CN105906360A - 一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法 - Google Patents

一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法 Download PDF

Info

Publication number
CN105906360A
CN105906360A CN201610247236.4A CN201610247236A CN105906360A CN 105906360 A CN105906360 A CN 105906360A CN 201610247236 A CN201610247236 A CN 201610247236A CN 105906360 A CN105906360 A CN 105906360A
Authority
CN
China
Prior art keywords
carbon fiber
chopped carbon
zirconium diboride
hour
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610247236.4A
Other languages
English (en)
Other versions
CN105906360B (zh
Inventor
沙建军
李建
张兆甫
王首豪
代吉祥
祖宇飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201610247236.4A priority Critical patent/CN105906360B/zh
Publication of CN105906360A publication Critical patent/CN105906360A/zh
Application granted granted Critical
Publication of CN105906360B publication Critical patent/CN105906360B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • C04B35/806
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63444Nitrogen-containing polymers, e.g. polyacrylamides, polyacrylonitriles, polyvinylpyrrolidone [PVP], polyethylenimine [PEI]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63472Condensation polymers of aldehydes or ketones
    • C04B35/63476Phenol-formaldehyde condensation polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种胶体分散的短切碳纤维增韧二硼化锆基复合材料及其制备方法,属于超高温陶瓷基复合材料技术领域。其特征在于由下列质量份的原料制成:短切碳纤维1‑3、纳米二硼化锆粉体15‑25、纳米碳化硅粉体1‑3、酚醛树脂1‑5、聚乙烯亚胺0.1‑0.5、无水乙醇60‑100。本发明的效果和益处是:利用酚醛树脂与聚乙烯亚胺发生交联反应,将短切碳纤维均匀的分散于胶体中,克服了传统球磨混料时造成的纤维磨损问题;通过此胶体分散方法,可在碳纤维表面形成高温保护层,进而降低了碳纤维在高温烧结时的降解速率,弱化了纤维基体间的界面结合,促进了纤维的脱粘、桥接、拔出。由此方法制备的二硼化锆基复合材料表现出高致密度、高强度、高韧性的特点。

