KR20100123048A - 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법 - Google Patents

고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법 Download PDF

Info

Publication number
KR20100123048A
KR20100123048A KR1020090042051A KR20090042051A KR20100123048A KR 20100123048 A KR20100123048 A KR 20100123048A KR 1020090042051 A KR1020090042051 A KR 1020090042051A KR 20090042051 A KR20090042051 A KR 20090042051A KR 20100123048 A KR20100123048 A KR 20100123048A
Authority
KR
South Korea
Prior art keywords
sic
silicon carbide
slurry
high density
weight
Prior art date
Application number
KR1020090042051A
Other languages
English (en)
Other versions
KR101101244B1 (ko
Inventor
김원주
윤당혁
이종현
박지연
Original Assignee
한국원자력연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국원자력연구원 filed Critical 한국원자력연구원
Priority to KR1020090042051A priority Critical patent/KR101101244B1/ko
Publication of KR20100123048A publication Critical patent/KR20100123048A/ko
Application granted granted Critical
Publication of KR101101244B1 publication Critical patent/KR101101244B1/ko

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/78Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon; with halides or oxyhalides of silicon; with fluorosilicates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/84Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/02Inorganic fibres based on oxides or oxide ceramics, e.g. silicates
    • D10B2101/08Ceramic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/904Flame retardant

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

본 발명은 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법에 관한 것으로서, 보다 상세하게는, 고효율 방사형 히터, 엔진부품, 가스터어빈 및 차세대 원자로용 구조 재료로서 사용할 수 있는 초고강도의 고온용 세라믹스 섬유를 함유한 소결체의 밀도 및 기계적인 강도를 증진시키는 상기 복합체의 제조방법을 제공한다.
탄화규소 섬유강화 탄화규소 복합체, SiC 분말, SiC 직조섬유, 진공침착

