氏糖酵母基因的27个区域,(4)用作内在标准的64个基因的DNA序列,对底部发酵酵母的全基因组序列特异的PM探针(完全匹配探针,长25个碱基)应用GeneChip
Figure 2007101962668_6
(Affymetrix)技术设计。
为了得到定量的和可重复的信息,分别针对(1),(2),(3)和(4)的每一座位或区域设计11个探针和20个探针。为进一步增加探测的敏感度和特异性,除了中间位置有一个错配碱基(也就是,碱基13)外具有与PM探针一样的序列的错配探针(MM探针)也被设计。
所有设计的PM和MM探针被合成并被包装在载玻片(Affymetrix制造)中以应用GeneChip
Figure 2007101962668_7
技术生产微阵列。
(1)被包含于:
A)非Sc类型ORF的6307个DNA序列,B)Sc类型ORF的7640个DNA序列,C)来自34/70菌株的线粒体ORF的28个DNA序列,D)没有被鉴别为上述ORF但应用NCBI-BlastX同源性搜索法具有与啤酒糖酵母蛋白质的一定相似性的553个DNA序列,E)如上述A)或B)之间的7955个基因间DNA序列。
(2)被包含于:
YBL108C-A,YBR074W,YFL061W,YIL165C,YGR291C,YJR052W,YDR223W,YAL025C,YAR073W,YFL057C,YLL015W,YJR105W,YLR299C-A,YNR073C,YDL246C,YHL049C,YAR010C,YKL096W,YBL026W,YMR230W,YAL037C-A,YAL037C-B,YAL037W,YAL063C-A,YAL064C-A,YAL064W,YAL065C,YAL068W-A,YAL069W,YAR009C,YAR020C,YAR042W,YAR047C,YAR053W,YAR060C,YAR061W,YAR062W,YBL027W,YBL040C,YBL068W-A,YBL101W-B,YBL109W,YBL112C,YBR092C,YBR191W-A,YBR219C,YCL019W,YCL029C,YCL065W,YCL066W,YCL068C,YCL069W,YCL073C,YCL074W,YCL075W,YCL076W,YCR035C,YCR036W,YCR038W-A,YCR101C,YCR104W,YCR105W,YCR106W,YCR107W,YCR108C,YDL003W,YDL037C,YDL064W,YDL073W,YDL094C,YDL095W,YDL096C,YDL136W,YDL143W, YDL152W,YDL191W,YDL200C,YDL201W,YDL247W-A,YDL248W,YDR014W,YDR015C,YDR034C-D,YDR039C,YDR045C,YDR098C-B,YDR160W,YDR210C-D,YDR210W-B,YDR215C,YDR225W,YDR261C-D,YDR261W-B,YDR292C,YDR302W,YDR304C,YDR305C,YDR342C,YDR344C,YDR364C,YDR365W-B,YDR427W,YDR433W,YDR471W,YDR510C-A,YDR543C,YDR544C,YEL012W,YEL075W-A,YER039C-A,YER046W-A,YER056C-A,YER060W-A,YER074W,YER138C,YER187W,YER188C-A,YER190C-A,YFL002W-A,YFL014W,YFL019C,YFL020C,YFL030W,YFL031W,YFL051C,YFL052W,YFL053W,YFL054C,YFL055W,YFL056C,YFL063W,YFL065C,YFL066C,YFL067W,YFR012W-A,YGL028C,YGL041C,YGL052W,YGL210W-A,YGL259W,YGL262W,YGL263W,YGR034W,YGR038C-B,YGR089W,YGR107W,YGR109W-A,YIL082W-A,YGR122C-A,YGR146C,YGR148C,YGR161W-B,YGR182C,YGR183C,YGR271C-A,YGR290W,YGR295C,YHL009W-A,YHL009W-B,YHL015W-A,YHL046W-A,YHL047C,YHL048C-A,YHL048W,YHR032C-A,YHR032W-A,YHR039C-A,YHR043C,YHR070C-A,YHR071C-A,YHR071W,YHR141C,YHR165W-A,YHR179W,YHR180C-B,YHR180W-A,YHR182W,YHR193C,YHR193C-A,YHR207C,YHR211W,YHR213W-A,YHR216W,YHR217C, YHR218W-A,YIL029C,YIL052C,YIL069C,YIL148W,YIL171W,YIL174W,YIL176C,YIR018C-A,YIR041W,YIR042C,YIR043C,YIR044C,YJL012C-A,YJL014W,YJL062W-A,YJL136C,YJL175W,YJL222W-B,YJR024C,YJR027W,YJR032W,YJR053W,YJR054W,YJR094W-A,YJR107W,YJR110W,YJR111C,YJR140W-A,YJR151C,YJR152W,YJR153W,YJR154W,YJR155W,YJR162C,YKL018W,YKL020C,YKL044W,YKL224C,YKL225W,YKR012C,YKR013W,YKR017C,YKR018C,YKR019C,YKR020W,YKR035C,YKR036C,YKR040C,YKR041W,YKR042W,YKR052C,YKR053C,YKR057W,YKR062W,YKR094C,YKR102W,YKR1Q3W,YKR104W,YLL014W,YLL030C,YLL037W,YLL038C,YLL043W,YLL065W,YLR029C,YLR030W,YLR062C,YLR098C,YLR099W-A,YLR107W,YLR139C,YLR140W,YLR142W,YLR144C,YLR145W,YLR154C-G,YLR154W-A,YLR154W-B,YLR154W-C,YLR154W-E,YLR154W-F,YLR155C,YLR156W,YLR157C-B,YLR157W-C,YLR162W,YLR205C,YLR207W,YLR209C,YLR227W-B,YLR236C,YLR237W,YLR238W,YLR245C,YLR251W,YLR271W,YLR278C,YLR287C-A,YLR305C,YLR306W,YLR311C,YLR317W,YLR338W,YLR344W,YLR345W,YLR354C,YLR364W,YLR380W,YLR401C,YLR402W,YLR410W-B,YLR411W,YLR412C-A,YLR412W,YLR413W,YLR448W,YLR460C,YLR461W,YLR463C,YLR465C,YML003W,YML039W,YML073C,YMR087W,YMR143W,YMR175W-A,YMR247W-A,YMR268W-A,YMR324C,YMR325W,YNL020C,YNL035C,YNL054W-B,YNL243W,YNR034W-A,YNR075C-A,YNR077C,YOL038C-A,YOL053W,YOL101C,YOL103W-B,YOL162W,YOL163W,YOL164W,YOL164W-A,YOL165C,YOL166C,YOL166W-A,YOR050C,YOR096W,YOR101W,YOR192C-B,YOR192C-C,YOR225W,YOR235W,YOR343W-B,YOR366W,YOR381W-A,YOR382W,YOR383C,YOR384W,YOR385W,YOR386W,YOR387C,YOR389W,YPL003W,YPL019C,YPL023C,YPL036W,YPL048W,YPL055C,YPL060C-A,YPL175W,YPL194W,YPL197C,YPL257W-B,YPR002C-A,YPR008W,YPR014C,YPR028W,YPR043W,YPR048W,YPR087W,YPR094W,YPR108W,YPR137C-B,YPR161C,YPR162C,YPR163C,YPR164W,YPR165W,YPR166C,YPR167C,YPR168W,YPR169W,YPR169W-A,YPR170C,YPR170W-A,YPR171W,YPR172W,YPR173C,YPR174C,YPR175W,YPR176C,YPR177C,YPR178W,YPR179C,YPR180W,YPR181C,YPR182W,YPR183W,YPR184W,YPR185W,YPR186C,YPR187W,YPR188C,YPR189W,和YPR190C
(3)被包含于:
GenBank登录号AY130327,BAA96796.1,BAA96795.1,BAA14032.1,NP_012081.1,NP_009338.1,BAA19915.1,P39711,AY130305,AF399764,AX684850,AB044575,AF114923,AF114915,AF114903,M81158,AJ229060,X12576,X00731,X01963
(4)被包含于:
GenBank Accession No.J04423.1,J0423.1,J04423.1,J04423.1,J04423.1,J04423.1,J04423.1,X03453.1,X03453.1,L38424.1,L38424.1,L38424.1,X17013.1,X17013.1,X17013.1,M24537.1,M24537.1,M24537.1,X04603.1,X04603.1,X04603.1,K01391.1,K01391.1,K01391.1,J04423.1,J04423.1,J04423.1,J04423.1,J04423.1,J04423.1,J04423.1,X03453.1,X03453.1,L38424.1,L38424.1,L38424.1,X17013.1,X17013.1,X17013.1,M24537.1,M24537.1,M24537.1,X04603.1,X04603.1,X04603.1,V01288.1,V01288.1,V01288.1,X16860.1,X16860.1,X16860.1,L12026.1,L12026.1,L12026.1,Z75578.1,Z75578.1,Z75578.1,Z75578.1,Z75578.1,J01355.1,J01355.1,J01355.1,J01355.1和J01355.1