Description

一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法
技术领域
本发明属于超高温陶瓷基复合材料技术领域,涉及到一种以短切碳纤维为增韧相,以二硼化锆为基体相的陶瓷基复合材料及其制备方法,克服了传统球磨分散方法造成的纤维磨损问题。
背景技术
二硼化锆(ZrB2)具有高熔点(3200℃),高强度(500MPa),高硬度(23GPa),以及优良的抗氧化和抗烧蚀等性能,使其成为最具前景的超高温结构材料之一。ZrB2在冶金、核能发电、航空航天等领域有着广泛的应用前景,并有望应用于超高声速飞行器热防护的关键部件,如:鼻锥、机翼前缘、发动机燃烧室及喷嘴等。但是,ZrB2的断裂韧性很低(通常在2.5-4MPa·m1/2的范围内),并表现出典型的脆性断裂形式,这严重限制了其广泛的应用前景。为了提升ZrB2的断裂韧性,加入短切碳纤维作为第二相是一种有效的增韧方法。Yang等人向ZrB2基体内添加了20%体积分数的短切碳纤维,使断裂韧性由4.25MPa·m1/2提升到了6.35MPa·m1/2。近期,Silvestroni等人也将三种不同型号的短切碳纤维分别加入到ZrB2基体内。结果发现这三种碳纤维均能改善材料的断裂行为,材料的最大断裂功可以达到90J/m2。相关文献请参阅:
文献1:Feiyu Yang,Xinghong Zhang,Jiecai Han,Shanyi Du,“Processing and mechanical properties of short carbon fibers toughened zirconium diboride-based ceramics”,Materials and Design 29(2008)1817–1820。
文献2:Laura Silvestroni,Daniele Dalle Fabbriche,Cesare Melandri,Diletta Sciti,“Relationships between carbon fiber type and interfacial domain in ZrB2-based ceramics”,Journal of the European Ceramic Society 36(2016)17–24。
对于短切纤维增韧的ZrB2基复合材料,其在制备过程中主要存在三个技术难点,详见文献2中的Introduction部分:
(1)如何将短切纤维均匀的分散于材料基体内部;
(2)怎样减轻短切纤维在高温烧结过程中的降解问题;
(3)怎样适当降低纤维与基体间的界面结合,进而更好的发挥出短切纤维的拔出、脱粘、桥接等增韧机制。
为了将短切碳纤维均匀的分散于ZrB2粉体中,国内外都采用了球磨的分散方法。在球磨混料过程中,短切碳纤维在磨球的快速研磨作用下,可以将其与陶瓷粉体均匀混合。但是,这势必会对纤维造成研磨破坏:
(1)碳纤维的原始长度在球磨后会明显变短,详见文献1中Resluts部分;短切碳纤维的长度由球磨前的2㎜降低到了球磨后的0.2㎜;
(2)碳纤维的原始形貌在球磨后会严重受损,详见文献2中图7c,发现短切碳纤维在球磨后部分已经被研磨成了纤维碎屑;
(3)在球磨混料过程中,纤维与基体粉末之间要经历过长时间的高速摩擦,这会增加纤维与基体间的反应活性,使纤维与基体在高温烧结时更容易发生化学反应,进而产生较高的界面结合,不利于纤维拔出等增韧机制。
因此,无论是在文献1和2中,均能发现碳纤维的磨损、反应现象,纤维拔出的长度也非常有限,以上这都严重地限制了短切碳纤维的增韧效果。
为了更好的发挥出短切碳纤维对ZrB2的增韧效果,需要从制备工艺入手。首先,需要新的混料方法,在确保能够将短切碳纤维均匀分散的前提下,避免在烧结前对其造成的球磨损伤。其次,还应尽量减少短切碳纤维在高温烧结过程中的降解、腐蚀问题,进而建立相对较弱的界面结合。
发明内容
本发明的目的是提供一种采用胶体分散短切碳纤维的方法,并通过此方法在碳纤维表面形成一层高温保护层。
为了实现本发明的目的,本发明通过以下方案实施:
一种胶体分散短切碳纤维,由下列质量份的原料组成:短切碳纤维1-3、纳米碳化硅粉体1-3、酚醛树脂1-5、聚乙烯亚胺0.1-0.5和无水乙醇60-100。
上述的胶体分散短切碳纤维增韧的二硼化锆基复合材料,由下列质量份的原料组成:短切碳纤维1-3、纳米碳化硅粉体1-3、酚醛树脂1-5、聚乙烯亚胺0.1-0.5、无水乙醇60-100和纳米二硼化锆粉体15-25。
所述的胶体分散短切碳纤维的制备方法是:将质量份数为1-5的酚醛树脂溶解于质量份数为60-100的无水乙醇内;加入质量份数为1-3的短切碳纤维;加入质量份数为1-3的纳米碳化硅粉体,并采用超声波震荡分散0.5-2小时;缓慢滴加质量份数为0.1-0.5的聚乙烯亚胺,并搅拌1-2小时;将配制的浆料抽真空处理1-5小时,此时溶解在无水乙醇内的酚醛树脂与聚乙烯亚胺发生交联反应形成凝胶,可将短切碳纤维均匀的定位于胶体之中,并使添加的纳米碳化硅粉体吸附在纤维表面,形成一层高温保护层。
