CN109659356B - 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件 - Google Patents

基于硒化铜单层的具有负微分电阻和开关作用的纳米器件 Download PDF

Info

Publication number
CN109659356B
CN109659356B CN201811549341.9A CN201811549341A CN109659356B CN 109659356 B CN109659356 B CN 109659356B CN 201811549341 A CN201811549341 A CN 201811549341A CN 109659356 B CN109659356 B CN 109659356B
Authority
CN
China
Prior art keywords
copper selenide
negative differential
differential resistance
single layer
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811549341.9A
Other languages
English (en)
Other versions
CN109659356A (zh
Inventor
安义鹏
康军帅
焦聚涛
王天兴
焦照勇
张朝晖
笪海霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201811549341.9A priority Critical patent/CN109659356B/zh
Publication of CN109659356A publication Critical patent/CN109659356A/zh
Application granted granted Critical
Publication of CN109659356B publication Critical patent/CN109659356B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • H01L29/242AIBVI or AIBVII compounds, e.g. Cu2O, Cu I
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Bipolar Transistors (AREA)

Abstract

本发明公开了一种基于硒化铜单层的具有负微分电阻和开关作用的纳米器件,属于纳米尺度电子器件技术领域。本发明的技术方案要点为:一种基于硒化铜单层的具有负微分电阻和开关作用的纳米器件,该纳米器件由具有六角蜂窝状结构的硒化铜单层构成,通过设计在具有类石墨烯结构的六角蜂窝状硒化铜单层上分别沿着扶手椅型和锯齿型方向搭建四电极双电路系统,实现负微分电阻和开关作用。

Description

基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
技术领域
本发明属于纳米尺度电子器件技术领域,具体涉及一种基于硒化铜单层的具有负微分电阻和开关作用的纳米器件。
背景技术
随着科技和微加工技术的快速发展,电子器件已朝着更小(即结构尺度更小)、更快(反应速度更快)和更冷(功耗低、发热少)的趋势发展,越来越接近于分子甚至原子尺度。纳米电子器件已引起世界范围内的广泛关注和极大研究兴趣。
自从石墨烯在2004年被成功制备之后,因其独特的力学、电子和输运特性,二维材料已引起当今科学界的极大研究热潮。包括诸如石墨烯、氮化硼(h-BN)、过渡金属硫化物、磷烯、MX烯、锡烯、锗烯、硅烯、硼烯等二维材料已被陆续制备出来。研究表明,诸多二维材料具有优异的光电性质,有望成为新一代的高性能纳米器件的关键材料。
最近,中科院物理所Lin和Du课题组(Gao L.et al.,Epitaxial Growth ofHoneycomb Monolayer CuSe with Dirac Nodal Line Fermions,Adv.Mater.,30,1707055(2018))在国际上首次成功制备出了和石墨烯结构相同的六角蜂窝状硒化铜(CuSe)单层。他们采用分子束外延法在Cu(111)衬底上制备出了单层结构的硒化铜,并采用扫描隧道显微镜、角分辨光电子能谱和第一性原理计算方法确认了其六角蜂窝状结构。这种类石墨烯状的硒化铜单层拥有2个受到镜面反射对称性保护的二维狄拉克节点线费米子,在纳米器件领域具有潜在的应用价值。
然而,对于这种具有六角蜂窝状结构的硒化铜单层的一些电学性质及其在纳米电子器件领域的应用还尚未有相关报道。
发明内容
本发明解决的技术问题是提供了一种基于硒化铜单层的具有负微分电阻和开关作用的纳米器件,通过设计在具有类石墨烯结构的六角蜂窝状硒化铜单层上分别沿着扶手椅型和锯齿型方向搭建四电极双电路系统,实现负微分电阻和开关作用。
本发明为解决上述技术问题采用如下技术方案,基于硒化铜单层的具有负微分电阻和开关作用的纳米器件,其特征在于:所述纳米器件由具有六角蜂窝状结构的硒化铜(CuSe)单层构成。
进一步优选,所述的硒化铜单层上根据原子排列位置在相互垂直的扶手椅型方向(a-CuSe)和锯齿型方向(z-CuSe)分别搭建电路组建四电极双电路系统,且在两个电路方向上能够自由切换档位,使其处于扶手椅型方向闭合回路或锯齿型方向闭合回路,当电路在扶手椅型方向构成闭合回路时,该纳米器件表现出负微分电阻作用,且当电压高于0.5伏特时,电路处于关闭状态;当电路切换到锯齿型方向构成闭合回路时,电路始终处于导通状态。
进一步优选,所述四电极双电路系统由扶手椅型方向左、右电极及锯齿型方向左、右电极构成,且在两个电路方向上能够自由切换,调整档位使其分别处于扶手椅方向闭合回路和锯齿型方向闭合回路进而实现纳米器件的负微分电阻和开关作用。
本发明设计了六角蜂窝状硒化铜单层的四电极双电路具有负微分电阻和开关作用的纳米器件,通过调整档位使扶手椅型方向或锯齿型方向电路处于闭合回路状态,进而实现负微分电阻器件和开关功能。本发明的纳米器件结构超薄;其长短、宽度尺寸可随意调节控制;并且负微分电阻开启电压低(0.5伏特),功耗较低;开关比大,性能优良。
附图说明
图1是四电极双电路硒化铜单层纳米器件的原子尺度示意图,其中,Da和Sa是在扶手椅型方向(即X轴向)电路上的源极和漏极两个电极导线,Dz和Sz是在锯齿型方向(即Y轴向)电路上的源极和漏极两个电极导线;
图2是扶手椅型方向电路和锯齿型方向电路的电流-电压曲线。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例
本发明构造了具有类石墨烯结构的六角蜂窝状硒化铜单层具有负微分电阻和开关作用的纳米器件结构。通过使用Virtual NanoLab-Atomistix ToolKit工具,采用密度泛函结合非平衡格林函数技术对硒化铜单层纳米器件的电子输运性质进行了研究(M.Brandbyge,et al.,Density-functional method for nonequilibrium electrontransport[J].Phys.Rev.B,2002,65:165401.)。通过对其电流-电压性质的测量和分析,揭示了该硒化铜单层材料作为原子尺度纳米器件的潜在应用价值,并为进一步设计和实现具有优良性能的基于硒化铜单层的纳米尺度负微分电阻器件和纳米开关提供了相关理论依据和模型构造方案。
基于硒化铜单层的四电极双电路纳米器件由扶手椅型方向左、右电极以及锯齿型方向左、右电极构成,如图1所示。扶手椅型方向和锯齿型方向电路分别构成两个闭合回路,且两条电路相互正交,并能够自由切换。
此纳米器件的电学性质测量,负微分电阻和开关作用实现可按照如下步骤完成:
一、将纳米器件设定在扶手椅型方向构成闭合回路。通过扶手椅型方向电路的电流-电压关系通过以下Landauer–Büttiker方法测量得到
Figure BDA0001910232460000031
其结果如图2中的扶手椅型曲线(a-CuSe)所示。当电压达到0.4伏特阈值电压时,开始出现负微分电阻现象,当电压超过0.5伏特时,通过电路电流为0,此时电路相当于处于断开状态,即对应开关的“关”态。
二、当调整档位处于硒化铜单层纳米器件的锯齿型方向构成闭合回路,通过锯齿型方向电路的电流-电压曲线关系可通过以下方法测量得到
Figure BDA0001910232460000032
其结果如图2中的锯齿型曲线(z-CuSe)所示。可以发现,在锯齿型方向电路表现出技术特性,其电流-电压曲线成线性增长,此时电路处于导通状态,即对应开关的“开”态。
本发明设计的六角蜂窝状结构硒化铜单层纳米器件结构超薄,长宽尺寸可随意调节,负微分电阻阈值电压低,功耗低,性能优良的特点。可根据电路实际需要任意设计其尺寸大小。即如图1所示,该硒化铜单层纳米器件的厚度仅为1个原子层厚,在X方向和Y方向的长度可随意剪切调整。
以上描述了本发明的基本形状构造、技术方案、工作原理、主要特征及优点。本行业的技术人员应该了解。本发明凡符合上述硒化铜单层纳米器件结构均落入本发明保护范围内。

Claims (2)

1.基于硒化铜单层的具有负微分电阻和开关作用的纳米器件,其特征在于:所述纳米器件由具有六角蜂窝状结构的硒化铜单层构成,所述的硒化铜单层上根据原子排列位置在相互垂直的扶手椅型方向和锯齿型方向分别搭建电路组建四电极双电路系统,且在两个电路方向上能够自由切换档位,使其处于扶手椅型方向闭合回路或锯齿型方向闭合回路,当电路在扶手椅型方向构成闭合回路时,该纳米器件表现出负微分电阻作用,且当电压高于0.5伏特时,电路处于关闭状态;当电路切换到锯齿型方向构成闭合回路时,电路始终处于导通状态。
2.根据权利要求1所述的基于硒化铜单层的具有负微分电阻和开关作用的纳米器件,其特征在于:所述四电极双电路系统由扶手椅型方向左、右电极及锯齿型方向左、右电极构成,且在两个电路方向上能够自由切换,调整档位使其分别处于扶手椅方向闭合回路和锯齿型方向闭合回路进而实现纳米器件的负微分电阻和开关作用。
CN201811549341.9A 2018-12-18 2018-12-18 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件 Active CN109659356B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811549341.9A CN109659356B (zh) 2018-12-18 2018-12-18 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811549341.9A CN109659356B (zh) 2018-12-18 2018-12-18 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件