Description

고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법{Method for manufacturing high density SiCf/SiC composites}
본 발명은 고밀도의 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법에 관한 것이다. 보다 상세하게는, 고효율 방사형 히터, 엔진부품, 가스터어빈 및 차세대 원자로용 구조 재료로서 사용할 수 있는 초고강도의 고온용 세라믹스 섬유를 함유한 소결체의 밀도 및 기계적인 강도를 증진시키는 상기 복합체의 제조방법에 관한 것이다.
산업구조의 고도화 및 에너지 효율 향상에 대한 요구로 초고온 등의 극한 환경에서 기능을 발휘하는 소재에 대한 요구가 급증하고 있다. 세라믹스 섬유강화 복합소재는 초고온 등의 극한 환경에서도 고강도, 고인성, 내식성 및 고신뢰도 특성을 유지하는 소재로 자동차용 디젤분진필터, 우주, 항공, 원자력 등의 산업분야에 필수소재로 인식되고 있다. 섬유강화 복합소재가 극한 환경에서 우수한 성능 을 발휘하기 위해서는 고강도의 내열 세라믹스 섬유가 기본요소가 되며, 이 섬유를 원하는 형태로 직조하여 치밀화하는 방법이 필요하다.
탄화규소 (SiC)는 우수한 열적, 기계적 특성을 보유하는 세라믹 재료로 1891년 E. G. Acheson에 의하여 발견된 이래, 전기화학적인 방법과 기상화학증착법 (CVD) 등을 활용하여 분말로 제조되고 있다.
탄화규소 섬유는 1970년대 중반에 미국의 NASA, Textron 및 Dow Corning 사가 연계하여 SylamicTM 섬유를 개발하였으며, 일본에서는 Nippon Carbon사가 극저 산소함유 NiCalonTM 섬유를 개발하였으며, Ube사에서는 전구체 고분자의 개질을 통하여 완전결정화 섬유 TyrannoTM를 제조하였다. 특히 TyrannoTM섬유는 C/Si의 화학양론 비가 1.08로서 거의 1 에 가까우며, 무산소 분위기에서 1900℃ 까지, 산소 분위기에서는 1000℃ 까지 안정성을 보여주어 내열성이 요구되는 우주, 항공, 원자력 등의 산업분야에 적합한 섬유이다.
상기의 분야에의 적용을 위해서는 고밀도 및 높은 기계적 강도가 요구된다. 탄화규소 (SiC) 분말을 이용하여 고밀도 세라믹의 제조는 가능하지만, 기계적인 강도 측면에서 취성 파괴를 일으키는 단점이 있다. 이러한 단점을 해결하기 위하여 일반적으로 직조섬유가 함유된 세라믹 기지 복합체(ceramic matrix composites, CMCs)를 제조하는 것이 바람직하다. 입자 또는 길이가 짧은 휘스커(whisker) 강화 세라믹 복합재료는 단일상 세라믹의 파괴에너지 범위를 크게 벗어나지 못하지만, 직조섬유 강화 세라믹 복합재료는 기지에 응력이 가해져 균열이 전파될 때, 섬유가 에너지를 흡수하여 세라믹의 파괴인성을 향상시킨다. 특히 결합력이 약한 세라믹 기지(matrix)와 섬유의 계면을 형성하는 것이 균열의 전파를 빗나가게 하여 취성 파괴의 문제점을 최소화할 수 있는데, 이러한 목적으로 섬유의 표면에 100 1000 nm 두께의 열분해 탄소(C)나 질화보론 (BN) 층을 형성하기도 한다.
탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)를 제조하는 방법으로는 기상화학침착법(CVI: chemical vapor infiltration), 고분자 침착 후 열분해법 (PIP: polymer impregnation and pyrolysis), 반응소결법(reaction sintering) 및 이들을 조합한 방법들이 시도되었다. 특히, CVI 방법은 1000℃ 내외의 공정온도를 적용하여 기체를 출발물질로 하여 SiC 섬유 사이에 SiC 기지상(matrix phase)을 증착시키므로 고온에 의한 섬유의 손상을 최소화할 수 있다는 장점이 있다. 하지만, 고밀도 증착을 위하여 수십 시간의 가동 시간이 필요하며, 잔류 기공이 존재하며, 제조 단가가 높다는 단점이 있다. 특히, 증착 시 복합체의 표면에 우선적으로 기지상이 증착되어 내부로의 원활한 기지상 증착이 어렵기 때문에 4mm 이상의 두께를 보이는 고밀도의 복합체는 제조하기 어렵다는 단점이 있다. PIP와 반응소결법의 경우에도 상대적으로 낮은 순도 및 유리질의 존재로 기계적 강도가 낮은 단점이 있 다. 상기의 방법들은 일반적으로 10 20 %의 기공을 함유하게 되므로, 기계적인 특성이 낮은 복합체가 제조되는 단점이 있다.
고밀도 복합체의 제조를 위하여, 일본의 교토대학 고야먀 (Kohyama) 교수팀은 나노 SiC 분말을 함유한 폴리카보실란 (PCS, polycarbosilane) 슬러리를 제조하여 일방향 Tyranno SiC 섬유에 함침시킨 후, 1720 1780℃의 온도에서 가압 소결하는 방법을 사용하여 2.77 2.93 g/cm3 의 밀도를 구현하였다. 이는 종래의 CVI 및 PIP법으로 제조된 복합체 밀도 2.10 2.70 g/cm3에 비하여 매우 향상된 결과이다.