所述的胶体分散短切碳纤维增韧的二硼化锆基复合材料的制备方法,由以下步骤制成:
(1)将质量份数为15-25的纳米二硼化锆粉体加入到上述分散有短切纤维的胶体中,并搅拌5-8小时;
(2)将步骤(1)得到的胶体浆料注入石英管内,并将石膏板置于石英管的底端以使浆料干燥成型;浆料干燥12-24小时后,将成型的坯体脱模取出,在整个干燥过程中,将石英管的顶端用橡胶塞封住,以防止 乙醇的迅速挥发而造成坯体开裂;
(3)将步骤(2)得到的坯体放入真空干燥箱内,在40-60℃下干燥10-24小时;
(4)将步骤(3)得到的坯体放入管式烧结炉内裂解,在室温下以2-5℃/min的速度升至800℃,恒温3-5小时后,随炉冷却;
(5)将步骤(4)得到的坯体放置于真空热压炉中,在烧结温度1400-1600℃和烧结压力10-30MPa的条件下烧结0.5-1小时。
本发明利用酚醛树脂和聚乙烯亚胺发生交联反应,将添加的短切碳纤维和陶瓷粉体均匀的分散于胶体之中,完全避免了由于球磨混料而造成的纤维损伤问题。利用聚乙烯亚胺极强的带电性和吸附能力,使添加的吸附在碳纤维表面,并由生成的胶体将其包覆牢固。这种包覆的纳米碳化硅能够显著降低碳纤维在高温烧结时的降解速率,还可以减缓纤维与基体之间的化学反应,进而形成相对较弱的界面结合。坯体的成型是通过浆料自由沉降干燥而得到的。在此过程中,短切碳纤维和陶瓷粉体可以形成具有较高堆积密度的坯体,这有利于材料后续的热压密实过程。所加入的酚醛树脂和聚乙烯亚胺均可通过裂解反应转变成裂解碳。这种裂解碳能促进材料在烧结过程的密实化进程、降低晶粒生长速度、提升材料的强度。
附图说明
图1a是本实施例中坯体干燥后微观结构的电子显微照片。
图1b是图1a的局部放大电子显微照片。
图2a是本实施例中复合材料的平面电子显微照片。
图2b是图2a的局部放大电子显微照片。
图3a是本实施例中复合材料的裂纹扩展电子显微照片。
图3b是本实施例中复合材料的断面电子显微照片。
具体实施方式
以下结合技术方案和附图详细叙述本发明的具体实施方式。
一种胶体分散的短切碳纤维增韧二硼化锆基复合材料及其制备方法,由下列重量份(g)的原料制成:短切碳纤维2(平均长度2㎜)、纳米二硼化锆粉体20、纳米碳化硅粉体2、酚醛树脂3、聚乙烯亚胺0.3、无水乙醇80。
所述的胶体分散短切碳纤维的方法是:将质量份数为3的酚醛树脂溶解于质量份数为80的无水乙醇内;加入质量份数为2的短切碳纤维;然后加入质量份数为2的纳米碳化硅粉体,并采用超声波震荡分散2小时;缓慢滴加质量份数为0.3的聚乙烯亚胺,并搅拌2小时;将配制的浆料抽真空处理3小时。
所述的一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法,由以下具体步骤制成:
(1)将质量份数为20的纳米二硼化锆粉体加入到上述分散有短切纤维的胶体中,搅拌8小时;
(2)将步骤(1)得到的胶体浆料注入石英管内,并将石膏板置于石英管的底端,然后将石英管的顶端用橡胶塞封住,浆料干燥24小时后,将成型的坯体脱模取出;
(3)将步骤(2)得到的坯体放入真空干燥箱内,在50℃下干燥20小时;
(4)将步骤(3)得到的坯体放入管式烧结炉内裂解,在室温下以2℃/min的速度升至800℃,恒温5小时后,随炉冷却;
(5)将步骤(4)得到的坯体放置于真空热压炉中,在烧结温度1600℃和烧结压力30MPa的条件下烧结0.5小时。
本实施例中所制得材料的性能结果如下:
相对密度:99.7%;
平均晶粒尺寸:0.3μm
弯曲强度:523MPa;
断裂韧性:7.64MPa·m1/2
图1a是坯体经干燥后的电子显微照片,可见,短切碳纤维不但均匀的分散于坯体之中,而且纤维平均的长度也保持在2㎜左右。并且,形成的胶体可以将添加的纳米碳化硅粉体包覆在的碳纤维表面(如图1b所示),形成一层高温保护层,进而降低碳纤维在后续高温热压过程中所造成的腐蚀破坏。
热压烧结后,从材料的平面显微照片可见(如图2a所示),短切碳纤维均匀的分散于基体中,这说明本发明中采用的胶体分散方法是十分有效的。在图2b中可见,短切碳纤维在经历过高温热压烧结后仍然可以较好的保持其原始形貌,且纤维/基体间界面清晰、规整。这说明包覆的纳米碳化硅涂层可以有效地减缓碳纤维在高温的降解、腐蚀现象。
从图3a中可见,当裂纹扩展时,短切纤维可以发生明显的纤维脱粘、桥接现象。在材料的断口中(如图3b所示),还可以发现明显的纤维拔出现象,且拔出的长度非常明显。这都说明碳纤维与基体之间是较弱的界面结合,而这正是由于纤维表面所包覆的纳米碳化硅涂层导致的。并且,从图3b中还可以发现,材料的晶粒尺寸仅为0.3微米,这也有利于材料弯曲强度和断裂韧性的提升。
综上所述,与传统的球磨分散方法相比,本发明中胶体分散方法更好的发挥了短切碳纤维的增韧效果,所制备的二硼化锆基复合材料具有高致密度、晶粒细小、高强高韧的特点。

