CN105895670A - 带GaN子阱的共振隧穿二极管 - Google Patents

带GaN子阱的共振隧穿二极管 Download PDF

Info

Publication number
CN105895670A
CN105895670A CN201610233274.4A CN201610233274A CN105895670A CN 105895670 A CN105895670 A CN 105895670A CN 201610233274 A CN201610233274 A CN 201610233274A CN 105895670 A CN105895670 A CN 105895670A
Authority
CN
China
Prior art keywords
gan
rtd
isolation area
quantum well
launch site
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610233274.4A
Other languages
English (en)
Inventor
高博
刘洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN201610233274.4A priority Critical patent/CN105895670A/zh
Publication of CN105895670A publication Critical patent/CN105895670A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/88Tunnel-effect diodes
    • H01L29/882Resonant tunneling diodes, i.e. RTD, RTBD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开带GaN子阱的共振隧穿二极管(Resonant Tunneling Diode,RTD)的材料结构,见附图,自上而下描述为:重掺杂的AlxGa1‑xN发射区、AlGaN/GaN发射极异质结隔离区、AlyGa1‑yN势垒、GaN势阱、AlyGa1‑yN势垒、GaN集电极隔离区、重掺杂的GaN集电区。本结构相对于GaN基双势垒RTD结构,创新地采用了AlxGa1‑xN作为发射区、AlxGa1‑xN/GaN异质结作为发射极隔离区,异质结极化效应将产生二维电子气作为子量子阱。仿真在室温下(300K)进行,仿真采用x=0.2,y=0.2,GaN隔离层采用x=3nm,峰值电流Ip=44.67 mA/um2,谷值电流Iv=7.87mA/um2,PVCR=5.68,性能参数比GaN基双势垒RTD提高了一个数量级,也是目前RTD研究报道中性能最优。这种结构的RTD输出电流大、峰谷比值大,将其应用于太赫兹波振荡源设计,满足输出大功率太赫兹波的应用要求。

Description

带 GaN 子阱的共振隧穿二极管
技术领域
本发明涉及一种电子器件,其可用于室温下高功率太赫兹波振荡源的设计。太赫兹波应用前景广阔,但是目前却没有一种可靠而稳定的太赫兹振荡源解决方案,共振隧穿二极管(Resonant Tunneling Diode, RTD)作为太赫兹波信号发射源电学器件之一,一直以来都是研究焦点,由于GaN作为第三代半导体材料,相对于第二代半导体如GaAs有禁带宽度大、高电子饱和速率、高电子迁移率,好的温度稳定性等特点,GaN基的RTD成为了目前主要研究重点。
背景技术
普通GaN基双势垒单势阱RTD的结构从上到下为:重掺杂的GaN发射区、GaN发射极隔离区、AlGaN/GaN/AlGaN双势垒单势阱区、GaN集电极隔离区、重掺杂的GaN集电区。由于GaN基RTD的微分负阻特性(Negative Differential Resistance, NDR),其是最有望设计出室温下可靠的高功率太赫兹振荡源的电子器件,但是目前报道的GaN基RTD性能还没有达到实际应用设计的要求,其中尤其是输出功率只有微瓦级,负阻特性在多次扫描之后会出现大幅的衰减。
发明内容
本发明针对普通RTD结构提出使用:AlxGa1-xN作为重掺杂的发射区和AlGaN/GaN异质结作为发射极隔离区。本发明所设计的RTD结构自上而下描述为:重掺杂的AlxGa1-xN发射区、AlGaN/GaN发射极异质结隔离区、AlyGa1-yN势垒、GaN势阱、AlyGa1-yN势垒、GaN集电极隔离区、重掺杂的GaN集电区,结构图如图1。图中参数为仿真时采用的参数,即x=0.2,y=0.2。
本发明中提出的新结构可以提高RTD的输出特性,原理是——AlxGa1-xN作为发射区将提高发射区能带,使得电子更容易发生共振隧穿;AlGaN/GaN异质结隔离区在AlGaN和GaN界面之间形成异质结结构,由于极化效应在异质结中GaN区域将产生高迁移率的二维电子气(2-Dimentional Electron Gas, 2-DEG),因而异质结隔离区中GaN层成为了主量子阱区前的一个子量子阱。高迁移率的2-DEG作为子量子阱将增加发射区载流子注入效率,同时改变双势垒RTD中载流子隧穿机制,使得隧穿机制由3D-2D模式转换成2D-2D模式,因此增加了隧穿电子的数量、加快了隧穿速率。理论分析和仿真表明,该新型结构的GaN基RTD获得了良好的微分负阻特性,而且输出电流大、峰谷值比大,可满足大功率输出的需求,比普通结构的GaN基RTD性能有大幅提升。
针对所发明的GaN基RTD结构进行了仿真,仿真过程中对所设计器件采用的截面积是6×5um2,为了和实际寄生串联电阻一致,电极端接触电阻率设为4.36×10-3Ωcm2。仿真中的结构参数是:主量子阱区由Al0.2Ga0.8N/GaN/Al0.2Ga0.8N双势垒单势阱结构组成,采用低铝组分的Al0.2Ga0.8N生长晶格匹配于GaN势阱,从而提高异质结质量,减少异质结界面缺陷陷阱数量及降低极化电场,以抑制负微分电阻特性的退化现象;该量子阱结构夹在100nm的n型Al0.2Ga0.8N发射区和100nm的n型GaN集电区之间,集电区和发射区掺杂浓度设置为1×1019cm-3,其他区域都不掺杂,发射区和集电区与各自电极均是欧姆接触;发射区和主量子阱区之间是5nm的AlGaN/GaN异质结隔离区、主量子阱和集电区之间是5nm的GaN隔离区,结构如图1。图2呈现了该RTD器件的静态导带剖面图。仿真设定在室温下进行, 器件的I-V特性仿真结果如图3所示。结果显示峰值电流Ip=1.34A(电流密度达到44.67 mA/um2),谷值电流Iv=0.236A(电流密度7.87mA/um2),(电流峰谷比)PVCR=5.68,输出电流和PVCR都大于目前该器件研究工作报道中所得的最好结果。
附图说明
图1是带GaN子阱的共振隧穿二极管结构示意图。
图2是带GaN子阱的共振隧穿二极管的静态导带剖面图。
图3是带GaN子阱的共振隧穿二极管的I-V特性图。