본 방법에서 사용된 치밀화의 기본 메커니즘은 SiC 슬러리에 10 중량% 정도로 함유된 Al2O3-Y2O3 소결 조제가 가압소결 시에 공융(eutectic) 액상으로 변화하여 치밀화를 증진시키므로, 이를 NITE (nano-infiltrated transient 공융)법으로 명명하였다.
하지만, 본 NITE법은 밀도 증진을 위하여 PCS (polycarbosilane) 바인더에 나노 SiC 분말을 분산시킨 슬러리를 사용하였으므로, PIP법과 유사하여 최종적으로 C/Si의 비율이 화학양론에서 벗어날 가능성이 크다. 또한 슬러리에 일방향 Tyranno 섬유를 단순 함침시키는 방법을 사용하였기 때문에, SiC 분말의 직조섬유내부로의 효율적인 침착이 어렵다. 특히, 사용되는 나노 SiC 분말은 높은 비표면 적으로 인하여 응집하려는 경향이 강하므로, 슬러리 내의 SiC 분말의 최적 분산 조건을 모색하여 적용할 필요가 있다.
SiC 직조섬유 내부로의 SiC 분말의 침착률을 증진시켜 고밀도의 SiCf/SiC 복합체를 제조하기 위해서는, 1) 슬러리 내에서의 최적의 SiC 분산 조건을 확보하고, 2) 침착에 적합한 슬러리 조성을 결정하며, 3) 직조섬유 사이의 미세 틈으로 SiC 분말을 효율적으로 침착시키는 방법에 대한 모색이 필요하다. 본 발명은 이러한 요구들을 충족시키는 조건을 발견하여, 본 발명의 고밀도 SiCf/SiC 복합체를 제조하는 것이다.
본 발명은 PVB (polyvinyl butyral) 바인더를 톨루엔/에탄올 혼합용매에 용해시킨 바인더 용액에 나노 SiC 분말을 효율적으로 분산시키는 분산방법; SiC 분말을 효율적으로 SiC 직조섬유에 흡착시키는 슬러리 조성; SiC 직조섬유 사이의 미세 틈으로 SiC 분말을 효율적으로 침착시키는 방법을 제공한다.
또, 본 발명은 다수의 SiC 직조섬유를 내부 실린더 중간에 장착하는 단계, 그 위에 SiC 슬러리를 부은 후, 진공을 가하는 단계, 실린더 내부에 공기를 서서히 주입하여 실린더의 압력을 대기압으로 만드는 단계, 및 SiC 직조섬유의 기공에 SiC 슬러리가 침착하는 단계를 포함하는 SiC 슬러리의 SiC 직조섬유에의 침착 방법을 제공한다.
구체적으로는, 본 발명은 바인더를 용매에 용해시키고, 이에 가소제 및 분산제를 첨가하여 바인더 용액을 제조하는 단계, 상기 바인더 용액에 SiC 분말을 첨가하여 SiC 슬러리를 제조하는 단계, 및 상기 SiC 슬러리에 SiC 직조섬유를 함침하여, SiC 분말을 SiC 직조섬유에 침착시키는 단계를 포함하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법을 제공한다.
다른 관점에서, 본 발명은 분산 메커니즘인 입자들의 표면에 전하를 띄게 하여 정전기적 반발력을 응용하거나, 입자의 표면에 고분자로 이루어진 분산제를 활용하는 입체장애적 반발력을 활용하는 것을 특징으로 한다.
특히, 정전기적 반발력의 관점에서는, 표면의 전하를 최대로 하는 pH 조건을 확보하고, 입체장애적 반발력에서는 SiC 분말의 표면에 흡착되어 가장 낮은 슬러리 점도 및 가장 높은 침강 밀도를 보여주는 분산제의 종류 및 첨가량을 결정하는 것을 바탕으로 한다.
바람직하게는, 에탄올을 용매로 사용 시에 슬러리의 제타포텐셜의 절대값이 30mV를 초과하여 최대의 정전기적 반발력을 보여주는 pH 5.5 이하, 혹은 8.5 이상의 조건을 특징으로 한다. 또한, 입체장애적인 관점에서는, 가장 낮은 점도를 보여주는 상업용 분산제인 Hypermer KD1을 SiC 분말 100 중량% 에 대하여 20 중량% 내지 50 중량% 를 첨가하여 132 s-1의 전단율에서 100 cPs 이하의 점도와 0.30 g/cm3 이상의 침강 밀도를 구현하는 현탁액을 특징으로 한다.
또 다른 관점에서, 본 발명은 평균입도 52 nm 및 비표면적 80 m2/g 을 갖는 β-SiC 분말을 함유한 슬러리 조성으로서, 용매의 조성; PVB 바인더의 분자량 및 첨가량; SiC 분말의 함유량; 가소제 디옥틸 프탈레이트(DOP)의 첨가량; 이들의 기계적인 분산을 위한 밀링 방법 등을 포함한다.
바람직하게는, 본 발명은 조성의 최적화를 통하여 분산성이 확보되며 SiC 직조섬유 사이로의 흡착 및 침착이 우수하며, 테이프 캐스팅에 적합한 점도 및 유변학적 특성을 보유하는 것을 특징으로 한다.
또 다른 관점에서, 본 발명은 제조된 SiC 슬러리를 직조섬유 사이에 효율적으로 함침시키는 방법으로서, 함침을 위한 실험 기구의 구성; 진공을 이용한 압력구배의 형성을 통한 효율적인 함침법; 진공함침의 횟수를 포함한다.
본 발명의 방법으로, 고효율 방사형 히터, 엔진부품, 가스터어빈 및 차세대 원자로용 구조 재료로서 사용할 수 있는 고밀도, 특히 최대 3.13g/cm3 의 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)를 얻을 수 있다.
상술한 것과 다른 관점들 그리고 본 발명의 이점은 하기의 바람직한 실시예들의 면면할 고찰을 통해 명백해 질 것이다.
도1의 (a)에는 세라믹 기지상으로 사용된 평균입도 52nm 의 SiC 분말의 주사전자현미경 사진이 나타나 있으며, 도1의 (b)는 이에 대한 고배율 투과전자현미경 사진으로 표면이 1.7nm 두께의 SiO2 층으로 덮여 있음을 알 수 있다.
도2의 (a)에는 7.5μm 두께의 TyrannoTM섬유 (Ube사, 일본)가 1600가닥씩 0/90o로 직조된 구조가 나타나 있으며, 도2의 (b)에는 메탄 (CH4)가스를 열분해 하여 증착한 200nm 두께의 열분해 탄소가 TyrannoTM섬유를 코팅하고 있음을 보여준다.
본 발명은 도2(a)의 TyrannoTM 미세 섬유 사이의 틈 및 섬유다발 간의 빈 공간에 도1(a)의 나노 SiC 분말을 침투 및 흡착을 시킴으로써, 기공이 거의 없는 치밀화된 구조를 얻는 것으로 구성된다. 하지만, SiC 분말만을 이용한 침착은 어렵기 때문에, 분말을 바인더 용액에 분산을 시킨 슬러리를 제조하여 침착을 실시한다.
나노분말은 높은 비표면적으로 인하여 응집하려는 경향이 매우 크기 때문에, SiC 섬유 사이의 미세 틈으로의 침착을 위해서는 분산이 필수적이다. 분산의 메커니즘으로는 SiC 분말의 표면 전하에 의한 반발력을 활용하는 정전기적 반발력 (electrostatic repulsion)과, 고분자로 구성된 분산제를 분말의 표면에 흡착시켜 분산을 실시하는 입체장애 (steric mechanism)가 대표적이다. 정전기적 반발력에서는, 표면 전하인 제타포텐셜의 절대값이 30mV 이상이 되는 것이 바람직하며, 입체장애에서는, 분말에의 표면 흡착력이 좋으며 이로 인하여 반발력을 제공하는 분산제가 바람직하다.
특히, 입체장애를 활용할 경우에는 입자간 반발력을 직접적으로 측정할 수 없으므로, 분산제가 첨가된 슬러리나 슬러리의 점도나 침강 밀도를 측정하는 방법이 주로 사용되며, 점도가 낮고 침강 밀도가 높다는 것은, 분산성이 우수하다는 것을 의미한다.
도3(a)에는 정전기적 반발력 활용을 위한 에탄올 SiC 슬러리의 제타포텐셜 값이 나타나 있으며, 도3의 (b)에는 4종의 상업용 분산제의 첨가량에 따른 제타포텐셜의 변화가 나타나 있다.
에탄올 SiC 슬러리의 SiC 분산을 위해서는 30mV 이상의 제타포텐셜을 보여주는 영역은 pH가 5.5 이하인 산성 분위기나 8.5 이상의 알칼리 영역이 바람직하다. 특히 제타포텐셜이 0이 되는 pH=7 영역에서는 표면 전하로 인한 반발력이 전혀 없으므로, 분산성이 악화된다.
도3(b)에 나타난 바와 같이, 사용된 4종의 분산제의 첨가에 따라 제타포텐셜의 값은 감소하는 경향을 보이므로, 정전기적 반발력이 감소함을 알 수 있다. PVB를 바인더로 활용한 SiC 슬러리의 pH는 7.5 8.5의 범위를 보여주어, 이 경우의 정전기적 반발력을 활용한 분산은 효과적이지 못할 것임을 유추할 수 있다.
일반적으로 톨루엔이나 에탄올을 용매로 사용하는 시스템에서는, 분산제를 활용하여 분산력을 증진시키는 입체장애가 효과적으로 알려져 있으며, 본 발명에서도 이러한 방법을 활용하기로 한다. 사용된 상업용 분산제는 총 4종으로 표 1에 제조사 및 특성이 나타나 있다.
분산제 공급사 분산작용기
Rhodafac RE-610 Rhodia Nonylphenol ethoxylate based phosphate esters
Disperbyk-103 BYK Copolymer with pigment affinic groups
EFKA 5044 Ciba Unsaturated polyamide and acid ester salts
Hypermer KD1 ICI A polyester/polyamine co-polymer
도4에는 4종의 분산제 첨가량에 따른 SiC 슬러리의 점도가 나타나 있으며, 분산제 Hypermer KD 1의 점도가 가장 낮아 분산력이 최대이며 SiC 100 중량% 에 대하여 20 중량% 부터는 점도의 감소가 나타나지 않기 때문에 이를 적정 첨가량으로 결정한다.
최대의 분산을 보여주는 슬러리는 분말의 침강 속도가 느리고, 충전고밀도 특징을 보여주는데, 도5에 나타난 침강 밀도 비교에서도 Hypermer KD 1이 분산제로 사용된 경우에 가장 느린 침강 속도와 가장 높은 침강 밀도를 보여주어 도4의 점도거동과 일치함을 알 수 있다.
소결조제는 Al2O3:Y2O3:MgO가 6.4:2.6:1.0의 중량비율로 혼합되었으며, SiC 분말 100 중량% 에 대하여 8 - 12 중량%, 바람직하게는 10 - 12 중량% 로 첨가한다. 이들의 초기 평균 입도가 수 ㎛ 로, 기지상으로 사용되는 52 nm의 SiC보다 크기 때문에 0.8mm ZrO2 비드(bead)와 3000 rpm의 회전력을 이용하는 고 에너지 밀 을 이용하여 1 - 3시간 분쇄하여 SiC와의 고른 혼합을 유도하는 것이 바람직하다. 보다 바람직하게는, SiC 분말의 평균 입도가 100nm 이내가 되도록 분쇄하는 것이 바람직하다.
톨루엔/에탄올의 중량비가 6/4인 혼합 용매에 분자량이 55,000g/mol인 PVB 바인더를 용해하고, 용매 100중량%에 대하여 5 - 45 중량%의 바인더가 첨가된다. 여기에, 바인더 100중량%에 대하여 60 중량%의 가소제 DOP를 용해시킨 후, SiC 분말 100 중량%에 대하여 20 중량%의 Hypermer KD 1 분산제를 첨가하여 바인더 용액을 제조한다. 여기에, PVB 바인더/SiC가 0.4가 되도록 SiC 분말을 첨가한 후, 6 mm의 SiC 볼을 이용한 볼 밀을 36시간 동안 실시한다. ZrO2 비드를 사용하는 고 에너지 밀을 활용하여 SiC 슬러리 분산을 실시하는 경우에는 SiC 경도가 ZrO2 보다 크기 때문에, Zr 오염을 발생시키므로 피하는 것이 바람직하다. 이와 같이 제조된 SiC 슬러리를 이용하여 40 60 μm의 두께로 테이프 캐스팅(tape casting)을 실시한 후, 그린 테이프(green tape)을 보관한다.
SiC 직조섬유에 슬러리를 함침하기 위하여 도6과 같이 특별히 제작된 치구를 사용한다. 치구는 하부가 밀봉된 내부 실린더, 이 실린더 내부에 직경 5cm의 직조섬유를 고정하기 위한 나사선, 5장의 직조섬유를 동시에 장착하기 위한 분리 링 및 진공을 가해주기 위한 외부 실린더로 구성된다.
5장의 직조섬유를 내부 실린더 중간에 장착하고, 그 위에 제조된 SiC 슬러리를 부은 후, 내부 압력이 0.1 Pa이 되도록 진공을 가한다. 원하는 진공도가 달성되면, 밸브를 열어 서서히 공기를 주입하여 실린더 압력이 대기압이 되도록 한다. 실린더 내부의 압력을 증가시키는 과정에서 직조섬유 상부에 있는 슬러리가 압력구배에 의하여 내부 실린더 아래쪽으로 이동을 하게 되며, 이 과정에서 직조섬유의 기공에 슬러리가 침착하게 된다. 이러한 과정은 2분 이상이 소요되도록 천천히 진공을 풀어주는 것이 직조섬유 사이의 기공에 슬러리를 최대한 침착시키기 위해서 바람직하다. 또한, 슬러리의 침착 증진을 위하여 3회 이상에 걸쳐서 동일한 과정을 반복하는 것이 바람직하다.
도7에는 슬러리에 SiC 직조섬유를 단순 함침하는 경우와 진공침착 후의 침착정도를 비교하는 주사전자현미경 사진이 나타나 있다. 진공압력 구배를 이용한 경우의 슬러리 침착정도가 단순함침의 경우에 비하여 매우 크게 나타남을 알 수 있다.
도8에는 바인더 함량을 변화시킨 슬러리를 사용하여 직조섬유에 진공침착시킨 후 가소를 거친 시편의 전자현미경 사진이 나타나 있다. 바인더 함량이 0, 5, 10 및 45 중량%로 변화시킨 슬러리를 진공침착 시킨 후, 가소를 실시하였기 때문에 바인더가 함유되지 않은 SiC 분말만이 존재하고 있다.
바인더는 가소 과정 중에 연소되기 때문에 소량이 침착 정도를 높이는데 바람직할 것으로 예상되었지만, 45 중량%의 바인더를 함유한 슬러리가 섬유다발 사이의 큰 기공도 채워주어 가장 높은 침착 정도를 보여주고 있음을 알 수 있다.
도9에는 진공침착된 직조섬유 10장을 적층한 시편과, 직조섬유 10장 사이에 테이프를 1장씩 적층한 시편의 1750℃, 20 MPa에서 3시간 동안 고온가압소결(hot press)된 사진이 나타나 있다. 직조섬유만을 적층한 시편은 섬유 사이에 아직 기공이 남아 있는 반면에, 테이프를 끼워 넣은 시편은 기공이 존재하지 않는 매우 치밀화된 구조를 보여주고 있음을 알 수 있다.
도10은 SiC 직조섬유를 함유한 복합체의 파단면 사진을 보여주고 있으며, 파괴시 사용된 섬유가 당겨져 취성파괴를 줄여 주고 있음을 알 수 있다. 특히 섬유와 기지상 간의 낮은 결합력을 목적으로 코팅된 열분해탄소 (PyC) 층이 1750℃의 고온에서도 섬유표면에 남아 있음을 알 수 있다.
도11은 진공침착된 직조섬유 10장을 적층한 시편, 직조섬유 10장 사이에 테이프를 1장씩 적층한 시편, 및 SiC 분말과 소결조제만을 첨가하여 제조된 모노리스(monolith) SiC 의 3점 곡강도 시험 결과가 나타나 있다.
SiC 직조섬유를 함유하고 있는 시편의 파괴시 변위가, 섬유를 함유하지 않은 모노리스에 비하여 크게 나타나 취성파괴에 대한 저항성이 증가된 모습을 보여주고 있다. 파괴에 필요한 최대응력 또한 직조섬유를 함유한 시편이 높게 나타나며, 특히 함침된 직조섬유에 테이프를 적층한 시편의 경우에는 최대 3.13g/cm3의 밀도에서 607 MPa의 기계적 강도를 보여주어 모노리스에 비하여 2배 이상 증가함을 알 수 있다.
표2에는 본 발명에서 제조된 시편들의 제반 특성이 나타나 있으며, 표3에는 최근에 보고된 SiC 복합체의 밀도 및 기계적 강도 값이 나타나 있다.
본 발명에서 실시된 함침된 직조섬유에 테이프를 적층한 시편의 경우에는 최대 3.13g/cm3의 밀도로 현재까지 보고된 값보다 높은 밀도를 보여주고 있다.
제조방법 섬유 분율
(Vol. %)
소결밀도
(g/cm3)
% 밀도* Flexural strength
(MPa)
진공침착 62 72 2.90 3.02 90 94 312 ± 28 (Max. 342)
진공침착 + 테이프 삽입 48 55 3.04 3.13 94 97 562 ± 36 (Max. 607)
SiC 분말 소결체 0 3.14 3.19 98 99 198 ± 36 (Max. 257)
*: %밀도는 SiC의 이론밀도 (3.21 g/cm3) 대비 값