Claims (4)

1.一种胶体分散短切碳纤维,其特征在于,由下列质量份的原料组成:短切碳纤维1-3、纳米碳化硅粉体1-3、酚醛树脂1-5、聚乙烯亚胺0.1-0.5和无水乙醇60-100。
2.权利要求1所述一种胶体分散短切碳纤维的制备方法,其特征在于,将质量份数为1-5的酚醛树脂溶解于质量份数为60-100的无水乙醇内;再加入质量份数为1-3的短切碳纤维和质量份数为1-3的纳米碳化硅粉体,并采用超声波震荡分散0.5-2小时;缓慢滴加质量份数为0.1-0.5的聚乙烯亚胺,并搅拌1-2小时;将配制的浆料抽真空处理1-5小时;溶解在无水乙醇内的酚醛树脂与聚乙烯亚胺发生交联反应形成凝胶,将短切碳纤维均匀的定位于胶体之中,并使添加的纳米碳化硅粉体吸附在纤维表面,形成一层高温保护层。
3.一种胶体分散短切碳纤维增韧的二硼化锆基复合材料,其特征在于,由下列质量份的原料组成:短切碳纤维1-3、纳米碳化硅粉体1-3、酚醛树脂1-5、聚乙烯亚胺0.1-0.5、无水乙醇60-100和纳米二硼化锆粉体15-25。
4.权利要求3所述一种胶体分散的短切碳纤维增韧二硼化锆基复合材料的制备方法,其特征在于由以下具体步骤制成:
(1)将质量份数为15-25的纳米二硼化锆粉体加入到上述分散有短切纤维的胶体中,并搅拌5-8小时;
(2)将步骤(1)得到的胶体浆料注入下端置有石膏板的石英管内,然后将石英管的顶端用橡胶塞封住,待浆料干燥12-24小时后,将成型的坯体脱模。
(3)将步骤(2)得到的坯体放入真空干燥箱内,40-60℃下干燥10-24小时;
(4)将步骤(3)得到的坯体放入管式烧结炉内裂解,在室温下以2-5℃/min的速度升至800℃,恒温3-5小时后,随炉冷却;
(5)将步骤(4)得到的坯体放置于真空热压炉中,在烧结温度1400-1600℃和烧结压力10-30MPa的条件下烧结0.5-1小时。
CN201610247236.4A 2016-04-20 2016-04-20 一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法 Active CN105906360B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610247236.4A CN105906360B (zh) 2016-04-20 2016-04-20 一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610247236.4A CN105906360B (zh) 2016-04-20 2016-04-20 一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105906360A true CN105906360A (zh) 2016-08-31
CN105906360B CN105906360B (zh) 2018-04-10

Family

ID=56746760

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610247236.4A Active CN105906360B (zh) 2016-04-20 2016-04-20 一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105906360B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266101A (zh) * 2017-08-10 2017-10-20 巩义市泛锐熠辉复合材料有限公司 一种短切碳纤维增强碳化硼基复合材料的制备方法
CN109293384A (zh) * 2018-10-31 2019-02-01 哈尔滨工业大学 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法
CN112279561A (zh) * 2020-11-10 2021-01-29 大连理工大学 一种湿法凝胶分散毫米级短纤维复合材料坯体及其制备方法
CN112341204A (zh) * 2020-11-10 2021-02-09 大连理工大学 一种连续纤维交织层合二硼化锆基复合材料及其制备方法
CN113999026A (zh) * 2021-11-12 2022-02-01 烟台核晶陶瓷新材料有限公司 一种石英水口及其制备工艺
CN115195254A (zh) * 2022-05-30 2022-10-18 航天特种材料及工艺技术研究所 一种隔热/抗烧蚀热防护结构及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368312A2 (en) * 1988-11-10 1990-05-16 Toho Rayon Co., Ltd. Carbon fiber chopped strands and method of production thereof
EP0972805A2 (en) * 1998-07-17 2000-01-19 JSR Corporation Polyimide-based composite, electronic parts using the composite, and polyimide-based aqueous dispersion
CN1094145C (zh) * 1993-03-04 2002-11-13 瓦克化学有限公司 用作纤维粘合剂的可交联分散粉

