CN112151639B - 一种适用于紫外光探测的氮化物共振隧穿二极管结构 - Google Patents

一种适用于紫外光探测的氮化物共振隧穿二极管结构 Download PDF

Info

Publication number
CN112151639B
CN112151639B CN202011097767.2A CN202011097767A CN112151639B CN 112151639 B CN112151639 B CN 112151639B CN 202011097767 A CN202011097767 A CN 202011097767A CN 112151639 B CN112151639 B CN 112151639B
Authority
CN
China
Prior art keywords
layer
gan
equal
resonant tunneling
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202011097767.2A
Other languages
English (en)
Other versions
CN112151639A (zh
Inventor
王旺平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronic Engineering of CAEP
Original Assignee
Institute of Electronic Engineering of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronic Engineering of CAEP filed Critical Institute of Electronic Engineering of CAEP
Priority to CN202011097767.2A priority Critical patent/CN112151639B/zh
Publication of CN112151639A publication Critical patent/CN112151639A/zh
Application granted granted Critical
Publication of CN112151639B publication Critical patent/CN112151639B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种适用于紫外光探测的氮化物共振隧穿二极管结构,解决常规氮化物共振隧穿二极管结构不适用于厚光吸收层,不能进行高量子效率的紫外光探测的问题。本发明将双势垒共振隧穿结构内置于p型掺杂氮化物外延层/本征氮化物外延层/n型掺杂氮化物外延层中,利用p‑i‑n结构的内建电场抵消氮化物异质结的内建极化电场,解决了GaN厚光吸收层的能带抬起问题,使得厚光吸收层的氮化物共振隧穿二极管结构能产生共振隧穿。本发明还引入了AlGaN/GaN超晶格结构,利用超晶格结构的极化场调节量子阱能级与光吸收层导带能级的对准,增强共振隧穿的峰值电流。