연구자
제조방법
사용된 섬유 (섬유 부피 분율 %)
밀도* (g/cm3) 최대 기계적 강도 (MPa)
Yano et al. [1] Slurry impregnation and tape stacking
Nicalon, Hi-Nicalon
2.38 3.07 260
Pasquier et al. [2] CVI
(35.1 38.2)
2.34 2.62
Yamada et al. [3] CVI and PIP
Hi-Nicalon (26 35)
380
Ortona et al. [4] CVI and PIP
NL 207 fiber (32 40)
1.58 1.80 247
Cheng et al. [5] CVI
Hi-Nicalon (40 45)
2.46 2.49
Yoshida et al. [6] Slurry impregnation and tape stacking
Hi-Nicalon (40 52)
2.79 3.05 460
Yang et al. [7] CVI
Tyranno-SA (43)
2.58 2.63 296
Lee et al. [8] Slurry infiltration and reaction sintering
Tyranno-SA (10 15)
2.20 3.00 505
Katoh et al. [9] Slurry infiltration
Tyranno-SA (30)
2.77 2.93 710
Nannetti et al. [10] CVI and PIP
Hi-Nicalon (40)
2.19 2.23 761
Kang et al. [11] Whisker growing and CVI
Tyranno-SA
2.54 2.67
Taguchi et al. [12] PIP-CVD and reaction bonding
Hi-Nicalon (33)
2.65 2.70 280
Katoh et al. [13] CVI
Tyranno-SA (35 40)
2.42 2.74 304
Yoshida et al. [14] Tape stacking and reaction sintering
Hi-Nicalon
2.90 200
Lim et al. [15] Slurry infiltration and tape stacking
Tyranno-SA
2.95 3.10 370
Yoshida et al. [16] EPD and tape stacking
Tyranno-SA
2.75 2.92 123
*: 섬유밀도 (g/cm3): Nicalon (2.55), Hi-Nicalon (2.73) and Tyranno SA (3.10)
참조문헌
[1] Yano T, Budiyanto K, Yoshida K, Iseki T. 직조섬유ation of silicon carbide fiber-reinforced silicon carbide composite by hot-pressing. Fusion Eng Des 1998;41:157-63.
[2] Pasquier S, Lamon J, Naslain R. Tensile static fatigue of 2D SiC/SiC composites with multilayered (PyC-SiC)n interphases at high temperatures in oxidizing atmosphere. Compos Part A-Appl S 1998;29A:1157-64.
[3] Yamada R, Taguchi T, Igawa N. Mechanical and thermal properties of 2D and 3D SiC/SiC composites. J Nucl Mater (2000);283-287:574-78.
[4] Ortona A, Donato A, Filacchioni G, De Angelis U, La Barbera A, Nannetti CA, Riccardi B, Yeatman J. SiC-SiCf CMC manufacturing by hybrid CVI-PIP techniques: process optimisation. Fusion Eng Des 2000;51-52:159-63.
[5] Cheng L, Xu Y, Zhang L, Yin X. Oxidation behavior of three-dimensional SiC/SiC composites in air and combustion environment. Compos Part A-Appl S 2000;31:1015-20.
[6] Yoshida K, Imai M, Yano T. Improvement of the mechanical properties of hot-pressed silicon-carbide-fiber-reinforced silicon carbide composites by polycarbosilane impregnation. Compos Sci Technol 2001;61:1323-29.
[7] Yang W, ArakiH, Kohyama A, Yu J, Noda T. New Tyranno-SA fiber reinforced CVI-SiC/SiC composite. J Mater Sci Lett 2002;21:1411-13.
[8] Lee SP, Yoon HK, Park JS, Katoh Y, Kohyama A, Kim DH, Lee JK. Reaction sintering process of tyranno SA/SiC composites and their characterization. Fusion Eng Des 2002;61-62:717-22.
[9] Katoh Y, Dong SM, Kohyama A. Thermo-mechanical properties and microstructure of silicon carbide composites 직조섬유ated by nano-infiltrated transient eutectoid process. Fusion Eng Des 2002;61-62:723-31.
[10] Nannetti CA, Riccardi B, Ortona A, La Barbera A, ScafE, Vekinis. Development of 2D and 3D Hi-Nicalon fibres/SiC matrix composites manufactured by a combined CVI-PIP route. J Nucl Mater 2002;307-311:1196-99.
[11] Kang SM, Park JY, Kim WJ, Yoon SG, Ryu WS. Densification of SiCf/SiC composite by the multi-step of whisker growing and matrix filling. J Nucl Mater 2004;329-333:530-33.
[12] Taguchi T, Igawa N, Yamada R, Jitsukawa S. Effect of thick SiC interphase layers on microstructure, mechanical and thermal properties of reaction-bonded SiC/SiC composites. J Phys Chem Solids 2005;66:576-80.
[13] Katoh Y, Nozawa T, Snead LL. Mechanical properties of thin pyrolitic carbon interphase SiC-matrix composites reinforced with near-stoichiometric SiC fibers. J Am Ceram Soc 2005;88(11):3088-95.
[14] Yoshida K, Mukai H, Imai M, Hashimoto K, Toda Y, Hyuga H, Kondo N, Kita H, Yano T. Reaction sintering of two-dimensional silicon carbide fiber-reinforced silicon carbide composite by sheet stacking method. J Nucl Mater 2007;367-370:769-73.
[15] Lim KY, Jang DH, Kim YW, Park JY, Park DS. Fabrication of dense 2D SiC fiber-SiC matrix composites by slurry infiltration and a stacking process. Met Mater Int 2008;14(5):589-91.
[16] Yoshida K, Matsukawa K, Imai M, Yano T. Formation of carbon coating on SiC fiber for two-dimensional SiCf/SiC composites by electrophoretic deposition. Mater Sci Eng B 2009; In Press.
도1은 (a) 사용된 β-SiC 분말의 주사전자현미경 사진 및 (b) 표면에 흡착된 SiO2를 보여주는 고배율 투과전자현미경 사진이다.
도2는 (a) 사용된 Tyranno SA Grade 3 직조섬유 및 (b) 200nm 열분해 탄소층을 보여주는 주사전자현미경 사진이다.
도3은 사용된 β-SiC의 에탄올에서의 (a) pH 및 (b) 분산제의 종류 및 첨가량에 따른 제타포텐셜 거동이다.
도4는 β-SiC 슬러리의 분산제의 종류 및 첨가량에 따른 점도 거동이다.
도5는 β-SiC 슬러리의 분산제의 종류에 따른 침강 밀도이다.
도6은 진공 압력 구배를 활용한 슬러리 침착 구조도이다: (a) 내부 실린더, 외부 챔버 및 진공펌프를 포함한 전체 시스템, (b) 내부 실린더의 구성품 및 조립도, (c) 진공을 가할 때와 (d) 진공을 풀 때의 개요도.
도7은 (a) 단순 함침과 (b) 진공압력 구배를 활용한 침착 시의 침착 정도의 비교이다.
도8은 슬러리에 함유된 바인더 함량에 따른 침착 정도의 비교이다: (a) 0, (b) 5, (c) 10 및 (d) 45 중량% 의 PVB 바인더 함유.
도9는 (a) 및 (b) 진공함침을 실시한 SiC 직조섬유의 소결구조; 및 (c) 및 (d) 진공함침을 실시한 직조섬유에 SiC 테이프를 삽입한 복합체의 소결구조이다.
도10은 제조된 복합체의 파괴단면 사진이다.
도11은 제조된 복합체의 3점 곡강도 시험시의 stress displacement 거동이다.