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0368312A2 (en) * 1988-11-10 1990-05-16 Toho Rayon Co., Ltd. Carbon fiber chopped strands and method of production thereof
CN1094145C (zh) * 1993-03-04 2002-11-13 瓦克化学有限公司 用作纤维粘合剂的可交联分散粉
EP0972805A2 (en) * 1998-07-17 2000-01-19 JSR Corporation Polyimide-based composite, electronic parts using the composite, and polyimide-based aqueous dispersion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XINGHONG ZHANG ET AL.: "Carbon-bonded carbon fiber composites containing uniformly distributed silicon carbide", 《THE ROYAL SOCIETY OF CHEMISTRY》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107266101A (zh) * 2017-08-10 2017-10-20 巩义市泛锐熠辉复合材料有限公司 一种短切碳纤维增强碳化硼基复合材料的制备方法
CN109293384A (zh) * 2018-10-31 2019-02-01 哈尔滨工业大学 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法
CN109293384B (zh) * 2018-10-31 2021-03-30 哈尔滨工业大学 一种制备高损伤容限的面内各向同性的硼化锆基超高温独石结构陶瓷的方法
CN112279561A (zh) * 2020-11-10 2021-01-29 大连理工大学 一种湿法凝胶分散毫米级短纤维复合材料坯体及其制备方法
CN112341204A (zh) * 2020-11-10 2021-02-09 大连理工大学 一种连续纤维交织层合二硼化锆基复合材料及其制备方法
CN112341204B (zh) * 2020-11-10 2021-11-19 大连理工大学 一种连续纤维交织层合二硼化锆基复合材料及其制备方法
CN113999026A (zh) * 2021-11-12 2022-02-01 烟台核晶陶瓷新材料有限公司 一种石英水口及其制备工艺
CN115195254A (zh) * 2022-05-30 2022-10-18 航天特种材料及工艺技术研究所 一种隔热/抗烧蚀热防护结构及其制备方法
CN115195254B (zh) * 2022-05-30 2024-04-02 航天特种材料及工艺技术研究所 一种隔热/抗烧蚀热防护结构及其制备方法

Also Published As

Publication number Publication date
CN105906360B (zh) 2018-04-10

Similar Documents

Publication Publication Date Title
CN105906360A (zh) 一种胶体分散短切碳纤维增韧的二硼化锆基复合材料及其制备方法
CN102515870B (zh) 一种C/SiC-ZrB2-ZrC超高温陶瓷基复合材料的制备方法
CN106699209B (zh) 连续氧化铝纤维增强氧化铝陶瓷基复合材料的制备方法
WO2020042950A1 (zh) 一种短纤维增强取向max相陶瓷基复合材料及制备方法
CN106866151B (zh) 一种浆料注射工艺制备碳纤维增韧硼化锆-碳化硅复合材料的方法
CN108640663B (zh) 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法
CN103058711A (zh) 一种通过超高温陶瓷粉基体改性制备超高温陶瓷基复合材料的方法
CN111825471B (zh) 一种电泳沉积制备连续碳纤维增韧超高温陶瓷基复合材料的方法
CN106542839A (zh) 一种晶须型增韧陶瓷的制备方法
CN109987948A (zh) 一种碳纤维增强陶瓷基复合材料热解碳界面层的制备方法
CN106187258A (zh) 一种短切碳纤维均匀分散增强氧化铝复合材料的制备方法
CN105294084A (zh) 一种高硬高强韧氧化铝陶瓷复合材料及其制备方法
CN1600744A (zh) 短纤维增强碳化硅基复合材料的制备方法
CN108796306A (zh) 一种氧化石墨烯增强钛基复合材料及其制备方法
CN115417683A (zh) 一种氧化物连续长丝增强氧化物陶瓷基复合材料的制备方法
CN108178650A (zh) 一种制备石墨烯网络增韧ZrC-SiC超高温陶瓷材料的方法
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN113816746A (zh) 一种max相高熵陶瓷基复合材料及其制备方法
CN106966743B (zh) 一种连续纤维增强热结构材料复合界面层的制备方法
CN104844214B (zh) 致密化高强度碳化锆和碳化铪陶瓷材料及其低温制备方法
CN111499386A (zh) 一种复合陶瓷材料及其制备方法
CN107512921B (zh) 一种碳纤维粉增强氮化硅基复合材料的制备方法
CN100497254C (zh) 一种碳化硅陶瓷
CN110408174B (zh) 一种常温高强度胶粘耐磨材料及其制备方法
CN113480313A (zh) 一种MXene增韧的超高温陶瓷复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant