CN108640663B - 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法 - Google Patents

一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法 Download PDF

Info

Publication number
CN108640663B
CN108640663B CN201810927317.8A CN201810927317A CN108640663B CN 108640663 B CN108640663 B CN 108640663B CN 201810927317 A CN201810927317 A CN 201810927317A CN 108640663 B CN108640663 B CN 108640663B
Authority
CN
China
Prior art keywords
graphene
silicon carbide
composite material
ball milling
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810927317.8A
Other languages
English (en)
Other versions
CN108640663A (zh
Inventor
张红梅
赵大东
陈睿
李娜
姜正义
彭兴东
苗岩
王明宇
王岳松
董燃
孔祥楠
王宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Liaoning USTL
Original Assignee
University of Science and Technology Liaoning USTL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Liaoning USTL filed Critical University of Science and Technology Liaoning USTL
Priority to CN201810927317.8A priority Critical patent/CN108640663B/zh
Publication of CN108640663A publication Critical patent/CN108640663A/zh
Application granted granted Critical
Publication of CN108640663B publication Critical patent/CN108640663B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明的目的为了解决现有技术中碳化硅增强氧化铝基复合材料存在的问题,提供了一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法,属于氧化铝基复合材料技术领域。本发明的材料由石墨烯包覆碳化硅复合材料和Al2O3基体组成,石墨烯包覆碳化硅复合材料均匀的分别在Al2O3基体中。该方法首先用石墨烯对碳化硅进行包覆,该过程中不需要先单独制备石墨烯,而是将片层石墨和碳化硅纳米颗粒进行湿法球磨,直接获得包覆石墨烯的碳化硅颗粒,整个制备过程一步完成;再用这种包覆石墨烯的碳化硅作为增强相与氧化铝复合,提高氧化铝基材料的致密性、导电性能和力学性能。

Description

一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法
技术领域
本发明属于氧化铝基复合材料技术领域,特别涉及一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法。
背景技术
Al2O3/SiC复相材料的研究方向最早是由Niihara等人提出的,他们研究表明添加5%的SiC纳米颗粒的氧化铝陶瓷性能得到显著提升。弯曲强度从单一氧化铝材料的350MPa提升到1000MPa以上,断裂韧性也从3.5MPa提升到4.8MPa。