Description

一种适用于紫外光探测的氮化物共振隧穿二极管结构
技术领域
本发明属于半导体材料领域和半导体光探测器领域,具体涉及一种适用于紫外光探测的氮化物共振隧穿二极管结构。
背景技术
共振隧穿二极管是基于共振隧穿量子效应的一种器件,其基础是半导体异质结构,材料结构一般采用n-i-n掺杂(n型掺杂发射极/双势垒共振隧穿结构/n型掺杂收集极)结构。共振隧穿二极管随着器件外置偏压的逐渐加大,电子的隧穿概率在某一个能量值出现尖锐峰值,二极管的电流-电压曲线也呈现负微分电导特征。基于共振隧穿二极管的非线性输运特性,2005年J. C. Blakesley等人提出了一种局域调控共振隧穿电流进行光子探测的机理[Physical review letters, 2005, 94(6), 067401],该方案是利用光生空穴调制量子阱的共振隧穿电流,达到了光生载流子107倍的放大效果,实现了低温下的单光子探测。
共振隧穿二极管应用于紫外的光子探测,通常采用氮化物材料的共振隧穿二极管结构。常规氮化物共振隧穿二极管结构为n-i-n掺杂,包括n型掺杂发射电极层/本征GaN隔离层/双势垒结构层(AlGaN/GaN/AlGaN)/本征GaN隔离层/n型掺杂收集电极层。常规氮化物共振隧穿二极管结构的特征之一是发射电极层和收集电极层都采用n型掺杂,特征之二是本征GaN隔离层的厚度很薄,一般在2nm到20nm之间。
常规氮化物共振隧穿二极管结构若用于紫外光探测,需要将本征GaN隔离层作为GaN光吸收层,因而本征GaN隔离层的厚度需要增加。考虑到紫外光吸收的量子效率,GaN光吸收层的厚度需要在50nm到500nm之间。然而常规氮化物共振隧穿二极管结构不适用于厚的本征GaN隔离层,其原因是氮化物材料固有的内建极化电场会极大抬升GaN本征层和双势垒结构层的能带,甚至使得该结构不能发生共振隧穿。图1为常规氮化物共振隧穿二极管结构的能带模拟结果,采用200nm的厚本征GaN层作为光吸收层,可以看到不论是2V的正向偏压还是2V的反向偏压,200nm本征GaN层的能带都被氮化物异质结的极化内建场抬起,且抬起幅度巨大,严重影响了电子到双势垒结构的共振隧穿。因此,对于GaN材料共振隧穿二极管用于紫外光探测,需要设计合理的材料结构,才可以使得器件在存在厚光吸收层的情况下,仍然有共振隧穿的特性。
p-i-n掺杂材料结构广泛应用于半导体光电二极管器件,该结构存在p-n结的内建电场,光吸收层产生的载流子在内建电场的作用下向两侧电极漂移,可以实现高量子效率的光子探测。但是,目前还没有将AlGaN/GaN/AlGaN双势垒结构与p-i-n结构结合用于光子探测技术的,特别基于前述常规氮化物共振隧穿二极管结构,更没有用于紫外光探测的结合技术。
p-i-n掺杂结构的内建电场强度很高,且可以通过调节pn结的掺杂种类控制内建电场的方向。如果将AlGaN/GaN/AlGaN双势垒结构与p-i-n结构结合,可以想象氮化物异质结的极化电场可以由p-i-n结构的内建电场抑制。考虑到氮化物异质结的极化电场可能小于p-i-n结构的内建电场,一个解决技术是在p-i-n结构中进一步引入AlGaN/GaN超晶格周期结构。AlGaN/GaN超晶格周期结构的Al组分和周期数可以自由调节,使得氮化物总体极化电场可以等于p-i-n结构内建电场,这样就解决了GaN厚光吸收层的能带抬起问题,使得厚光吸收层的氮化物共振隧穿二极管结构能产生共振隧穿。
发明内容
本发明针对背景技术中厚GaN光吸收层不适用于常规氮化物共振隧穿二极管结构的问题,提出了一种适用于紫外光探测的氮化物共振隧穿二极管结构,可以实现光生载流子的共振隧穿输运,可增强共振隧穿二极管结构的紫外光探测量子效率,适用于高量子效率、低探测电压、高光生载流子放大倍数的紫外光探测。相比常规氮化物共振隧穿二极管,本发明具有更低的本底电流,更低的暗噪声。
本发明的技术方案如下:
一种适用于紫外探测的氮化物共振隧穿二极管结构,其特征在于:在p型掺杂GaN电极层和n型掺杂GaN电极层中间引入GaN光吸收层、共振隧穿双势垒结构层和AlGaN/GaN超晶格层。其中,所述共振隧穿双势垒结构层由AlGaN势垒层、GaN量子阱层、AlGaN势垒层构成,AlGaN层Al的组分在0.05到1.0之间,Ga的组分在0.95到0之间。
进一步的,针对GaN光吸收层,50 nm ≤GaN光吸收层的厚度≤500 nm。
进一步的,所述AlGaN/GaN超晶格层的周期数在1个周期到20个周期之间,AlGaN层中Al和Ga的组分分别为:0.05≤Al的组分≤1.0,0≤Ga的组分≤0.95。
进一步的,所述p型掺杂GaN电极层的厚度等于或大于50 nm,空穴浓度等于或大于1×1017 cm-3,n型掺杂GaN电极层的厚度等于或大于50 nm,电子浓度等于或大于5×1017cm-3
本发明的原理,主要是将AlGaN/GaN/AlGaN双势垒结构嵌入p-i-n结构,利用p-i-n结构的内建电场抵消氮化物异质结界面的极化内建电场。考虑到氮化物极化量子阱的能级低于GaN光吸收层导带能级的问题,本发明进一步引入AlGaN/GaN超晶格结构,增强量子阱一侧的氮化物极化内建电场,抬升量子阱结构的能带,使得GaN量子阱层的能级高于光吸收层的导带位置,增强共振隧穿的峰值电流。
基于本发明的共振隧穿双势垒结构埋入p-i-n结构的技术方案,还可以衍生出共振隧穿双势垒结构埋入p-i-p-i-n结构和p-i-n-i-n结构方案,即在光吸收层和双势垒结构层中间额外引入一层掺杂层,通过调节各层的掺杂浓度及各层厚度,可以进一步调节共振隧穿双势垒结构的内建电场强度。通过合理调节p-i-p-i-结构的内建电场、氮化物异质结极化电场、外加电场三者的大小,本发明的氮化物共振隧穿二极管结构可以实现光生载流子的共振隧穿输运,适用于高量子效率、低探测电压、高光生载流子放大倍数的紫外光探测。