(实施例18)在锌缺乏条件下高度可诱导的分子标记的鉴别
1.mRNA的制备
菌株34/70在LZMM培养基+40uM硫酸锌中于30℃下振荡生长过夜。LZMM培养基含有0.17%酵母氮基w/o氨基酸(DIFCO制造),0.5%硫酸铵,20mM柠檬酸钠(pH4.2),125μM MnCl2,10μM FeCl2,2%麦芽糖,10mM EDTA(pH8.0)。收集细胞并以消毒过的蒸馏水清洗三次,随后在500mL下列培养基中接种至光密度(OD600)为0.25∶1)除去锌的培养基(LZMM培养基),2)加入锌的培养基(LZMM+40uM硫酸锌),3)氧化压力性培养基(LZMM+40uM硫酸锌+2mM H2O2),4)碳源缺乏性培养基(从上面的LZMM+40uM硫酸锌中除去麦芽糖)。细胞在30℃生长6小时,并被收集用于RNA制备。
总RNA的制备应用RNeasy
Figure 2007101962668_8
Mini Kit(QIAGEN制造)根据所附指南进行。Poly(A)+来自总RNA的mRNA的制备应用Oligotex DirectmRNA试剂盒(QIAGEN制造)并根据所附指南进行。
2.生物素标记的cRNA的合成
生物素标记的cRNA的合成应用BioArray HighYield RNATranscript Labeling Kit(Affymetrix制造)根据所附指南进行。
3.杂交
5μg的生物素标记的cRNA,1.7μl的3nM ControlOligonucleotide B2(Affymetrix制造),5μl的20X EukaryoticHybridization Controls(Affymetrix制造),1μl的10mg/mlHerring Sperm DNA(Affymetrix制造),1μl的50mg/ml乙酰化BSA(Affymetrix制造),50μl的2X Hybridization缓冲液(Affymetrix制造),和水(Affymetrix制造)混合,终体积为100μl,并根据Affymetrix的技术指南杂交到DNA微阵列。杂交16小时后,杂交混合物被除去,而DNA微阵列应用GeneChip
Figure 2007101962668_9
Fludics Station(Affymetrix制造)清洗,并用600μl的链霉亲和素藻红素(300μl的2X MES Stain Buffer(Affymetrix制造),24μl的50mg/ml乙酰化BSA(Affymetrix制造),6μl的1mg/ml链霉亲和素-藻红素(Affymetrix制造),270μl的水(Affymetrix制造))根据Affymetrix的技术指南染色。
4.数据分析
微阵列的信号强度的探测应用Gene Chip Analysis Basic System和分析软件(GCOS;GeneChip Operating Software 1.0)根据Affymetrix的技术指南进行。标准化应用GCOS中的All Probe Set进行以调整比较分析中的信号。应用GCOS创建基因表达的比较文件,其比较(1)除去锌的条件与加入锌的条件,(2)氧化压力条件与加入锌的条件,及(3)碳源缺乏性条件与加入锌的条件。只在上面的比较(1)中其表达以信号对数比被增加超过了0.3的基因显示在表4中。
Sc-1159-1_at,Sc-1161-1_at,Sc-5030-1_at,Sc-2123-1_at分别对应于Sc YGL258W,Sc YGL256W,Sc YOL154W,ScYKL175W。且已知这些基因在除去锌的条件下被转录性地诱导(Higgins,v.J.等人,Appl.Environ.Microbiol.,69:7535-7540(2003)) 。Lg-4216-1-s-at被设计成对应于非Sc YKL175w(具有锌离子转运物活性)。已知锌离子转运物在除去锌的条件下被转录性地诱导
总之,以下这点已被显示出,即除去锌的条件下被高度诱导的分子标记能应用底部发酵酵母DNA微阵列而被鉴别。
(表4)
(1)锌缺乏/锌添加 (2)氧化压力/锌添加 (3)碳源缺乏/锌添加 注解
探针组 Signal Log Ratio 探测 变化 Signal Log Ratio 探测 变化 Signal Log Ratio 探测 变化 基因名称 类型
Sc-1159-1_at 3.1 P I -0.6 A NC -0.5 A NC YGL258W Sc
Lg-4570-1_at 1.2 P I 0.1 P NC -0.7 A D YNL254C 非-Sc
Sc-1161-1_at 1.1 P I -1.1 P D -1.2 P D YGL256W Sc
Lg-3847-1_at 0.9 P I -0.6 P D -1.1 P D YGL256W 非-Sc
Sc-2889-1_at 0.7 P I -0.5 P D -1.8 P D YNL254C Sc
Lg-4216-1_s_at 0.6 P I -0.6 P D -0.4 P D YKL175W 非-Sc
Sc-5030-1_at 0.5 P I -3.6 P D -3.8 P D YOL154W Sc
Sc-1160-1_at 0.4 P I -1.1 P D -0.9 P D YOL257C Sc
Lg-1751-1_at 0.4 P I -1 P D -0.7 P D YLR209C 非-Sc
Sc-3567-1_at 0.4 P I 0.2 P NC -0.4 P NC YPL148C Sc
Lg-3161-1_at 0.4 P I -0.8 P D -0.9 P D YMR020W 非-Sc
Sc-3984-1_x_at 0.4 P I 0.2 P NC -1.3 P D YDL150W Sc
Lg_4390-2_x_at 0.4 P I 0.3 P NC -0.5 P NC YLR339C 非-Sc
Sc-4798-1_at 0.4 P I 0.2 P NC -2.3 P D YLR435W Sc
Lg-5145-1_s_at 0.4 P I 0.2 P NC -2.3 P D YDR312W 非-Sc
Lg-139-1_at 0.3 P I -0.3 P NC -4.1 A D YBR104W 非-Sc
Lg-467-1_at 0.3 P I 0.1 P NC -2 P D YDR161W 非-Sc
Sc-1412-1_at 0.3 P I 0 P NC -2 P D YGR081C Sc
Lg-961-1_at 0.3 P I 0.2 P NC -1.5 P D YGR103W 非-Sc
Sc-2122-1_at 0.3 P I -0.3 P NC 0.1 P NC YXL176C Sc
Sc-2123-1_at 0.3 P I -0.5 P D -1.1 P D YKL175W Sc
Sc-2209-1_at 0.3 P I 0.2 P NC -1.7 P D YKL072W Sc
Sc-2356-1_at 0.3 P I -0.1 P NC -2.4 P D YLR129W Sc
Lg-1955-1_at 0.3 P I -0.1 P NC 0 P NC YMR096W 非-Sc
Sc-2890-1_at 0.3 P I -0.3 P NC -1.2 P D YNL253W Sc
Lg-2100-1_at 0.3 P I -0.8 P D -1.7 P D YNL217W 非-Sc
Lg-2258-1_at 0.3 P I 0.1 P NC -1.8 P D YOL125W 非-Sc
Sc-3203-1_at 0.3 P I 0.1 P NC -0.8 P D YOL022C Sc
Sc-3651-1_s_Bt 0.3 P I 0.1 P NC -0.1 P NC YPR044C Sc
Lg-2648-1_at 0.3 P I 0.1 P NC -2.1 P D YPR048W 非-Sc
Lg-3014-1_at 0.3 P I -0.7 P D -0.3 P NC YJL055W 非-Sc
Sc-4034-1_at 0.3 P I 0.1 P NC 0.3 P NC YDR017C Sc
Lg-3620-1_at 0.3 P I 0.4 P NC -2.1 P D YDR087C 非-Sc
Sc-4163-1_at 0.3 P I 0.1 P NC -2.5 M D YDR449C Sc
Sc-4365-1_at 0.3 P I 0.3 P NC -1.4 P D YGR145W Sc
Sc-4454-1_at 0.3 P I 0.4 P NC -1.8 P D YHR197W Sc
Lg-4608-2_at 0.3 P I -0.3 P D -1.9 P D YNL112W 非-Sc
Lg-4622-1_at 0.3 P I 0.1 P NC -2.5 P D YNL062C 非-Sc
Sc-5321-1_at 0.3 P I 0.4 P NC -1.1 P D YGR272C Sc
Lg-5125-1_at 0.3 P I 0.2 P NC -2.4 P D YDR101C 非-Sc
信号对数比(2n)指明了当两个阵列被比较时转录的幅度和方向。通过探测指出,基于以GCOS中的默认参数通过探测算法计算出的探测p值,转录子是被可靠地探测(P;存在)还是无法探测(A:缺乏)。变化指出,基于以GCOS中的默认参数通过变化算法计算出的变化p值,转录是可靠地增加(I;增加)还是减少(D;减少)或不变(NC;不变)。基因名称指明了对应的探针组被设计的位置。类型指明了基因是ScORF(Sc)还是非Sc ORF(非Sc)。
(实施例19)啤酒发酵条件下的酿酒酵母基因表达分析
应用菌株34/70的发酵试验在下面的条件下进行。
原始提取:12.84%
发酵规模:2升
溶解氧浓度:约9ppm
发酵温度:15℃
接种率:10g的湿酵母细胞/2L的麦芽汁
麦芽汁被定期取样,并监测细胞生长(OD 600)(图12-(a))和表观提取值(图12-(b))。mRNA提取自接种42小时后的发酵试管中取出的细胞,生物素标记,并与如实施例18中所述的底部发酵酵母DNA微阵列杂交。信号强度的探测应用Affymetrix制造的Gene ChipAnalysis Basic System和分析软件(GCOS;GeneChip OperatingSoftware 1.0)进行。
存在不少的基因,其Sc类型探针组和非Sc类型探针组显示非常不同的信号强度。涉及啤酒发酵过程中的亚硫酸产生的SSU1基因和MET14基因的实例显示在表5中。在菌株34/70的SSU1基因和MET14基因的情形中,非Sc类型的表达分别高于Sc类型的表达3.4倍和7倍。
为了证实此差异既不是因为每一探针组的杂交效率不同也不是因为Sc和非Sc类型探针组之间的交叉杂交,与底部发酵酵母DNA微阵列的比较性的基因组杂交应用菌株34/70,实验室菌株(啤酒糖酵母)S288C和卡尔斯伯酵母(S.carlsbergensis)株IF011023进行。基因组DNA的制备,与DNA微阵列的杂交及信号强度的探测以前述方法进行。如表6中所示,非Sc类型的信号强度对Sc类型的比,在菌株34/70中对于SSU1基因是1.0而对于MET14基因是1.3。此结果显示Sc和非Sc探针组的杂交效率几乎相同。
此外,不具有非Sc类型基因的菌株S288C对非Sc类型探针组显示非常低的信号强度,而不具有Sc类型SSU1基因和Sc类型MET14的菌株IF011023,对Sc类型SSU1和Sc类型MET14探针组显示非常低的信号强度。这些结果清晰地表明交叉杂交不在Sc和非Sc类型探针组之间发生。
根据这些结果,在菌株34/70中,非Sc SSU1和非Sc MET14的表达分别显著高于Sc SSU1和Sc MET14的那些。这些基因被认为是对底部发酵酵母的亚硫酸高生产能力起作用的候选者。
总之,这一点已被证明,即应用底部发酵酵母DNA微阵列的酿酒酵母株的基因表达分析在用于功能分析的基因的选出中有用。
(表5)
基因   Sc SSU1   非Sc SSU1   Sc MET14   非Sc MET14
探针组   Sc-3594-1_at   Lg-3333-1_at   Sc-2246-1_at   Lg-1564-1_at
信号强度   145.2   490.4   177.3   1245.8
(表6)
菌株 基因     Sc SSU1   非Sc SSU1     Sc MET14     非Sc MBT14
探针组     Sc-3594-1_at   Lg-3333-1_at     Sc-2246-1_at     Lg-1554-1_at
34/70 信号强度     360.9   356.8     244.2     324.8
S288C     516.2   6.5     405.3     13.4
卡尔斯伯酵母 IF011023     8.5   746.9     6.8     608.4
(实施例20)通过与底部发酵酵母DNA微阵列的比较性基因组杂交对酿造菌株进行分类
酵母基因组DNA的制备和与DNA微阵列的杂交按实施例8中所述进行。微阵列信号强度的探测应用Affymetrix制造的Gene ChipAnalysis Basic System和分析软件(GCOS;GeneChip OperatingSoftware 1.0)进行。与酿酒酵母DNA杂交的探针的百分比被计算,而  菌株34/70与试验菌株间的同一性被评估,如表7中所示。菌株BH225,BH232和BH235与超过99%的底部发酵酵母DNA微阵列的Sc类型和非Sc类型探针杂交。它暗示了这些菌株非常类似于菌株34/70,及此微阵列对这些菌株的基因表达分析有用。另一方面,菌株BH212显示相对低的杂交百分比(对Sc类型和非Sc类型探针分别是97.8%和97.7%),这意味着此菌株与菌株34/70有很小一点差异。根据这些结果,larger酿造菌株之间的关系能被评估,而larger酿造菌株的分类能被进行。
根据对菌株BH212分析的结果,显示非常低的信号强度的某些基因座位被发现。它们可能在菌株BH212中被丢失了,或者它们的序列可与菌株34/70的那些有差异。相反地,显示高信号强度的某些基因座位也被发现。这些基因座位在菌株BH212中的拷贝数目可能较高。这类基因座位能被选用于功能分析,因为它们可对菌株BH212和菌株34/7O间的发酵特性的差异起作用。
(表7)杂交的探针百分比
菌株编号     34/70     BH225     BH232     BH235     BH212
Sc类型     99.6     99.8     99.8     99.8     97.8
非-Sc类型     99.5     99.9     99.9     99.6     97.7
(实施例21)核苷酸多态性的探测
此外,(单)核苷酸多态性通过比较性基因组杂交的分析可被探测。每一探针的寡核苷酸组由完全匹配寡核苷酸(PM)和错配寡核苷酸(MM)组成,前者与菌株34/70的序列一样,后者在寡核苷酸的中心位置含有单个碱基的错配。实验室菌株S288C的基因组DNA与底部发酵酵母DNA微阵列杂交。如表8中所示,在MM中显示比PM中更高(超过5倍)信号的探针具有单核苷酸多态性。
(表8)
探针 PM探针的信号   MM探针的信号
Mt-6s at 653 337 112.38 634.39 PM的DNA序列    GAATCAATTAACTTATGGTTTCTTA|||||||||||| ||||||||||||测试菌株的DNA序列GAATCAATTAACATATGGTTTCTTA|||||||||||||||||||||||||MM的DNA序列    GAATCAATTAACATATGGTTTCTTA
工业应用性
汇编了工业酵母(或尤其是用于酒精饮料如啤酒的生产的酿酒酵母)的全基因组序列数据的数据库被制备。应用这一数据库,酿酒酵母的基因被选出,且基因功能通过酵母细胞中的破坏或过表达而被分析,还发现了参与所期望的酿造特性的基因。此外,有可能通过调控所述基因的表达培育酵母株,并生产产量和质量得到改善的醇或酒精饮料,例如具有高浓度亚硫酸(在产品中显示抗氧化活性)、极佳的风味稳定性和更长保质期的酒精饮料。
基于汇编了工业酵母或尤其是酿酒酵母的全基因组序列数据的数据库,DNA阵列被生产。应用该DNA阵列,有可能分析基因的功能,对工业酵母进行分类及探测核苷酸多态性等等。
                                序列表
<110>Suntory Limited
<120>酿酒酵母基因的筛选方法
<130>S07F1263
<160>32
<210>1
<211>1377
<212>DNA
<213>糖酵母属物种
<400>1
atggtcgcta gttggatgct cactgccaca agggatttca accctttcat gtttgtcatg   60
gttatggggg tcggtatttc atcgaatatt ctgtacagct tcccgtatcc ggcgaggtgg  120
ctgaggatat gctcgtacat catgtttgcc attacatgtt tgattttcat ctctgtacag  180
gcgctgcagc ttttgcacat ggtcatctat atcaaagaaa aaagctttag agattacttc  240
aatgaatatt tcagaagtct gaagtacaat ttattttggg gtacttatcc catgggatta  300
gtaacaatca taaatttttt gggggcgctg tcacaaaaat ttaccacgac aagccctgcg  360
aatgccaagc acttgatcat ttttgtttac gtcctgtggt ggtatgacct cgcggtttgt  420
ttagtaaccg cttgggggat ttcattcctc atctggcaaa agtactactt cgtggacggg  480
gttggaaatc actcttcata cagttcacga atggcttccg accacatgaa aagcgtactg  540
ttgctagata tcattccgct ggtcgttgtc gcttcgagcg gtgggacatt tacaatgtca  600
aaaatattcg gtaccacttt tgataggaat attcaattgc taacactggt catctgtgcc  660
ctggtttggc tacacgctct tatatttgtc tttattctga ttacaatata cttctggaat  720
ctttacatca ataagatacc accaatgacg caggtattta cgttgttctt ggtattgggg  780
ccattgggcc aaggaagttt tggtattttg ttgcttactg acaatataag aaagtatgta  840
gaaaaatact acccaaggga aaacatcacc atggaacaag aaatactaac cattatggtt  900
ccgtggtgtt tcaaggttct gggcatgaca tttgctttgg cattaatcgc tatgggttac  960
ttctttacgg taatttccct tatttcgatt ttatcatact acaatgaaag agttgttgac 1020
aatgaaacag gcaaagtgaa aaggatctac actttccata aaggtttctg ggggatgact 1080
ttcccgatgg gtaccatgtc tttgggaaac gaggagctgt atctgcaata caaccagtat 1140
gttcccttat atgcattcag agtcatagct accatatatg gtggtatttg tgtttgctgg 1200
tcaatcttat gcctctcgtg cacgttgtat ggttacctga aaacgattct ccatgctgcc 1260
cgtaaacctt cgtttttatc agaggaaggg acggagaaga ctgtcaattc tcctttcaac 1320
agcatcgaaa gtgtggagga atcaaactcg gctatcgata gtacatattt aacataa    1377
<210>2
<211>609
<212>DNA
<213>糖酵母属物种
<400>2
atggctacta atatcacttg gcatccaaat cttacctacg acgaacgtaa ggaattaaga    60
aagcaagacg gctgtaccgt ttggttgacc ggtctaagtg cgtcaggaaa aagtacaata 120
gcttgtgcac tggaacaatt actgcttcaa aaaaacttat ctgcttatag gttagatggt 180
gataacattc gttttggttt gaataaggat ttgggcttct cagaaaagga cagaaatgaa 240
aacattcgta gaattagtga agtatccaag ctattcgctg attcgtgtgc tgtatccatc 300
acttcattta tttccccata cagagtcgat agagacagag cccgtgattt acataaggaa 360
gcaggcttga agttcattga aatttttgtt gatgttccat tagaagtcgc tgagcaaaga 420