Claims (17)

  1. 바인더를 용매에 용해시키고, 이에 가소제 및 분산제를 첨가하여 바인더 용액을 제조하는 단계,
    상기 바인더 용액에 SiC 분말을 첨가하여 SiC 슬러리를 제조하는 단계, 및
    상기 SiC 슬러리에 SiC 직조섬유를 함침하여, SiC 분말을 SiC 직조섬유에 침착시키는 단계
    를 포함하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  2. 청구항 1 에 있어서, 바인더는 분자량 55,000 g/mol 의 PVB (polyvinyl butyral) 인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  3. 청구항 1 에 있어서, SiC 분말은 평균입도 52 nm 및 비표면적이 80 m2/g 를 갖는 β-SiC 분말인 것을 특징으로 하는 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  4. 청구항 1 에 있어서, 용매는 톨루엔, 에탄올 또는 이의 혼합물인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  5. 청구항 4 에 있어서, 용매의 슬러리는 pH 5.5 이하 또는 pH 8.5 이상인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  6. 청구항 1 에 있어서, SiC 분말은 바인더/SiC 중량비가 0.4 가 되는 양으로 첨가되는 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  7. 청구항 1 에 있어서, 분산제는 Rhodafac RE-610, Disperbyk-103, EFKA 5044, EFKA 5044 및 Hypermer KD1 로부터 선택되는 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  8. 청구항 7 에 있어서, 분산제는 Hypermer KD1 인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  9. 청구항 8 에 있어서, Hypermer KD 1 의 양은 SiC 분말 100 중량%에 대하여 20 중량% 내지 50 중량%인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  10. 청구항 1 에 있어서, 가소제는 디옥틸 프탈레이트인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  11. 청구항 1 에 있어서, 상기 바인더 용액에의 SiC 분말의 첨가시, 소결 조제 Al2O3:Y2O3:MgO (중량비 6.4:2.6:1.0) 를 추가로 첨가하는 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  12. 청구항 11 에 있어서, 소결 조제의 양은 SiC 분말 100 중량% 에 대하여 8 - 12중량% 인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  13. 청구항 1 에 있어서, 상기 바인더 용액에의 SiC 분말의 첨가 후, 6 mm 의 SiC 볼밀을 이용한 볼 밀을 36시간 동안 실시하는 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  14. 청구항 1 에 있어서, 바인더의 양은 용매 100중량%에 대하여 5 - 45 중량% 이고, 가소제의 양은 바인더 100중량%에 대하여 60 중량% 인 것을 특징으로 하는 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법.
  15. 다수의 SiC 직조섬유를 내부 실린터 중간에 장착하는 단계,
    그 위에 SiC 슬러리를 부은 후, 진공을 가하는 단계,
    실린더 내부에 공기를 서서히 주입하여 실린더의 압력을 대기압으로 만드는 단계, 및
    SiC 직조섬유의 기공에 SiC 슬러리가 침착하는 단계
    를 포함하는 SiC 슬러리의 SiC 직조섬유에의 침착 방법.
  16. 청구항 15 에 있어서, 테이프 캐스팅으로 얻은 SiC 테이프를 다수의 SiC 직조섬유 사이에 끼워 넣는 것을 특징으로 하는 SiC 슬러리의 SiC 직조섬유에의 침착 방법.
  17. 하부가 밀봉된 내부 실린더, 이 실린더 내부에 직조섬유를 고정하기 위한 나사선, 직조섬유를 동시에 장착하기 위한 분리 링, 및 진공을 가해주기 위한 외부 실린더를 포함하는, 청구항 15 의 방법에 사용되는 치구.
KR1020090042051A 2009-05-14 2009-05-14 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법 KR101101244B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090042051A KR101101244B1 (ko) 2009-05-14 2009-05-14 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090042051A KR101101244B1 (ko) 2009-05-14 2009-05-14 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법