根据上述技术方案的特征和材料结构,本发明的工作模式与常规氮化物共振隧穿二极管明显不同:常规氮化物共振隧穿二极管为n-i-n结构,n型电极在低偏压下能提供大量的电子发射,共振隧穿二极管的共振电流很大;而本发明的氮化物共振隧穿二极管为p-i-n结构,p型掺杂GaN电极层接地,n型掺杂GaN电极层接正电压,工作于p-i-n二极管的反偏模式,小偏压下来自p型电极的电子发射极少,大部分的电子发射来自紫外光在GaN光吸收层产生的光生载流子。因而本发明的一种适用于紫外探测的氮化物共振隧穿二极管结构,还具有本底暗电流远低于常规的氮化物共振隧穿二极管结构的优点。
本发明的优点如下:
(1)本发明结构采用共振隧穿二极管结构嵌入p-i-n结构进行紫外光探测,工作于p-i-n的反偏模式,暗电流远低于n-i-n结构的常规共振隧穿二极管。
(2)本发明结构采用共振隧穿二极管结构嵌入p-i-n结构,GaN/AlGaN异质界面的内建极化场被p-i-n结构的内建场抵消,因而本发明结构适用于厚本征GaN光吸收层,适用于高量子效率的紫外光探测。
附图说明
图1为常规氮化物共振隧穿二极管采用200 nm厚度GaN本征层的能带计算图。实线是2V反向偏置的能带图,虚线是2V正向偏置的能带图。
图2为本发明的结构示意图。
图3为本发明实施例中的一种具体实施结构示意图。
图4为图3中具体实施结构的能带计算结果图。实线为图3所示发明实例结构的能带图,虚线为常规氮化物共振隧穿二极管结构的能带图。
图5为图4中发明实例结构能带图的0.30 μm到0.40 μm区域的放大,清晰显示共振隧穿双势垒结构和超晶格周期结构的能带。箭头示意了GaN光吸收层光生载流子的共振隧穿路径。
其中,附图标记为:1-n型掺杂GaN电极层,2-本征GaN层,3-AlGaN/GaN超晶格层,4-共振隧穿双势垒结构层,4-1-AlGaN势垒层,4-2-GaN量子阱层,4-3-AlGaN势垒层,5-GaN掺杂层,6-GaN光吸收层,7-p型掺杂GaN电极层。
具体实施方式
为更进一步阐述本发明为达成预定发明目的所采用的技术手段及功效,以下结合发明实例阐述本发明的具体实施方式。
本发明提供了一种适用于紫外探测的氮化物共振隧穿二极管的具体实施结构,如图2所示,从下往上依次至少包括衬底材料、n型掺杂GaN电极层1,本征GaN层2,AlGaN/GaN超晶格层3,共振隧穿双势垒结构层4,GaN掺杂层5,GaN光吸收层6,p型掺杂GaN电极层7。所述共振隧穿双势垒结构层4从下往上依次包括AlGaN势垒层4-1、GaN量子阱层4-2和AlGaN势垒层4-3。本发明结构适用于厚GaN光吸收层,GaN光吸收层6的厚度在50 nm到500 nm之间。
进一步的,对共振隧穿双势垒结构层4的不同Al组分和层厚以及GaN光吸收层6的不同厚度,AlGaN/GaN超晶格层3的周期数可以从1个周期变化到20个周期,AlGaN层Al的组分可以在0.05到1.0之间,Ga的组分可以在0.95到0之间。AlGaN/GaN超晶格层3的各个组分、层厚、周期数的共同作用效果为调节GaN量子阱层4-2中量子阱能级的高度,使得0V偏置时GaN量子阱层4-2中量子阱能级高于GaN光吸收层6的导带边能量。
所述GaN掺杂层5的掺杂可以是p型掺杂,也可以是n型掺杂。为了发挥p-i-n掺杂内建电场对氮化物异质结构电场的抑制效果,从设计和实际材料外延生长考虑,p型掺杂GaN电极层7的厚度大于或等于50 nm,空穴浓度大于或等于1×1017 cm-3,n型掺杂GaN电极层1的厚度大于或等于50 nm,电子浓度大于或等于5×1017 cm-3
实施例
根据上述材料结构特征,本发明的一种具体实施方式如图3所示。
采用GaN自支撑衬底材料,从衬底材料往上依次包括:
(1)GaN自支撑衬底材料。
(2)n型掺杂GaN电极层1,厚度100 nm,电子浓度=5E18 cm-3
(3)本征GaN层2,厚度20 nm。
(4)AlGaN/GaN超晶格层3,超晶格为Al0.5Ga0.5N=2 nm、GaN=1 nm周期结构,超晶格周期数=13周期。
(5)共振隧穿双势垒结构层4,其中AlN势垒层4-1,厚度2 nm;GaN量子阱层4-2,厚度 3 nm;AlN势垒层4-3,厚度2 nm。
(6)GaN掺杂层5,厚度10 nm, p型掺杂,空穴浓度=1E17 cm-3
(7)GaN光吸收层6,厚度=200 nm,本征掺杂。
(8)p型掺杂GaN电极层7,厚度=100 nm,空穴浓度=2E17 cm-3
该结构的能带计算结果如图4所示。对比图4中本发明结构和常规共振隧穿二极管结构,可以看见GaN光吸收层6的能带在常规氮化物共振隧穿二极管结构中被极化电场拉起,导致常规结构中GaN量子阱层4-2中量子阱能级远低于GaN光吸收层6的导带能量,电子不能发生共振隧穿。同时在图4可以看出,在本发明结构中,GaN光吸收层6的能带在本发明结构中变得平直,GaN量子阱层4-2中量子阱能级在2V偏置电压下对齐GaN光吸收层6的导带边,光生载流子可以共振隧穿过双势垒,表明本发明的结构设计达到了发明目的。
图5进一步显示了图4中本发明结构的量子阱和超晶格结构区域,可以看到在2V的偏置电压下光吸收层产生的光生电子可以共振隧穿过双势垒结构,然后通过热电发射和多级隧穿机制穿过AlGaN/GaN超晶格层3,漂移到GaN电极层9,因此本发明的一种适用于紫外探测的氮化物共振隧穿二极管结构可以正常工作。对比图4和图5,本发明结构的光吸收层能带明显高于常规结构的光吸收层能带,其原因是本发明结构采用p-i-p-i-n掺杂结构,具有内建电场,因而抬高了光吸收层的能带位置。
以上所述的实施例仅为了说明本发明的技术思想及特点,其目的在于使本领域的技术人员能够了解本发明的内容并据以实施,本发明的范围不仅局限于上述具体实施例,即凡依本发明所揭示的精神所作的同等变化或修饰,仍涵盖在本发明的保护范围。