gaccctaagg gtttgtataa gaaagccaga gaaggtgtga ttaaagagtt cactggtatt 480
tcagctcctt acgaagctcc aaaggcccca gagttgcatt taagaactga ccaaaagact 540
gttgaagaat gtgctgctat catttatgag tacctggtca atgagaagat tatccggaag 600
catctataa                                                         609
<210>3
<211>458
<212>PRT
<213>糖酵母属物种
<400>3
Met Val Ala Ser Trp Met Leu Thr Ala Thr Arg Asp Phe Asn Pro
                  5                  10                  15
Phe Met Phe Val Met Val Met Gly Val Gly Ile Ser Ser Asn Ile
                 20                  25                  30
Leu Tyr Ser Phe Pro Tyr Pro Ala Arg Trp Leu Arg Ile Cys Ser
                 35                  40                  45
Tyr Ile Met Phe Ala Ile Thr Cys Leu Ile Phe Ile Ser Val Gln
                 50                  55                  60
Ala Leu Gln Leu Leu His Met Val Ile Tyr Ile Lys Glu Lys Ser
                 65                  70                  75
Phe Arg Asp Tyr Phe Asn Glu Tyr Phe Arg Ser Leu Lys Tyr Asn
                 80                  85                  90
Leu Phe Trp Gly Thr Tyr Pro Met Gly Leu Val Thr Ile Ile Asn
                 95                 100                 105
Phe Leu Gly Ala Leu Ser Gln Lys Phe Thr Thr Thr Ser Pro Ala
                110                 115                 120
Asn Ala Lys His Leu Ile Ile Phe Val Tyr Val Leu Trp Trp Tyr
                125                 130                 135
Asp Leu Ala Val Cys Leu Val Thr Ala Trp Gly Ile Ser Phe Leu
                140                 145                 150
Ile Trp Gln Lys Tyr Tyr Phe Val Asp Gly Val Gly Asn His Ser
               155                160                  165
Ser Tyr Ser Ser Arg Met Ala Ser Asp His Met Lys Ser Val Leu
                170                 175                 180
Leu Leu Asp Ile Ile Pro Leu Val Val Val Ala Ser Ser Gly Gly
                185                 190                 195
Thr Phe Thr Met Ser Lys Ile Phe Gly Thr Thr Phe Asp Arg Asn
                200                 205                 210
Ile Gln Leu Leu Thr Leu Val Ile Cys Ala Leu Val Trp Leu His
                215                 220                 225
Ala Leu Ile Phe Val Phe Ile Leu Ile Thr Ile Tyr Phe Trp Asn
                230                 235                 240
Leu Tyr Ile Asn Lys Ile Pro Pro Met Thr Gln Val Phe Thr Leu
                245                 250                 255
Phe Leu Val Leu Gly Pro Leu Gly Gln Gly Ser Phe Gly Ile Leu
                260                 265                 270
Leu Leu Thr Asp Asn Ile Arg Lys Tyr Val Glu Lys Tyr Tyr Pro
                275                 280                 285
Arg Glu Asn Ile Thr Met Glu Gln Glu Ile Leu Thr Ile Met Val
                290                 295                 300
Pro Trp Cys Phe Lys Val Leu Gly Met Thr Phe Ala Leu Ala Leu
                305                 310                 315
Ile Ala Met Gly Tyr Phe Phe Thr Val Ile Ser Leu Ile Ser Ile
                320                 325                 330
Leu Ser Tyr Tyr Asn Glu Arg Val Val Asp Asn Glu Thr Gly Lys
                335                 340                 345
Val Lys Arg Ile Tyr Thr Phe His Lys Gly Phe Trp Gly Met Thr
                350                 355                 360
Phe Pro Met Gly Thr Met Ser Leu Gly Asn Glu Glu Leu Tyr Leu
                365                 370                 375
Gln Tyr Asn Gln Tyr Val Pro Leu Tyr Ala Phe Arg Val Ile Ala
                380                 385                 390
Thr Ile Tyr Gly Gly Ile Cys Val Cys Trp Ser Ile Leu Cys Leu
                395                 400                 405
Ser Cys Thr Leu Tyr Gly Tyr Leu Lys Thr Ile Leu His Ala Ala
                410                 415                 420
Arg Lys Pro Ser Phe Leu Ser Glu Glu Gly Thr Glu Lys Thr Val
                425                 430                 435
Asn Ser Pro Phe Asn Ser Ile Glu Ser Val Glu Glu Ser Asn Ser
                440                 445                 450
Ala Ile Asp Ser Thr Tyr Leu Thr
                455         458
<210>4
<211>202
<212>PRT
<213>糖酵母属物种
<400>4
Met Ala Thr Asn Ile Thr Trp His Pro Asn Leu Thr Tyr Asp Glu
                  5                  10                  15
Arg Lys Glu Leu Arg Lys Gln Asp Gly Cys Thr Val Trp Leu Thr
                 20                  25                  30
Gly Leu Ser Ala Ser Gly Lys Ser Thr Ile Ala Cys Ala Leu Glu
                 35                  40                  45
Gln Leu Leu Leu Gln Lys Asn Leu Ser Ala Tyr Arg Leu Asp Gly
                 50                  55                  60
Asp Asn Ile Arg Phe Gly Leu Asn Lys Asp Leu Gly Phe Ser Glu
                 65                  70                  75
Lys Asp Arg Asn Glu Asn Ile Arg Arg Ile Ser Glu Val Ser Lys