一般认为纳米碳化硅颗粒对氧化铝陶瓷性能提升的作用机理为:氧化铝晶粒内的纳米碳化硅颗粒周围会产生扩张应力,通过氧化铝晶界传递到碳化硅晶界形成压应力可以强化晶界;此外还可以形成位错和微裂纹,通过位错的钉扎作用和微裂纹存在阻碍和分散裂纹的扩展;氧化铝晶粒间的碳化硅颗粒则可以细化晶粒,使得材料通过细晶强化机理获得优异的力学性能。
但是,Al2O3/SiC制备中尚存在问题,例如烧结时,存在结合难度相对较大,且结合强度相对较低,同时碳化硅占比大,浪费材料等缺点。
石墨烯与纳米颗粒的包覆复合能有效地防止纳米颗粒的聚合。此外,与传统的碳纤维、碳纳米管等增强体材料相比,石墨烯具有更高的导热率和强度,通过将石墨烯与碳化硅相结合,获得复合材料,能够将石墨烯的性能优势引入到碳化硅当中。
目前,制备石墨烯/碳化硅复合材料的方法都是先单独制备好石墨烯作为原料,再与碳化硅纳米颗粒进行复合。
例如,赵更一,碳化硅陶瓷的制备和导热性能研究,哈尔滨工业大学,硕士学位论文,2016。该研究将通过微机械剥离法制备得到的石墨烯纳米片粉体分散后加入碳化硅粉体中,添加适量的烧结助剂,充分机械球磨后,在1950℃温度下、轴向压力40MPa和Ar气保护气氛下热压烧结获得石墨烯/碳化硅陶瓷基复合材料。观察发现石墨烯在烧结过程中发生了偏转,绝大多数都与压力方向垂直,同时,石墨烯片在加压过程中发生了层状堆叠,累计厚度达到200nm,此外由于片状直径远比碳化硅晶粒尺寸要大,因此一个石墨烯片可以横跨十余个碳化硅晶粒,石墨烯片被夹在碳化硅晶粒当中,处于多个碳化硅晶粒的晶界位置,这必将使得复合材料在加压的垂直和平行方向上有较大的性能差异。
此外,石墨烯包覆型复合材料的制备还有多种物理和化学方法,包括静电自组装法,气溶胶相法,水热合成、乳化法、共价键合法、化学气相沉积以及共热解法等,然而,以上这些方法通常包含复杂的过程,并且多以氧化石墨烯(GO)作为原料,而氧化石墨烯(GO)一般由石墨经强酸氧化而得,涉及危险试剂和/或成本高。
因此,有必要对石墨烯/碳化硅增强氧化铝基复合材料的制备方法做进一步研究。
发明内容
本发明的目的为了解决现有技术中碳化硅增强氧化铝基复合材料存在的问题,提供了一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法。本发明首先用石墨烯对碳化硅进行包覆,该过程中不需要先单独制备石墨烯,而是将片层石墨和碳化硅纳米颗粒进行湿法球磨,直接获得包覆石墨烯的碳化硅颗粒,整个制备过程一步完成;再用这种包覆石墨烯的碳化硅作为增强相与氧化铝复合,提高氧化铝基材料的致密性、导电性能和力学性能。
一种石墨烯/碳化硅增强氧化铝基复合材料,由石墨烯包覆碳化硅复合材料和Al2O3基体组成,石墨烯包覆碳化硅复合材料均匀的分布在Al2O3基体中;所述Al2O3基体的质量百分含量为92~96%,所述石墨烯包覆碳化硅复合材料的质量百分含量为4~8%;
其中,所述石墨烯包覆碳化硅复合材料由石墨烯和β-SiC纳米颗粒组成,所述石墨烯片层包覆在β-SiC纳米颗粒表面;石墨烯的质量百分含量为10~20%,β-SiC的质量百分含量为80~90%;
进一步的,所述石墨烯厚度为2~10碳层,所述β-SiC纳米颗粒的粒径为40~60nm。
上述石墨烯/碳化硅增强氧化铝基复合材料的制备方法,包括如下步骤:
1)按质量百分比选取厚度小于30μm的片状石墨和粒径为40~60nm的β-SiC纳米颗粒;
2)将石墨和β-SiC纳米颗粒以无水乙醇和蒸馏水作为研磨介质和过程控制试剂,球磨30~50小时;
3)取出混合磨料干燥,即得石墨烯包覆碳化硅复合材料;
4)按质量百分比选取粒径为40~60nm的Al2O3纳米颗粒,并将Al2O3纳米颗粒与石墨烯包覆碳化硅复合材料混合后进行清洗,然后干燥;
5)向混合粉末中加入无水乙醇和蒸馏水,球磨1.5~2.5h;
6)取出混合磨料干燥;
7)将干燥后的混合粉末进行热压烧结,压力为35~45Mpa,烧结制度为由室温升至1400~1500℃,升温速度为90~110℃/min,再保温4~7分钟后自然降温,即得石墨烯/碳化硅增强氧化铝基复合材料。
其中,所述方法中,球磨是在氧化锆球磨罐中。
所述步骤2)中,球料比为25~30∶1。