Publications (2)

Publication Number Publication Date
KR20100123048A true KR20100123048A (ko) 2010-11-24
KR101101244B1 KR101101244B1 (ko) 2012-01-04

Family

ID=43407771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090042051A KR101101244B1 (ko) 2009-05-14 2009-05-14 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법

Country Status (1)

Country Link
KR (1) KR101101244B1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371287B1 (ko) * 2011-02-28 2014-03-07 인하대학교 산학협력단 비정질 나노복합체 및 전기영동법을 이용한 그의 제조방법
KR101540306B1 (ko) * 2013-10-21 2015-07-30 경희대학교 산학협력단 탄화규소 복합체(SiCf/SiC)의 제조방법
CN110330353A (zh) * 2019-08-15 2019-10-15 中南大学 一种SiCf/SiC复合材料火焰筒及其自动化制备方法
KR20220063808A (ko) * 2020-11-09 2022-05-18 한국재료연구원 파핑 공정을 이용한 탄소섬유 및 탄화규소 섬유강화 세라믹 복합체 제조 방법
CN116239384A (zh) * 2023-02-20 2023-06-09 北京航空航天大学 一种MAX相陶瓷颗粒改性SiCf/SiC复合材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319079B1 (ko) * 2019-12-27 2021-11-03 한국재료연구원 SiC 복합체 및 이의 제조방법
KR20240085880A (ko) 2022-12-07 2024-06-17 인하대학교 산학협력단 나노셀룰로스 기반 섬유강화 복합재료용 프리프레그, 이의 제조방법 및 이를 이용하여 제조된 나노셀룰로스 기반 섬유강화 복합재료

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077672B2 (ja) 1986-08-05 1995-01-30 三菱電機株式会社 リン酸型燃料電池の電解質保持マトリツクスの製造方法
US5840221A (en) 1996-12-02 1998-11-24 Saint-Gobain/Norton Industrial Ceramics Corporation Process for making silicon carbide reinforced silicon carbide composite
KR100829711B1 (ko) * 2007-01-16 2008-05-14 한국원자력연구원 고밀도 탄화규소 섬유강화 탄화규소 복합재료의 제조방법
KR100838825B1 (ko) 2007-02-28 2008-06-17 한국과학기술연구원 탄화규소 섬유 강화 반응소결 탄화규소 다공체 및 이의제조방법

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101371287B1 (ko) * 2011-02-28 2014-03-07 인하대학교 산학협력단 비정질 나노복합체 및 전기영동법을 이용한 그의 제조방법
KR101540306B1 (ko) * 2013-10-21 2015-07-30 경희대학교 산학협력단 탄화규소 복합체(SiCf/SiC)의 제조방법
CN110330353A (zh) * 2019-08-15 2019-10-15 中南大学 一种SiCf/SiC复合材料火焰筒及其自动化制备方法
CN110330353B (zh) * 2019-08-15 2020-03-13 中南大学 一种SiCf/SiC复合材料火焰筒及其自动化制备方法
KR20220063808A (ko) * 2020-11-09 2022-05-18 한국재료연구원 파핑 공정을 이용한 탄소섬유 및 탄화규소 섬유강화 세라믹 복합체 제조 방법
CN116239384A (zh) * 2023-02-20 2023-06-09 北京航空航天大学 一种MAX相陶瓷颗粒改性SiCf/SiC复合材料及其制备方法
CN116239384B (zh) * 2023-02-20 2024-06-07 北京航空航天大学 一种MAX相陶瓷颗粒改性SiCf/SiC复合材料及其制备方法

Also Published As

Publication number Publication date
KR101101244B1 (ko) 2012-01-04

Similar Documents

Publication Publication Date Title
CN109721377B (zh) 碳纤维增强碳化硅陶瓷基复合材料及其制备方法
KR101101244B1 (ko) 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
KR101241775B1 (ko) 고밀도 섬유강화 세라믹 복합체의 제조방법
CN111996473B (zh) 一种变结构超高温陶瓷基复合材料及其制备方法
JP3971903B2 (ja) SiC繊維強化型SiC複合材料の製造方法
CN110981517B (zh) 碳陶复合材料的制备方法和应用及制备用针刺机构
Parlier et al. Potential and Perspectives for Oxide/Oxide Composites.
JP4536950B2 (ja) SiC繊維強化型SiC複合材料のホットプレス製造方法
Wang et al. Effects of ZrO2 coating on the strength improvement of 2.5 D SiCf/SiO2 composites
Tong et al. Oxidation behavior of 2D C/SiC composite modified by SiB4 particles in inter-bundle pores
Parlier et al. High temperature materials
Yonathan et al. Improvement of SiCf/SiC density by slurry infiltration and tape stacking
CN114956844A (zh) 一种三维碳纤维增韧陶瓷基复合材料及其制备方法
Wang et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler
CN111517797A (zh) 一种可量产的高纯SiC陶瓷涂层的低温常压烧结制备方法
Shimoda et al. Novel production route for SiC/SiC ceramic-matrix composites using sandwich prepreg sheets
KR101179652B1 (ko) 전기영동과 초음파 처리를 병행한 고밀도 탄화규소 섬유강화 탄화규소 복합체(SiCf/SiC)의 제조방법
Noviyanto The effect of polysilazane on the densification and mechanical properties of SiCf/SiC composites
CN114907127B (zh) 一种基体改性的SiC/SiC复合材料及其制备方法
Gottlieb et al. Continuous fiber-reinforced ceramic matrix composites
He et al. Microstructures of short-carbon-fiber-reinforced SiC composites prepared by hot-pressing
CN115572164A (zh) 一种高韧性复合纳米陶瓷材料及其制备方法
KR102054373B1 (ko) 내환경 코팅재가 코팅된 구조체 및 상기 내환경 코팅재를 코팅하는 방법.
Lee et al. Fabrication of SiC f/SiC composites using an electrophoretic deposition
KR101575902B1 (ko) 섬유강화 세라믹 기지 복합체 및 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141008

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180111

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181227

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20191224

Year of fee payment: 9