                 80                  85                  90
Leu Phe Ala Asp Ser Cys Ala Val Ser Ile Thr Ser Phe Ile Ser
                 95                 100                 105
Pro Tyr Arg Val Asp Arg Asp Arg Ala Arg Asp Leu His Lys Glu
                110                 115                 120
Ala Gly Leu Lys Phe Ile Glu Ile Phe Val Asp Val Pro Leu Glu
                125                 130                 135
Val Ala Glu Gln Arg Asp Pro Lys Gly Leu Tyr Lys Lys Ala Arg
                140                 145                 150
Glu Gly Val Ile Lys Glu Phe Thr Gly Ile Ser Ala Pro Tyr Glu
                155                 160                 165
Ala Pro Lys Ala Pro Glu Leu His Leu Arg Thr Asp Gln Lys Thr
                170                 175                 180
Val Glu Glu Cys Ala Ala Ile Ile Tyr Glu Tyr Leu Val Asn Glu
                185                 190                 195
Lys Ile Ile Arg Lys His Leu
                200
<210>5
<211>15
<212>人工序列
<213>M13_for
<400>5
agtcacgacg                                                     ttgta
15
<210>6
<211>17
<212>人工序列
<213>M13_rv
<400>6
aggaaacag ctatgac                                              17
<210>7
<211>22
<212>人工序列
<213>SS-cosF.1
<400>7
aggcgtatca cgaggccctt tc                                  22
<210>8
<211>29
<212>人工序列
<213>SS-cosR.1
<400>8
cttatcgatg ataagcggtc aaacatgag                           29
<210>9
<211>36
<212>人工序列
<213>XVI-1(L)cer-95894
<400>9
cgcaagctcc gtacgttcaa cattcttatg aacggc                   36
<210>10
<211>36
<212>人工序列
<213>XVI-1(R)nonSc-106302rv
<400>10
gcatcatcgt cgtgatcctt ctttggcaaa tgcagg                   36
<210>11
<211>36
<212>人工序列
<213>XVI-2(L)cer-859737
<400>11
gcgggtattt tgatggtaaa tctacaagcc ctcggc                   36
<210>12
<211>35
<212>人工序列
<213>XVI-2(R)nonSc-864595rv
<400>12
cccagacaca gtttccagta tcatcctcgc agaac    35
<210>13
<211>26
<212>人工序列
<213>SacI-nonScSSU1_for1
<400>13
gagctcatgg tcgctagttg gatgct              26
<210>14
<211>26
<212>人工序列
<213>BglII-nonScSSU1_rv1460
<400>14
agatctcagc ttcagcccaa tccatt              26
<210>15
<211>26
<212>人工序列
<213>SacI-ScSSU1_for1
<400>15
gagctcatgg ttgccaattg ggtact              26
<210>16
<211>26
<212>人工序列
<213>BglII-ScSSU1_rv1406
<400>16
agatctctcc tacatgaaat gcttgc              26
<210>17
<211>120
<212>人工序列
<213>nonScSSU1_for
<400>17
atggtcgcta gttggatgct cactgccaca agggatttca accctttcat atcgaatatt  60
ctgtacagct gtttgtcatg gttatggggg tcggtatttc ccttgacagt cttgacgtgc 120
<210>18
<211>120
<212>人工序列
<213>nonScSSU1_rv
<400>18
tgttaaatat gtactatcga tagccgagtt tgattcctcc acactttcga acagtcttct  60
ccgtcccttc ctctgataaa tgctgttgaa aggagaattg cgcacttaac ttcgcatctg 120
<210>19
<211>120
<212>人工序列
<213>ScSSU1_for
<400>19
atggttgcca attgggtact tgctcttacg aggcagtttg accccttcat gtttatgatg  60
gtcatgggtg tcggcatttc atcgaatatt ctatatagct ccttgacagt cttgacgtgc 120
<210>20
<211>120
<212>人工序列
<213>ScSSU1_rv
<400>20
ttatgctaaa cgcgtaaaat ctagagccga gtttgattct tccacgcttt caatgctgtt  60
atacggagaa actgtcgtct tttccgtacc tgactctgaa cgcacttaac ttcgcatctg 120
<210>21
<211>120
<212>人工序列
<213>nonScSSU1_for+pGAPAUR
<400>21
atggtcgcta gttggatgct cactgccaca agggatttca accctttcat gtttgtcatg  60
gttatggggg tcggtatttc atcgaatatt ctgtacagct ccggagctta ccagttctca 120
<210>22
<211>120
<212>人工序列
<213>nonScSSU1_rv+AUR1-C
<400>22
tgttaaatat gtactatcga tagccgagtt tgattcctcc acactttcga tgctgttgaa  60
aggagaattg acagtcttct ccgtcccttc ctctgataaa tcgactctag aggatccaga  120
<210>23
<211>20
<212>人工序列
<213>ScSSU1_for331
<400>23
tcgaaagcga acacgacgaa                                              20
<210>24
<211>21
<212>人工序列
<213>ScSSU1_982rv
<400>24
cgacagaaat cacggtgaaa a                                            21
<210>25
<211>22
<212>人工序列
<213>nonScSSU1_329
<400>25
tgtcacaaaa atttaccacg ac                                           22
<210>26
<211>22
<212>人工序列
<213>nonScSSU1_981rv
<400>26
aagggaaatt accgtaaaga ag                                           22
<210>27
<211>21
<212>人工序列
<213>PDA1_for1
<400>27
atgtttgtcg cacctgtatc t                                            21
<210>28
<211>18
<212>人工序列
<213>PDA1_730rv
<400>28
gattagaggc accatcac                                          18
<210>29
<211>33
<212>人工序列
<213>SacI-nonSc-MET14_for-21
<400>29
ctcgagctct cgtgaaattc attgaaacaa atg                         33
<210>30
<211>30
<212>人工序列
<213>BamHI-nonSc-MET14_rv618
<400>30
ggatccttat aagatttata gatgcttccg                             30
<210>31
<211>33
<212>人工序列
<213>SacI-ScMET14_for
<400>31
ctcgagctca gaaaagttgg aattatttct cca                         33
<210>32
<211>30
<212>人工序列
<213>BamHI-ScMET14_rv
<400>32
ggatccaatg tacagtaatc ggtcaaatta                             30