Claims (5)

1.带GaN子阱的共振隧穿二极管(Resonant Tunneling Diode, RTD)的基本结构组成是:双势垒单势阱区夹在AlGaN/GaN异质结隔离区和GaN集电极隔离区之间,所得结构又夹在发射区和集电区之间,从而形成器件整体结构。
2.根据权利要求书1,建立新型GaN基RTD理论分析模型,该结构自上而下描述为:器件的发射极电极、重掺杂的AlxGa1-xN发射区、AlGaN/GaN异质结隔离区、AlyGa1-yN势垒、GaN势阱、AlyGa1-yN势垒、GaN集电极隔离区、重掺杂GaN集电区、器件的集电极电极。
3.根据权利要求书2的GaN基共振隧穿二极管理论分析模型,其关键结构特征在于:使用重掺杂的AlxGa1-xN作为发射区和AlGaN/GaN异质结结构作为发射极隔离区,这样的目的在于采用异质结隔离区中极化效应在GaN层成为二维电子气作为主量子阱区之前的一个子量子阱,这样的结构设计改变了双势垒RTD的载流子输运机制,对于器件性能有大幅提升。
4.根据权利要求书3,其新型结构设计的特征是:AlxGa1-xN作为发射区将提高发射区能带,使得电子更容易发生共振隧穿;AlGaN/GaN异质结隔离区有极化效应,在界面偏GaN区域产生高迁移率的二维电子气(2-Dimentional Electron Gas, 2-DEG),因而异质结隔离区中GaN层二维电子气将成为主量子阱区前的一个子量子阱,高迁移率的2-DEG子量子阱将增加发射区载流子注入效率,改变双势垒RTD中载流子隧穿机制,使得隧穿机制由3D-2D模式转换成2D-2D模式,因此增加了隧穿电子的数量、加快了隧穿速率,仿真结果表明这样的新型结构设计使得我们的共振隧穿二极管获得了比目前该器件研究报道中最大的电流和峰谷值比。
5.根据权利要求书4的理论分析和的仿真结果,其特征在于将该器件应用于太赫兹振荡信号源设计中,可产生毫瓦级输出功率的太赫兹信号。
CN201610233274.4A 2016-04-15 2016-04-15 带GaN子阱的共振隧穿二极管 Pending CN105895670A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610233274.4A CN105895670A (zh) 2016-04-15 2016-04-15 带GaN子阱的共振隧穿二极管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610233274.4A CN105895670A (zh) 2016-04-15 2016-04-15 带GaN子阱的共振隧穿二极管

Publications (1)

Publication Number Publication Date
CN105895670A true CN105895670A (zh) 2016-08-24

Family

ID=56703766

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610233274.4A Pending CN105895670A (zh) 2016-04-15 2016-04-15 带GaN子阱的共振隧穿二极管

Country Status (1)

Country Link
CN (1) CN105895670A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653863A (zh) * 2016-10-19 2017-05-10 四川大学 一种带GaN子阱的RTD发射区新设计
CN109524453A (zh) * 2018-10-22 2019-03-26 杭州电子科技大学 一种GaN基高压整流共振隧穿二极管
CN109659356A (zh) * 2018-12-18 2019-04-19 河南师范大学 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
CN110310989A (zh) * 2019-07-23 2019-10-08 上海科技大学 一种双异质结单极性晶体管的器件结构
CN110729394A (zh) * 2019-10-12 2020-01-24 深圳第三代半导体研究院 一种负阻式GaN压力传感器及其制备方法
CN112151639A (zh) * 2020-10-14 2020-12-29 中国工程物理研究院电子工程研究所 一种适用于紫外光探测的氮化物共振隧穿二极管结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113231A (en) * 1989-09-07 1992-05-12 California Institute Of Technology Quantum-effect semiconductor devices
US20020119591A1 (en) * 1998-11-20 2002-08-29 Schulman Joel N. Resonant tunneling diode with adjusted effective masses
CN104733545A (zh) * 2015-02-17 2015-06-24 天津大学 发射区In含量渐变集电区高In过渡层的RTD器件
CN105355667A (zh) * 2015-10-26 2016-02-24 四川大学 一种产生负微分电阻的共振隧穿二极管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113231A (en) * 1989-09-07 1992-05-12 California Institute Of Technology Quantum-effect semiconductor devices
US20020119591A1 (en) * 1998-11-20 2002-08-29 Schulman Joel N. Resonant tunneling diode with adjusted effective masses
CN104733545A (zh) * 2015-02-17 2015-06-24 天津大学 发射区In含量渐变集电区高In过渡层的RTD器件
CN105355667A (zh) * 2015-10-26 2016-02-24 四川大学 一种产生负微分电阻的共振隧穿二极管

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106653863A (zh) * 2016-10-19 2017-05-10 四川大学 一种带GaN子阱的RTD发射区新设计
CN109524453A (zh) * 2018-10-22 2019-03-26 杭州电子科技大学 一种GaN基高压整流共振隧穿二极管
CN109524453B (zh) * 2018-10-22 2022-03-29 杭州电子科技大学 一种GaN基高压整流共振隧穿二极管
CN109659356A (zh) * 2018-12-18 2019-04-19 河南师范大学 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
CN109659356B (zh) * 2018-12-18 2021-08-27 河南师范大学 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
CN110310989A (zh) * 2019-07-23 2019-10-08 上海科技大学 一种双异质结单极性晶体管的器件结构
CN110729394A (zh) * 2019-10-12 2020-01-24 深圳第三代半导体研究院 一种负阻式GaN压力传感器及其制备方法
CN112151639A (zh) * 2020-10-14 2020-12-29 中国工程物理研究院电子工程研究所 一种适用于紫外光探测的氮化物共振隧穿二极管结构
CN112151639B (zh) * 2020-10-14 2022-06-21 中国工程物理研究院电子工程研究所 一种适用于紫外光探测的氮化物共振隧穿二极管结构

Similar Documents

Publication Publication Date Title
CN105895670A (zh) 带GaN子阱的共振隧穿二极管
JP5079143B2 (ja) 半導体素子、電界効果トランジスタおよびダイオード
CN207602981U (zh) 一种片内堆积多有源区半导体巴条激光器芯片
CN105870164A (zh) 一种氮化镓基高电子迁移率晶体管
CN101764355A (zh) 940nm~1000nm波段半导体激光器量子阱外延结构
CN104882475B (zh) 双沟道超结igbt
CN106653863A (zh) 一种带GaN子阱的RTD发射区新设计
CN105355667A (zh) 一种产生负微分电阻的共振隧穿二极管
JP6202409B2 (ja) ヘテロ接合バイポーラトランジスタおよび電気機器
Huang et al. Comparative study of contact topographies of 4.5 kV SiC MPS diodes for optimizing the forward characteristics
CN108598147B (zh) 渐变组分漂移层垂直型功率二极管及其制作方法
Xia et al. Theoretical modeling and simulation-based assessment of graded-bandgap AlGaAs/GaAs electron-injection cathode
CN205595336U (zh) 一种逆导型igbt背面结构
CN105870163A (zh) 加阶梯型隔离层和子阱层的共振隧穿二极管
CN104241349A (zh) 一种逆导型绝缘栅双极型晶体管
CN105870171A (zh) 加阶梯式异质结隔离区的共振隧穿二极管
Gao et al. Influence of the heterojunction spacer on the performance of AlGaN/GaN/AlGaN resonant tunneling diodes
CN109346515A (zh) 一种碳化硅绝缘栅双极型晶体管
CN110310989A (zh) 一种双异质结单极性晶体管的器件结构
Tsai Application of an AlGaAs/GaAs/InGaAs heterostructure emitter for a resonant-tunneling transistor
CN105977287A (zh) 一种碳化硅双极结型晶体管
Kumar et al. Design and Simulation of a T-gated AlGaN/GaN HEMT with Added Mini Field Plate
Liu et al. Theoretical analysis of AlGaN/GaN resonant tunnelling diodes with step heterojunctions spacer and sub-quantum well
Li et al. GaN Tunneling Hot Electron Transistors with UID-GaN/AlN Emitter Barrier
Nath et al. III-nitride tunnel injection hot electron transfer amplifier (THETA) with common-emitter gain

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160824