所述步骤2)和步骤5)中,无水乙醇和蒸馏水的体积比为2∶3~3.5,无水乙醇和蒸馏水总体积与球磨罐容积比为1∶10~1∶15。
所述步骤2)中,球磨转速为150~300rpm。
所述步骤4)中,清洗方法为混合粉末和水混合后超声清洗0.5~1h。
所述步骤5)中,球磨转速为100~200rpm。
所述步骤5)中,球料比为12~17∶1。
经检测,本发明制备的石墨烯/碳化硅增强氧化铝基复合材料平均结合强度可达2.3GPa,抗拉强度可达300MPa,硬度可达100Hv以上,颗粒直径为100~150nm,碳化硅使用量为3~7%。
本发明与现有同类技术相比,其显著的有益效果体现在:
1、本发明在制备石墨烯/碳化硅复合材料时,不使用任何危险的试剂,仅通过控制加入原料的总量、配比以及球磨过程中的各个参数,即可利用价格便宜的片层石墨和纳米碳化硅颗粒,一步制成石墨烯包覆碳化硅复合材料。
2、本发明采用石墨烯包覆碳化硅复合材料与氧化铝基结合,相容性更强。同时由于包覆了石墨烯,可以有效减少碳化硅的用量,实际使用的碳化硅用量仅为3%左右。
3、本发明的石墨烯/碳化硅-氧化铝基复合材料具有更均匀的粒子结构,现有碳化硅-氧化铝基复合材料颗粒平均结合强度约为1.8Gpa,而本发明中的复合材料具有更致密的结构,强度也更高,可达到2.3Gpa。
4、本发明的石墨烯/碳化硅-氧化铝基复合材料由于包裹了石墨烯,复合材料结合了石墨烯耐高温的优点,与现有的碳化硅-氧化铝基复合材料相比具有更好的高温稳定性和耐高温抗蠕变性能。
附图说明
图1、实施例1中球磨前片层石墨的扫描电镜(SEM)图片。
图2、实施例1中球磨前碳化硅纳米颗粒的扫描电镜(SEM)图片。
图3、实施例1中球磨过程中形成片层石墨烯及碳化硅颗粒的透射电镜(TEM)图片。
图4、实施例1中球磨后石墨烯包覆碳化硅复合材料的扫描电镜(SEM)图片。
图5、图5a为实施例1中球磨后石墨烯包覆碳化硅复合材料的透射电镜(TEM)图片;图5b为图5a中虚线圆圈放大5倍后的图片。
图6、实施例1中烧结后的石墨烯/碳化硅增强氧化铝基复合材料的扫描电镜(SEM)图片。
具体实施方式
下面结合附图更详细描述本发明。
实施例1
石墨烯/碳化硅增强氧化铝基复合材料的制备方法,包括如下步骤:
1.准备薄片状片层石墨,石墨片厚度小于30μm,如图1所示
2.准备β-SiC纳米颗粒,颗粒粒径为40~60nm,如图2所示。
3.将片层石墨与β-SiC纳米颗粒混合,混合粉末的总量为20g,其中石墨占总质量的20%。
4.将混合粉末在球磨罐内以乙醇和蒸馏水作为研磨介质和过程控制试剂,进行球磨。球磨过程中,球料比为25∶1,乙醇和蒸馏水的体积比为2∶3,乙醇和蒸馏水合计体积与球磨罐容积的比例为1∶15。球磨罐为氧化锆球磨罐,球磨转速为200rpm,球磨时间为50小时。取出混合磨料,于烘干机中在真空条件下加热至90~110℃干燥,即得由质量百分含量20%石墨烯和质量百分含量80%β-SiC纳米颗粒组成、石墨烯片层包覆在β-SiC纳米颗粒表面、石墨烯厚度在2~10碳层、β-SiC纳米颗粒的粒径为40~60nm的石墨烯包覆碳化硅复合材料。
由图3~图5所示,当球磨至20小时,片层石墨大部分已剥离成石墨烯,其中60%的石墨烯片层小于6层,部分石墨烯已经包覆到碳化硅颗粒周围,如图3所示,图中箭头所指是已发生包覆的碳化硅(黑色圆形)颗粒,图中碳化硅颗粒与图2相比表面已被石墨烯包覆;球磨至后期,大部分石墨烯包覆在碳化硅颗粒的周围,如图4和图5所示,图5a中箭头所示为表面包覆有石墨烯的碳化硅颗粒,图5b是图5a中虚线圆圈放大5倍后的照片,图5b中黑色圆形物质为碳化硅颗粒,周围包覆的石墨烯局部为3层,局部为6层。
5.选取颗粒粒径为40~60nm的Al2O3纳米颗粒235g,与15g石墨烯包覆碳化硅复合材料和水混合,进行超声波清洗0.5小时,清洗后过滤粉末并干燥。
6.干燥后的粉末加入球磨罐,球料比15∶1,以乙醇和蒸馏水混合溶液为球磨介质,乙醇和蒸馏水的体积比为2∶3,乙醇和蒸馏水合计体积与球磨罐容积的比例为1∶15,在160rpm的转速下进行球磨2h。
7.球磨后的混合粉末在真空、90~110℃条件下烘干。
8.经烘干后的混合粉末在热压炉内进行热压烧结。热压强度为40Mpa,烧结制度为由室温升温至1450℃,升温速度为100℃/min,再保温5min后自然降温,即得石墨烯包覆碳化硅复合材料均匀的分布在氧化铝纳米颗粒中、氧化铝纳米颗粒的质量百分含量为94%的石墨烯/碳化硅增强氧化铝基复合材料。烧结后获得的复合材料照片如图6所示,图中箭头所指的是包覆了石墨烯的碳化硅,其他较大块晶体为基体氧化铝。
经检测,本发明制备的石墨烯/碳化硅增强氧化铝基复合材料平均结合强度为2.3GPa,抗拉强度为323MPa,硬度为113Hv,颗粒直径为100~150nm,碳化硅使用量为4.8%。
对比例1
采用现有的技术方法(赵更一,碳化硅陶瓷的制备和导热性能研究,哈尔滨工业大学,硕士学位论文,2016)制备石墨烯包覆碳化硅复合材料;后续制备石墨烯/碳化硅增强氧化铝基复合材料的方法同实施例1步骤5~8。
由于该方法制备的石墨烯片状直径远比碳化硅晶粒尺寸要大,因此一个石墨烯片可以横跨十余个碳化硅晶粒,石墨烯片被夹在碳化硅晶粒当中,处于多个碳化硅晶粒的晶界位置,这必将使得复合材料在加压的垂直和平行方向上有较大的性能差异。
对比例2
采用现有的技术方法(彭晓峰,碳化硅晶须补强氧化铝复合材料的制备及其力学性能)制备的碳化硅增强氧化铝复合材料。
1.先将氧化铝粉末在1250℃煅烧。
2.以酒精为介质将混合粉末球磨数小时得到分散均匀的复合粉末。
3.将粉末进行热压烧结,压力为20MPa,温度范围1600~1800℃,保温保压1~1.5小时,得到复合材料。
该方法制备所得的复合材料由于其刚性晶须在基体中的分散导致其材料内部具有较高的平均剪应力,会降低其烧结速度,同时其材料性能在碳化硅晶须含量为30%时达到最大值,碳化硅占比较大,浪费材料。
实施例2
石墨烯/碳化硅增强氧化铝基复合材料的制备方法,包括如下步骤:
1.准备薄片状片层石墨,石墨片厚度小于30μm,如图1所示
2.准备β-SiC纳米颗粒,颗粒粒径为40~60nm,如图2所示。
3.将片层石墨与β-SiC纳米颗粒混合,混合粉末的总量为20g,其中石墨占总质量的10%。
4.将混合粉末在球磨罐内以乙醇和蒸馏水作为研磨介质和过程控制试剂,进行球磨。球磨过程中,球料比为30∶1,乙醇和蒸馏水的体积比为2∶3.5,乙醇和蒸馏水合计体积与球磨罐容积的比例为1∶10。球磨罐为氧化锆球磨罐,球磨转速为150rpm,球磨时间为40小时。取出混合磨料,于烘干机中在真空条件下加热至90~110℃干燥,即得由质量百分含量10%石墨烯和质量百分含量90%β-SiC纳米颗粒组成、石墨烯片层包覆在β-SiC纳米颗粒表面、石墨烯厚度在2~10碳层、β-SiC纳米颗粒的粒径为40~60nm的石墨烯包覆碳化硅复合材料。
5.选取颗粒粒径为40~60nm的Al2O3纳米颗粒316.8g,与13.2g石墨烯包覆碳化硅复合材料和水混合,进行超声波清洗0.7小时,清洗后过滤粉末并干燥。
6.干燥后的粉末加入球磨罐,球料比17∶1,以乙醇和蒸馏水混合溶液为球磨介质,乙醇和蒸馏水的体积比为2∶3.5,乙醇和蒸馏水合计体积与球磨罐容积的比例为1∶10,在200rpm的转速下进行球磨1.5h。
7.球磨后的混合粉末在真空、110℃条件下在烘干机内烘干。
8.经烘干后的混合粉末在热压炉内进行热压烧结。热压强度为45Mpa,烧结制度为由室温升温至1400℃,升温速度为90℃/min,再保温7min后自然降温,即得石墨烯包覆碳化硅复合材料均匀的分布在氧化铝纳米颗粒中、氧化铝纳米颗粒的质量百分含量为96%的石墨烯/碳化硅增强氧化铝基复合材料。
经检测,本发明制备的石墨烯/碳化硅增强氧化铝基复合材料平均结合强度为2.3GPa,抗拉强度为308MPa,硬度为118Hv,颗粒直径为100~150nm,碳化硅使用量为3.6%。
实施例3
石墨烯/碳化硅增强氧化铝基复合材料的制备方法,包括如下步骤:
1.准备薄片状片层石墨,石墨片厚度小于30μm,如图1所示
2.准备β-SiC纳米颗粒,颗粒粒径为40~60nm,如图2所示。
3.将片层石墨与β-SiC纳米颗粒混合,混合粉末的总量为20g,其中石墨占总质量的15%。
4.将混合粉末在球磨罐内以乙醇和蒸馏水作为研磨介质和过程控制试剂,进行球磨。球磨过程中,球料比为27∶1,乙醇和蒸馏水的体积比为2∶3.2,乙醇和蒸馏水合计体积与球磨罐容积的比例为1∶13。球磨罐为氧化锆球磨罐,球磨转速为300rpm,球磨时间为30小时。取出混合磨料,于烘干机中在真空条件下加热至90~110℃干燥,由质量百分含量15%石墨烯和质量百分含量85%β-SiC纳米颗粒组成、石墨烯片层包覆在β-SiC纳米颗粒表面、石墨烯厚度在2~10碳层、β-SiC纳米颗粒的粒径为40~60nm的石墨烯包覆碳化硅复合材料。
5.选取颗粒粒径为40~60nm的Al2O3纳米颗粒161g,与14g石墨烯包覆碳化硅复合材料和水混合,进行超声波清洗1小时,清洗后过滤粉末并干燥。
6.干燥后混合粉末加入球磨罐,球料比12∶1,以乙醇和蒸馏水混合溶液为球磨介质,乙醇和蒸馏水的体积比为2∶3.2,乙醇和蒸馏水合计体积与球磨罐容积的比例为1∶13,在100rpm的转速下进行球磨2.5h。
7.球磨后的混合粉末在真空、90℃条件下在烘干机内烘干。
8.经烘干后的混合粉末在热压炉内进行热压烧结。热压强度为35Mpa,烧结制度为由室温升温至1500℃,升温速度为110℃/min,再保温4min后自然降温,即得石墨烯包覆碳化硅复合材料均匀的分布在氧化铝纳米颗粒中、氧化铝纳米颗粒的质量百分含量为92%的石墨烯/碳化硅增强氧化铝基复合材料。
经检测,本发明制备的石墨烯/碳化硅增强氧化铝基复合材料平均结合强度为2.3GPa,抗拉强度为347MPa,硬度为109Hv,颗粒直径为100~150nm,碳化硅使用量为6.8%。

Claims (5)

1.一种石墨烯/碳化硅增强氧化铝基复合材料,其特征在于,由石墨烯包覆碳化硅复合材料和Al2O3基体组成,石墨烯包覆碳化硅复合材料均匀的分布在Al2O3基体中;所述Al2O3基体的质量百分含量为92~96%,所述石墨烯包覆碳化硅复合材料的质量百分含量为4~8%;
其中,所述石墨烯包覆碳化硅复合材料由石墨烯和β-SiC纳米颗粒组成,所述石墨烯片层包覆在β-SiC纳米颗粒表面;石墨烯的质量百分含量为10~20%,β-SiC的质量百分含量为80~90%。
2.根据权利要求1所述的一种石墨烯/碳化硅增强氧化铝基复合材料,其特征在于,所述石墨烯厚度为2~10碳层,所述β-SiC纳米颗粒的粒径为40~60nm。
3.权利要求1或2所述的石墨烯/碳化硅增强氧化铝基复合材料的制备方法,其特征在于,包括如下步骤:
1)按质量百分比选取厚度小于30μm的片状石墨和粒径为40~60nm的β-SiC纳米颗粒;
2)将石墨和β-SiC纳米颗粒以无水乙醇和蒸馏水作为研磨介质和过程控制试剂,球磨30~50小时;
3)取出混合磨料干燥,即得石墨烯包覆碳化硅复合材料;
4)按质量百分比选取粒径为40~60nm的Al2O3纳米颗粒,并将Al2O3纳米颗粒与石墨烯包覆碳化硅复合材料混合后进行清洗,然后过滤干燥;
5)向干燥后的混合粉末中加入无水乙醇和蒸馏水,球磨1.5~2.5h;
6)取出混合磨料干燥;
7)将干燥后的混合粉末进行热压烧结,压力为35~45Mpa,烧结制度为由室温升至1400~1500℃,升温速度为90~110℃/min,再保温4~7分钟后自然降温,即得石墨烯/碳化硅增强氧化铝基复合材料;
其中,Al2O3纳米颗粒的质量百分含量为92~96%,石墨烯包覆碳化硅复合材料的质量百分含量为4~8%,所述石墨烯包覆碳化硅复合材料由石墨烯和β-SiC纳米颗粒组成,石墨烯的质量百分含量为10~20%,β-SiC的质量百分含量为80~90%;
所述步骤2)中,球料比为25~30:1,球磨转速为150~300rpm;
所述步骤2)和步骤5)中,无水乙醇和蒸馏水的体积比为2:3~3.5,无水乙醇和蒸馏水总体积与球磨罐容积比为1:10~1:15;
所述步骤5)中,球磨转速为100~200rpm,球料比为12~17:1。
4.根据权利要求3所述的石墨烯/碳化硅增强氧化铝基复合材料的制备方法,其特征在于,球磨是在氧化锆球磨罐中。
5.根据权利要求3所述的石墨烯/碳化硅增强氧化铝基复合材料的制备方法,其特征在于,所述步骤4)中,清洗方法为将混合粉末和水混合后超声清洗0.5~1h。
CN201810927317.8A 2018-08-15 2018-08-15 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法 Expired - Fee Related CN108640663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810927317.8A CN108640663B (zh) 2018-08-15 2018-08-15 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810927317.8A CN108640663B (zh) 2018-08-15 2018-08-15 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN108640663A CN108640663A (zh) 2018-10-12
CN108640663B true CN108640663B (zh) 2021-03-16

Family

ID=63760848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810927317.8A Expired - Fee Related CN108640663B (zh) 2018-08-15 2018-08-15 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN108640663B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511001B (zh) * 2019-08-12 2021-07-30 上海利物盛企业集团有限公司 一种石墨烯导电氧化铝陶瓷的制备方法
CN110666179B (zh) * 2019-11-11 2022-11-29 沈阳航空航天大学 用于激光沉积制造的石墨烯铝基复合粉末及其制法和应用
CN114656787A (zh) * 2020-12-23 2022-06-24 中国石油化工股份有限公司 一种耐磨高硬度防腐组合物及其应用
CN113150748B (zh) * 2021-05-18 2021-12-21 黑龙江科技大学 一种石墨烯散热复合材料的制备方法
CN115604943A (zh) * 2021-07-09 2023-01-13 Oppo广东移动通信有限公司(Cn) 壳体及其制备方法和电子设备
CN113754413B (zh) * 2021-09-28 2022-09-20 江西萍乡龙发实业股份有限公司 一种具备高耐酸耐温耐压性能特种瓷砖的制备方法
CN114525434A (zh) * 2022-04-22 2022-05-24 西安欧中材料科技有限公司 一种SiC诱导多相增强铝基复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103910532B (zh) * 2013-01-05 2015-12-23 中国科学院宁波材料技术与工程研究所 涂层无机纤维增韧max相陶瓷复合材料、其制备方法及用途
CN104017628B (zh) * 2014-06-18 2016-04-06 中国人民解放军装甲兵工程学院 石墨烯负载纳米粒子复合减摩抗磨添加剂的制备方法
CN104402463B (zh) * 2014-10-13 2016-08-24 瑞泰科技股份有限公司 一种石墨烯复合刚玉节能型滑板及其制备工艺
CN106007684A (zh) * 2016-05-31 2016-10-12 四川大学 一种石墨烯氧化铝陶瓷复合材料及其制备方法
CN106082229B (zh) * 2016-06-09 2018-05-08 大连海事大学 一种石墨烯包覆纳米碳化硅的复合材料及制备方法
CN107827465A (zh) * 2017-12-23 2018-03-23 刘彪 一种碳化硅陶瓷材料的制备方法

Also Published As

Publication number Publication date
CN108640663A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
CN108640663B (zh) 一种石墨烯/碳化硅增强氧化铝基复合材料及其制备方法