Claims (9)

1.一种编码多肽的DNA,所述多肽由SEQ ID NO:3所示的氨基酸序列构成。
2.包含权利要求1的DNA的重组载体。
3.根据权利要求2的重组载体,其中启动子和/或终止子位于所述DNA的邻近位置。
4.根据权利要求3的重组载体,其中所述启动子是显示组成型表达的启动子。
5.根据权利要求3或4的重组载体,其中所述启动子是甘油醛-3-磷酸脱氢酶基因的启动子。
6.包含权利要求1的DNA或权利要求2的重组载体的转化子。
7.根据权利要求6的转化子,其中转化子属于糖酵母属的酵母。
8.权利要求1的DNA所编码的多肽。
9.生产酒精或酒精饮料的方法,特征在于应用了权利要求6的转化子。
CN2007101962668A 2003-03-04 2004-03-03 酿酒酵母基因的筛选方法 Expired - Fee Related CN101177685B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003-057677 2003-03-04
JP2003057677 2003-03-04
JP2003057677 2003-03-04

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CNA2004800097891A Division CN1774512A (zh) 2003-03-04 2004-03-03 酿酒酵母基因的筛选方法

Publications (2)

Publication Number Publication Date
CN101177685A CN101177685A (zh) 2008-05-14
CN101177685B true CN101177685B (zh) 2010-11-24

