CN105870171A - 加阶梯式异质结隔离区的共振隧穿二极管 - Google Patents
加阶梯式异质结隔离区的共振隧穿二极管 Download PDFInfo
- Publication number
- CN105870171A CN105870171A CN201610131515.4A CN201610131515A CN105870171A CN 105870171 A CN105870171 A CN 105870171A CN 201610131515 A CN201610131515 A CN 201610131515A CN 105870171 A CN105870171 A CN 105870171A
- Authority
- CN
- China
- Prior art keywords
- rtd
- isolation area
- gan
- junctions
- hetero
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005641 tunneling Effects 0.000 title claims abstract description 4
- 238000004088 simulation Methods 0.000 claims abstract description 8
- 238000013461 design Methods 0.000 claims abstract description 6
- 238000011160 research Methods 0.000 claims abstract description 6
- 238000002955 isolation Methods 0.000 claims description 23
- 238000005036 potential barrier Methods 0.000 claims description 18
- 230000005684 electric field Effects 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 4
- 229910016920 AlzGa1−z Inorganic materials 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 2
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 229910002704 AlGaN Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000000701 chemical imaging Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/88—Tunnel-effect diodes
- H01L29/882—Resonant tunneling diodes, i.e. RTD, RTBD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/15—Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Bipolar Transistors (AREA)
Abstract
本发明公开了一种产生微分负阻的共振隧穿二极管(RTD)器件新型结构,该结构可产生毫安‑安培级输出电流,应用于太赫兹波信号源设计可产生毫瓦级输出功率的太赫兹波信号。本发明中的RTD的结构见附图。结构中采用AlzGa1‑zN/GaN/AlzGa1‑zN双势垒单势阱结构的量子阱区;发射区为重掺杂的AlxGa1‑xN;集电区是重掺杂的GaN;集电极隔离区为GaN;而发射极隔离区是AlyGa1‑yN阶梯型隔离区:AlyGa1‑yN的Al组分y由x按阶梯减小到0。理论分析和仿真在室温下(300K)进行,仿真参数是x=0.4,y从0.4按五级阶梯减小,z=0.2,仿真结果峰值电流Ip=1.59A(53mA/um2),谷值电流Iv=0.655A(21.8 mA/um2),PVCR=2.43,我们获得的输出电流比目前共振隧穿二极管研究报道中最大输出电流更大。
Description
技术领域
本发明涉及电子元器件技术领域,尤其涉及一种GaN基共振隧穿二极管(Resonant Tunneling Diode,
RTD),可应用于产生大功率太赫兹波信号。
背景技术
太赫兹频段波由于在超高速无线通信技术和光谱成像技术中有广泛应用前景而受到科学界的重视。为了实现这些应用,微小而连续的太赫兹波源是关键技术所在。作为太赫兹波发射源电学器件之一,共振隧穿二极管(RTD)一直以来都是研究焦点。GaAs基RTD在太赫兹应用研究领域出现了瓶颈,例如:更高频率限制、输出功率和工作温度。
GaN基RTD因为GaN材料具有高电子迁移率、温度稳定性好和禁带宽度宽的特性,有望设计出室温下高功率太赫兹波源,受到越来越多的关注。目前研究的GaN基共振隧穿二极管结构的理论分析和实际器件测试表现不尽如人意,尤其是负阻特性在多次扫描之后会出现衰减。
普通GaN基双势垒单势阱RTD的结构从上到下通常为:重掺杂的发射区、发射极隔离区、双势垒单势阱的量子阱区、集电极隔离区、重掺杂的集电区。
发明内容
本发明采用了Al组分y参数阶梯型减少的AlyGa1-yN形成连续的异质结作为发射极隔离区,AlGaN和GaN异质结界面存在极化效应,因而形成极化电场,在电场作用下出现极化电荷,形成二维电子气,提高了载流子迁移率。