Vasylkiv et al. Low‐temperature processing and mechanical properties of zirconia and zirconia–alumina nanoceramics
CN108950280B (zh) 一种石墨烯/碳化硅增强铝基复合材料及其制备方法
Liu et al. Spark plasma sintering of alumina composites with graphene platelets and silicon carbide nanoparticles
JPH06172026A (ja) ジルコニア系複合セラミック焼結体及びその製法
CN106904985B (zh) 一种钛-硅-碳增强型氧化铝基多相复合材料及其制备方法
CN111943702B (zh) 一种原位自生β-SIALON晶须增韧碳化钨复合材料及其制备方法与应用
Zaman et al. Carbon nanotube/boehmite-derived alumina ceramics obtained by hydrothermal synthesis and spark plasma sintering (SPS)
CN110304933B (zh) 表面改性碳化硅晶须增韧反应烧结碳化硅陶瓷的制备方法
Guo et al. Multiwall carbon nanotube‐SiO2 nanocomposites: Sintering, elastic properties, and fracture toughness
CN114014667A (zh) 复合碳化硅陶瓷粉料及陶瓷分离阀的制备方法
KR20100123048A (ko) 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
CN102424596B (zh) SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料及其制备方法
CN109809820B (zh) 碳化锆、碳化硅纳米复合纤维增强碳化硅纤维及其制备方法
CN108329018B (zh) 一种增韧氧化铝复合陶瓷及其制备方法
Shimoda et al. Effect of BN nanoparticle content in SiC matrix on microstructure and mechanical properties of SiC/SiC composites
CN113896538B (zh) 氧化铝纤维增强碳化硅陶瓷材料的制备方法及制得的氧化铝纤维增强碳化硅陶瓷材料
He et al. Microstructures of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing
Osendi et al. Dense and homogenous silicon nitride composites containing carbon nanotubes
Ueda et al. Microstructure development and fracture toughness of acid-treated carbon nanofibers/alumina composites
CN113683435A (zh) 一种多相复合增强碳化硅陶瓷的制备方法
CN112608161A (zh) 金属增韧型稀土硅酸盐粉末的制备方法
CN112811907A (zh) 一种热压烧结用碳化硼微纳混合粉料的制备方法
JP3225873B2 (ja) MgO複合セラミックス及びその製造方法
Ghafuri et al. Effect of short carbon fiber content on the mechanical properties of TiB2‐based composites prepared by spark plasma sintering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210316