Claims (1)

1.一种适用于紫外光探测的氮化物共振隧穿二极管结构,其特征在于:在p型掺杂GaN电极层和n型掺杂GaN电极层中间引入GaN光吸收层、共振隧穿双势垒结构层和AlGaN/GaN超晶格层;其中,所述共振隧穿双势垒结构层由AlGaN势垒层、GaN量子阱层、AlGaN势垒层构成,AlGaN势垒层中:0.05≤Al的组分≤1.0,0≤Ga的组分≤0.95;对于所述GaN光吸收层,50nm≤GaN光吸收层的厚度≤500 nm;对于所述AlGaN/GaN超晶格层,1个周期≤超晶格层的周期数≤20个周期,AlGaN层中Al和Ga的组分分别为:0.05≤Al的组分≤1.0,0≤Ga的组分≤0.95;所述p型掺杂GaN电极层的厚度等于或大于50 nm,空穴浓度等于或大于1×1017 cm-3;所述n型掺杂GaN电极层的厚度等于或大于50 nm,电子浓度等于或大于5×1017 cm-3
CN202011097767.2A 2020-10-14 2020-10-14 一种适用于紫外光探测的氮化物共振隧穿二极管结构 Expired - Fee Related CN112151639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011097767.2A CN112151639B (zh) 2020-10-14 2020-10-14 一种适用于紫外光探测的氮化物共振隧穿二极管结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011097767.2A CN112151639B (zh) 2020-10-14 2020-10-14 一种适用于紫外光探测的氮化物共振隧穿二极管结构