本发明所设计的RTD结构自上而下描述为:重掺杂的AlxGa1-xN发射区、Al组分从y=x按五个阶梯减少到y=0的AlyGa1-yN发射极隔离区、AlzGa1-zN势垒、GaN势阱、AlzGa1-zN势垒、GaN集电极隔离区、重掺杂的GaN集电区,结构图如图1,图中参数为仿真时采用的参数,即x=0.4,y从0.4开始按5个阶梯减少,AlzGa1-zN势垒采用低Al组分z=0.2。这样的结构增加了发射区载流子注入效率,并提高发射区载流子迁移率;同时减少了集电区耗尽电场,从而降低了共振隧穿二极管中载流子输运时间。理论分析和仿真结果都表明该器件获得了负微分电阻,且在该区域内有毫安-安培级的输出电流,可提高输出功率到毫瓦级。
在阶梯结构工艺设计中,由于目前器件生长工艺的限制,AlyGa1-yN的Al组分阶梯型减少也会是连续线性减少,则本发明中的器件材料结构包括连续变化的情况,结构如图2。
本发明的关键是:在现有GaN基RTD结构的基础上,设计Al组分阶梯型减少的AlyGa1-yN形成的连续阶梯式异质结作为发射区到双势垒单势阱区之间的发射极隔离区。
针对所发明的GaN基RTD结构进行了仿真,仿真过程中对所设计器件采用的截面积是6×5um2,为了和实际寄生串联电阻一致,电极端接触电阻率设为4.36×10-3Ωcm2。100nm的n型Al0.4Ga0.6N发射区和100nm的n型GaN集电区采用重掺杂,掺杂浓度为1×1019cm-3,目的是和电极形成欧姆接触,其他区域都不掺杂;发射区和双势垒单势阱区之间是5nm的阶梯式异质结的AlyGa1-yN发射极隔离区,其中Al的组分y从靠近发射区一端的0.4阶梯型减少到势垒附近的0;量子阱区由1.5nm Al0.2Ga0.8N、1.5nm GaN、1.5nm Al0.2Ga0.8N双势垒单势阱结构组成,采用低铝组分的Al0.2Ga0.8N,晶格匹配于GaN势阱,从而提高异质结质量,降低极化电场,抑制负微分电阻特性的退化现象;集电极隔离区是5nm的GaN。图3呈现了该结构的静态导带剖面图。仿真设定在室温下进行, I-V特性仿真结果如图4所示,峰值电流Ip=1.59A(53mA/ um2),谷值电流Iv=0.655A(21.8 mA/ um2),PVCR=2.43,这是目前该器件研究工作报道中所得的最大输出电流。
附图说明
图1是带阶梯式异质结隔离区的GaN基RTD结构示意图。
图2是考虑目前器件生长工艺限制的GaN基RTD结构示意图。
图3是带阶梯式异质结隔离区的GaN基RTD静态导带剖面图。
图4是带阶梯式异质结隔离区的GaN基RTD的I-V特性图。
Claims (7)
1.本发明中的加阶梯式异质结隔离区的共振隧穿二极管(Resonant
Tunneling Diode, RTD)的主要结构由发射极到集电极依次包括了:发射区、阶梯式异质结构成的发射极隔离区、双势垒单势阱结构、集电极隔离区和集电区。
2.根据权利要求书1,RTD器件结构组成是:双势垒单势阱结构夹在阶梯式异质结构成的发射极隔离区和GaN集电极隔离区之间,所得结构不掺杂;该结构又夹在重掺杂的发射区和集电区之间,从而形成整体的RTD器件。
3.根据权利要求书2建立新型GaN基RTD理论分析模型结构,该结构自上而下描述为:器件的发射极电极、重掺杂的AlxGa1-xN发射区、Al的组分y参数阶梯型减少的AlyGa1-yN形成阶梯式异质结构成的发射极隔离区、AlzGa1-zN势垒、GaN势阱、AlzGa1-zN势垒、GaN集电极隔离区、重掺杂的GaN集电区、器件的集电极电极。
4.根据权利要求书2的GaN基RTD有源区结构和权利要求书3的理论分析模型,其特征在于:在发射区和双势垒单势阱结构之间有一层Al组分阶梯型减少的AlyGa1-yN形成阶梯式异质结构成的发射极隔离区,在这个隔离区中Al的组分从靠近发射区一端的y=x阶梯型减少到双势垒单势阱结构的势垒附近为y=0,根据目前加工工艺技术,理论分析和仿真模型阶梯异质结分为了5层阶梯。
5.根据权利要求书4,本发明中的关键结构——Al组分阶梯型减少的AlyGa1-yN层构成的阶梯式异质结发射极隔离区——由于目前器件生长工艺的限制,该区域Al的组分y可以由从靠近发射区一端的y=x线性减少到双势垒单势阱结构的势垒端0。
6.根据权利要求书4的阶梯式异质结构成的隔离区,其特征在于形成了二维电子气,提高了载流子迁移率、降低集电极耗尽区电场,提高了输出电流,仿真结果中获得的输出电流大于目前该器件研究报道中的最大电流。
7.根据权利要求书6的理论分析和仿真结果,将该器件应用于太赫兹信号源设计中,可产生毫瓦级输出功率的太赫兹信号,可应用于太赫兹微系统设计。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610131515.4A CN105870171A (zh) | 2016-03-09 | 2016-03-09 | 加阶梯式异质结隔离区的共振隧穿二极管 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610131515.4A CN105870171A (zh) | 2016-03-09 | 2016-03-09 | 加阶梯式异质结隔离区的共振隧穿二极管 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105870171A true CN105870171A (zh) | 2016-08-17 |
Family
ID=56624628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610131515.4A Pending CN105870171A (zh) | 2016-03-09 | 2016-03-09 | 加阶梯式异质结隔离区的共振隧穿二极管 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105870171A (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5705825A (en) * | 1994-08-30 | 1998-01-06 | Nec Corporation | Resonant tunneling bipolar transistor |