Family

ID=32958746

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2007101962668A Expired - Fee Related CN101177685B (zh) 2003-03-04 2004-03-03 酿酒酵母基因的筛选方法
CNA2004800097891A Pending CN1774512A (zh) 2003-03-04 2004-03-03 酿酒酵母基因的筛选方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CNA2004800097891A Pending CN1774512A (zh) 2003-03-04 2004-03-03 酿酒酵母基因的筛选方法

Country Status (9)

Country Link
US (3) US20040265862A1 (zh)
EP (1) EP1599605B1 (zh)
KR (1) KR100969177B1 (zh)
CN (2) CN101177685B (zh)
AT (1) ATE509091T1 (zh)
AU (1) AU2004217613B2 (zh)
CA (1) CA2518046C (zh)
DK (1) DK1599605T3 (zh)
WO (1) WO2004079008A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006024892A1 (en) * 2004-09-02 2006-03-09 Suntory Limited Method for analyzing genes of industrial yeasts
EP1865072A4 (en) * 2005-03-03 2009-07-22 Sapporo Breweries METHOD FOR CONTROLLING THE AROMA OF AN ALCOHOLIC BEVERAGE
KR20080027245A (ko) * 2005-06-17 2008-03-26 산또리 가부시키가이샤 황산염 이온 수송체 유전자 및 이의 용도
US20090304858A1 (en) * 2005-08-09 2009-12-10 Suntory Limited Phosphoadenylyl Sulfate Reductase Gene and Use Thereof
WO2007020989A1 (en) * 2005-08-12 2007-02-22 Suntory Limited Sulfate adenyltransferase gene and use thereof
WO2007023969A2 (en) * 2005-08-22 2007-03-01 Suntory Limited O-acetylhomoserinesulfhydorelace gene and use thereof
KR20100024508A (ko) * 2005-08-22 2010-03-05 산토리 홀딩스 가부시키가이샤 시스테인 합성효소 유전자 및 그의 용도
EP1930432A4 (en) * 2005-09-01 2010-04-14 Suntory Holdings Ltd TRYPTOPHANTRANSPORTER GEN AND USE THEREOF
CN1932015B (zh) * 2005-09-13 2012-01-25 三得利控股株式会社 支链氨基酸氨基转移酶基因及其用途
US20090274794A1 (en) * 2005-09-22 2009-11-05 Suntory Limited Gene Encoding Cell Wall Mannoprotein and use Thererof
AU2006338868A1 (en) * 2006-02-23 2007-08-30 Suntory Holdings Limited Gene encoding acetolactate synthase and use thereof
JP4460007B2 (ja) * 2006-02-24 2010-05-12 サントリーホールディングス株式会社 ビシナルジケトン又はダイアセチル低減活性を有するタンパク質をコードする遺伝子及びその用途
KR100929998B1 (ko) * 2006-02-24 2009-12-07 산토리 홀딩스 가부시키가이샤 효모의 응집성을 초래하는 단백질을 암호화하는 유전자 및그의 용도
CA2604643A1 (en) * 2006-02-24 2007-09-07 Suntory Limited Gene encoding protein responsible for flocculation property of yeast and use thereof
JP2009165352A (ja) * 2006-02-24 2009-07-30 Suntory Liquors Ltd アシルCoA:エタノールO−アシルトランスフェラーゼ/エステラーゼ遺伝子及びその用途
JPWO2007097093A1 (ja) * 2006-02-27 2009-07-09 サントリーホールディングス株式会社 分枝アミノ酸トランスポーター遺伝子及びその用途
WO2007097095A1 (ja) * 2006-02-27 2007-08-30 Suntory Limited 芳香族アミノ酸トランスポーター遺伝子及びその用途
JP2007228956A (ja) * 2006-02-28 2007-09-13 Suntory Ltd 醸造用酵母由来の有用タンパク質同定方法
AU2006340192B2 (en) * 2006-02-28 2010-07-08 Suntory Holdings Limited Catalase gene and use thereof
US20090130255A1 (en) * 2006-02-28 2009-05-21 Suntory Limited Catalase Gene and Use Thereof
WO2007099750A1 (en) * 2006-02-28 2007-09-07 Suntory Limited Gene encoding glycogen branching enzyme and use thereof
DK1879915T3 (en) * 2006-03-01 2017-03-06 Suntory Holdings Ltd Gene encoding an glycogen synthesis initiator and its use
WO2008025093A1 (en) * 2006-09-01 2008-03-06 Innovative Dairy Products Pty Ltd Whole genome based genetic evaluation and selection process
WO2008044358A1 (fr) * 2006-10-05 2008-04-17 Kirin Beer Kabushiki Kaisha Ensemble d'amorces destiné à la détection d'une levure saccharomyces
JP2008161187A (ja) * 2006-12-06 2008-07-17 Kirin Brewery Co Ltd サッカロミセス属酵母の検出用プライマーセットおよびその組合せ
JP2008259454A (ja) * 2007-04-12 2008-10-30 Kirin Brewery Co Ltd サッカロミセス・パストリアヌスの検出用プライマーセット
US20090049856A1 (en) * 2007-08-20 2009-02-26 Honeywell International Inc. Working fluid of a blend of 1,1,1,3,3-pentafluoropane, 1,1,1,2,3,3-hexafluoropropane, and 1,1,1,2-tetrafluoroethane and method and apparatus for using
WO2011137368A2 (en) 2010-04-30 2011-11-03 Life Technologies Corporation Systems and methods for analyzing nucleic acid sequences
US9268903B2 (en) 2010-07-06 2016-02-23 Life Technologies Corporation Systems and methods for sequence data alignment quality assessment
CN102559519B (zh) * 2011-09-20 2013-01-16 广东省九江酒厂有限公司 一株产酯酵母及其生产乙酸乙酯和酒精的方法
WO2014004616A2 (en) * 2012-06-26 2014-01-03 Gevo, Inc. Engineered yeast with improved growth under low aeration
US11578294B2 (en) 2012-11-07 2023-02-14 Molson Coors Beverage Company Usa Llc Method for preparing a neutral malt base
US10443062B2 (en) * 2016-09-01 2019-10-15 Wisconsin Alumni Research Foundation Genes that improve tolerance to lignocellulosic toxins when overexpressed in yeast
US20210309982A1 (en) * 2018-07-19 2021-10-07 Mark Goebl Materials and methods for creating strains of saccharomyces cerevisiae that exhibit an increased ability to ferment oligosaccharides into ethanol
CN109666705A (zh) * 2019-01-07 2019-04-23 山东理工大学 酿酒酵母菌中染色质重塑因子基因在提高发酵酒精产率的应用