Publications (2)

Publication Number Publication Date
CN112151639A CN112151639A (zh) 2020-12-29
CN112151639B true CN112151639B (zh) 2022-06-21

Family

ID=73953090

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011097767.2A Expired - Fee Related CN112151639B (zh) 2020-10-14 2020-10-14 一种适用于紫外光探测的氮化物共振隧穿二极管结构

Country Status (1)

Country Link
CN (1) CN112151639B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114964569A (zh) * 2022-05-19 2022-08-30 电子科技大学 一种量子阱偏压和应力传感器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773729A (zh) * 2005-09-23 2006-05-17 中国科学院上海技术物理研究所 自放大红外探测器
CN105895670A (zh) * 2016-04-15 2016-08-24 四川大学 带GaN子阱的共振隧穿二极管
CN104409556B (zh) * 2014-12-05 2017-01-04 北京大学 一种氮化物复合势垒量子阱红外探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110323295B (zh) * 2019-07-10 2021-04-30 陕西科技大学 一种插入AlGaN结构的多量子阱InGaN太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773729A (zh) * 2005-09-23 2006-05-17 中国科学院上海技术物理研究所 自放大红外探测器
CN104409556B (zh) * 2014-12-05 2017-01-04 北京大学 一种氮化物复合势垒量子阱红外探测器及其制备方法
CN105895670A (zh) * 2016-04-15 2016-08-24 四川大学 带GaN子阱的共振隧穿二极管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AlxGa1-xN和AlN/GaN材料的MOCVD生长与器件研究;陈一仁;《中国科学院大学博士学位论文》;20140531;第31-85页 *

Also Published As

Publication number Publication date
CN112151639A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
KR101027225B1 (ko) 자외선 수광 소자
CN101582478B (zh) 用于光电器件的多量子阱结构及其制造方法
Wang et al. Low-noise avalanche photodiodes with graded impact-ionization-engineered multiplication region
CN111599902B (zh) 一种具有空穴注入结构电子阻挡层的发光二极管
US20110291158A1 (en) Hetero-junction bipolar phototransistor
CN107863403B (zh) 一种高线性增益红外雪崩光电二极管及其制备方法
CN108305911A (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN207602981U (zh) 一种片内堆积多有源区半导体巴条激光器芯片
CN111048636A (zh) 一种氧化镓基紫外发光二极管及其制备方法
CN112151639B (zh) 一种适用于紫外光探测的氮化物共振隧穿二极管结构
KR100793336B1 (ko) 발광 트랜지스터
US8143648B1 (en) Unipolar tunneling photodetector
Lv et al. InGaN/GaN visible-light heterojunction phototransistor featuring high responsivity, high speed, and bias-controlled wavelength-selectivity
CN113471326B (zh) 一种ⅲ族氮化物异质结光电探测器
CN102254779B (zh) 无需Cs激活的异质结型GaN负电子亲和势光电阴极
WO2024066412A1 (zh) 红外发光二极管及其制造方法
CN113257962A (zh) 一种具有p-i-n型多量子阱结构的紫外发光二极管
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN105977349B (zh) 一种具有p-i-n隧道结的多有源区发光二极管
Xia et al. Theoretical modeling and simulation-based assessment of graded-bandgap AlGaAs/GaAs electron-injection cathode
US10686091B2 (en) Semiconductor device
CN110112272B (zh) 一种具有异质外延结型电子阻挡层的led结构
CN110416055B (zh) 具有原子级厚超薄发射层的GaN反射式光电阴极
CN110165013A (zh) 一种ⅲ族氮化物雪崩光电二极管组件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220621