JP2013171966A (ja) * | 2012-02-21 | 2013-09-02 | Nippon Telegr & Teleph Corp <Ntt> | 共鳴トンネルダイオードおよびテラヘルツ発振器 |
CN104733545A (zh) * | 2015-02-17 | 2015-06-24 | 天津大学 | 发射区In含量渐变集电区高In过渡层的RTD器件 |
-
2016
- 2016-03-09 CN CN201610131515.4A patent/CN105870171A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5705825A (en) * | 1994-08-30 | 1998-01-06 | Nec Corporation | Resonant tunneling bipolar transistor |
JP2013171966A (ja) * | 2012-02-21 | 2013-09-02 | Nippon Telegr & Teleph Corp <Ntt> | 共鳴トンネルダイオードおよびテラヘルツ発振器 |
CN104733545A (zh) * | 2015-02-17 | 2015-06-24 | 天津大学 | 发射区In含量渐变集电区高In过渡层的RTD器件 |
Non-Patent Citations (1)
Title |
---|
牛萍娟.ETAL: "基于共振隧穿机制的太赫兹波振荡器特性模拟", 《电工技术学报》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105895670A (zh) | 带GaN子阱的共振隧穿二极管 | |
JP5079143B2 (ja) | 半導体素子、電界効果トランジスタおよびダイオード | |
JP6206495B2 (ja) | 半導体装置 | |
CN105633797A (zh) | 一种大功率量子阱半导体激光器外延片结构 | |
WO2017135394A1 (ja) | ヘテロ接合バイポーラトランジスタおよび電気機器 | |
CN102842613B (zh) | 双异质结构氮化镓基高电子迁移率晶体管结构及制作方法 | |
CN105355667A (zh) | 一种产生负微分电阻的共振隧穿二极管 | |
Dai et al. | Study on Schottky Al x Ga 1-x N/GaN IMPATT diodes for millimeter-wave application | |
CN105870171A (zh) | 加阶梯式异质结隔离区的共振隧穿二极管 | |
CN105870163A (zh) | 加阶梯型隔离层和子阱层的共振隧穿二极管 | |
CN115966604A (zh) | 一种半导体器件结构及其制备方法 | |
CN204348720U (zh) | 一种复合沟道mhemt微波振荡器 | |
Dai et al. | Study of In x Ga 1-x N/GaN Homotype Heterojunction IMPATT Diodes | |
Gao et al. | Influence of the heterojunction spacer on the performance of AlGaN/GaN/AlGaN resonant tunneling diodes | |
TW202105722A (zh) | 化合物半導體異質結雙極電晶體 | |
CN109994568B (zh) | 一种堆栈结构的激光触发大功率半绝缘AlGaN/GaN开关 | |
Kumar et al. | Design and Simulation of a T-gated AlGaN/GaN HEMT with Added Mini Field Plate | |
Liu et al. | Theoretical analysis of AlGaN/GaN resonant tunnelling diodes with step heterojunctions spacer and sub-quantum well | |
US11133405B2 (en) | High ruggedness heterojunction bipolar transistor | |
Liu | Study on the enhancement of optical and electrical properties of GaN by doping | |
TWI745224B (zh) | 異質接面雙極性電晶體 | |
TWI771872B (zh) | 高堅固性的異質接面雙極性電晶體 | |
Qi et al. | Terahertz GaN Schottky Varactor Based on Inverted Trapezoidal Metal-brim Terminal Structure | |
CN209448713U (zh) | 一种防止氮化镓功率管过输入损坏电路 | |
Zhang et al. | Optimized Design of Ni/GaN Schottky Barrier IMPATT Diode With n-type GaN Deep Level Defects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160817 |