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885357A (en) * 1985-06-12 1989-12-05 Lubrizol Genetics Inc. Modified zein proteins containing lysine
US5054648A (en) * 1990-01-23 1991-10-08 Luoma Eugene H Highway cone dispenser and collector
FR2709767B1 (fr) * 1993-09-07 1996-02-02 Larguier Frederic Ensemble de dispositifs portés sur véhicule pour la pose et le ramassage automatiques des balises de signalisation routière.
US6158948A (en) * 1998-08-27 2000-12-12 Calvert; Lincoln A. Cone collecting and loading system
US6056498A (en) * 1998-09-09 2000-05-02 The Regents Of The University Of California Apparatus for retrieving conical roadway warning markers
US6326184B1 (en) * 1998-09-15 2001-12-04 Carlsberg A/S Method of producing a composite fermented beverage using genetically modified yeast strains
JP4623825B2 (ja) * 1999-12-16 2011-02-02 協和発酵バイオ株式会社 新規ポリヌクレオチド
EP1130100A1 (en) * 2000-02-14 2001-09-05 Unilever N.V. Modified lipolytic enzymes and their use

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Dorina Avram, et al..SSU1 encodes a plasma membrane protein with a central rolein a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.J Bacteriol179 18.1997,179(18),5971-5974.
Dorina Avram, et al..SSU1 encodes a plasma membrane protein with a central rolein a network of proteins conferring sulfite tolerance in Saccharomyces cerevisiae.J Bacteriol179 18.1997,179(18),5971-5974. *
Hoon Park, et al..SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.Yeast16.2000,16881-888.
P41930.GenBank.2002,1-3.
P41930.GenBank.2002,1-3.;Hoon Park, et al..SSU1 mediates sulphite efflux in Saccharomyces cerevisiae.Yeast16.2000,16881-888. *

Also Published As

Publication number Publication date
EP1599605A1 (en) 2005-11-30
ATE509091T1 (de) 2011-05-15
EP1599605B1 (en) 2011-05-11
US7670828B2 (en) 2010-03-02
US20040265862A1 (en) 2004-12-30
CA2518046C (en) 2013-12-10
AU2004217613B2 (en) 2008-10-23
CN101177685A (zh) 2008-05-14
CA2518046A1 (en) 2004-09-16
WO2004079008A1 (en) 2004-09-16
US20080220503A1 (en) 2008-09-11
KR100969177B1 (ko) 2010-07-08
US7365164B2 (en) 2008-04-29
CN1774512A (zh) 2006-05-17
US20070042410A1 (en) 2007-02-22
AU2004217613A1 (en) 2004-09-16
KR20050115267A (ko) 2005-12-07
DK1599605T3 (da) 2011-06-06

Similar Documents

Publication Publication Date Title
CN101177685B (zh) 酿酒酵母基因的筛选方法
CN101052729B (zh) 工业酵母基因的分析方法
JP4537094B2 (ja) 醸造用酵母遺伝子のスクリーニング法
US20060046253A1 (en) Method for analyzing genes of industrial yeasts
Monerawela et al. Brewing up a storm: The genomes of lager yeasts and how they evolved
Krogerus et al. A deletion in the STA1 promoter determines maltotriose and starch utilization in STA1+ Saccharomyces cerevisiae strains
CN107012130A (zh) 一种葡萄糖氧化酶突变体及其编码基因和应用
CN102174544B (zh) 过氧化氢酶基因及其用途
CN101037699B (zh) 3-磷酸甘油脱氢酶基因及其用途
US20060099612A1 (en) Method for analyzing genes of industrial yeasts
US20140162335A1 (en) Recombinant Yeast Expressing AGT1
CN101952425A (zh) 葡萄糖诱导性失活及降解抗性转运蛋白基因及其用途
CN1936006B (zh) 编码细胞壁甘露糖蛋白的基因及其用途
Gallone et al. Genomics and evolution of beer yeasts
Blondin et al. Genome of Saccharomyces cerevisiae and related yeasts
CN102080091A (zh) 过氧化氢酶基因及其用途
CN1920043B (zh) 半胱氨酸合成酶基因及其用途
Magalhães Harnessing heterosis: Enhancing industrial yeast functionality through interspecific hybridisation
Mandakovic Seyler et al. Fungal diversity analysis of grape musts from Central Valley-Chile and characterization of potential new starter cultures
Gallone Comparative genomics of industrial yeasts
Martínez genomics and transcriptomics in
JP2003199556A (ja) 清酒の製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: SUNTORY HOLDINGS CO., LTD.

Free format text: FORMER OWNER: SUNTORY LTD.

Effective date: 20090703

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090703

Address after: Osaka

Applicant after: Suntory Holdings Limited

Address before: Osaka

Applicant before: Suntory Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101124

Termination date: 20170303

CF01 Termination of patent right due to non-payment of annual fee