Publications (2)

Publication Number Publication Date
CN109659356A CN109659356A (zh) 2019-04-19
CN109659356B true CN109659356B (zh) 2021-08-27

Family

ID=66113327

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811549341.9A Active CN109659356B (zh) 2018-12-18 2018-12-18 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件

Country Status (1)

Country Link
CN (1) CN109659356B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101431106A (zh) * 2008-12-05 2009-05-13 中山大学 基于负微分迁移率的平面纳米电磁辐射器结构
CN101871117A (zh) * 2010-06-30 2010-10-27 湖南大学 一种p型半导体纳米材料CuxSe/TiO2纳米管阵列及其制备方法
WO2011065994A2 (en) * 2009-11-25 2011-06-03 E. I. Du Pont De Nemours And Company CZTS/Se PRECURSOR INKS AND METHODS FOR PREPARING CZTS/Se THIN FILMS AND CZTS/Se-BASED PHOTOVOLTAIC CELLS
CN102292308A (zh) * 2008-10-29 2011-12-21 库拉米克电子学有限公司 复合材料,制备复合材料的方法以及粘合剂和粘结材料
JP4907174B2 (ja) * 2006-01-11 2012-03-28 シャープ株式会社 共鳴トンネル素子及びその製造方法並びに記憶素子
CN103466564A (zh) * 2013-08-30 2013-12-25 天津大学 一种在多元醇基溶液中合成二硒化铜纳米晶的方法
CN105765748A (zh) * 2013-09-12 2016-07-13 科学与工业研究委员会 具有高热电优值的纳米结构的硒化铜及其制备方法
CN105895670A (zh) * 2016-04-15 2016-08-24 四川大学 带GaN子阱的共振隧穿二极管

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003073513A1 (en) * 2002-02-27 2003-09-04 North Carolina State University Use of electroactive monolayers in generating negative differential resistance behaviors and devices employing the same
US7663057B2 (en) * 2004-02-19 2010-02-16 Nanosolar, Inc. Solution-based fabrication of photovoltaic cell
JP4910314B2 (ja) * 2005-06-13 2012-04-04 ソニー株式会社 機能性分子素子及び機能性分子装置
US8363201B2 (en) * 2007-01-18 2013-01-29 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona Acting For And On Behalf Of Arizona State University Flexible transparent electrodes via nanowires and sacrificial conductive layer
KR20090026500A (ko) * 2007-09-10 2009-03-13 재단법인서울대학교산학협력재단 초미세 은 나노와이어 및 그 제조방법
EP2280972A1 (en) * 2008-03-26 2011-02-09 Yeda Research And Development Company Ltd. Doubly reduced perylene-diimides and supramolecular polymers derived from perylene-diimides
US8188460B2 (en) * 2008-11-26 2012-05-29 Board Of Regents, The University Of Texas System Bi-layer pseudo-spin field-effect transistor
EP2671233A4 (en) * 2011-02-01 2018-03-28 Hewlett-Packard Enterprise Development LP Negative differential resistance device
CN103842562B (zh) * 2011-08-02 2017-05-24 意大利理工学院 八足形纳米晶体的有序超晶格结构、它们的制备方法及其应用
US20130037111A1 (en) * 2011-08-10 2013-02-14 International Business Machines Corporation Process for Preparation of Elemental Chalcogen Solutions and Method of Employing Said Solutions in Preparation of Kesterite Films
CN102603201A (zh) * 2011-09-29 2012-07-25 山东建筑大学 一种硒化亚铜薄膜的制备方法
CN102897723A (zh) * 2012-08-29 2013-01-30 江苏大学 一种水热法制备硒化铜基纳米晶的方法
US10041168B2 (en) * 2013-01-14 2018-08-07 California Institute Of Technology Graphene structure
US8962442B2 (en) * 2013-07-12 2015-02-24 International Business Machines Corporation Janus complementary MEMS transistors and circuits
EP2948824A4 (en) * 2013-07-25 2017-03-15 Bourns, Inc. A non-isolated ac to dc power device
US9153731B2 (en) * 2013-08-07 2015-10-06 The Research Foundation For The State University Of New York Colloidal nanocrystals and method of making
RU2554694C1 (ru) * 2014-02-05 2015-06-27 Объединенный Институт Ядерных Исследований Туннельный полевой транзистор на основе графена
WO2016090508A1 (es) * 2014-12-11 2016-06-16 Universidad Andrés Bello Método microbiológico para producir nanopartículas de sulfuro de cobre
US10723941B2 (en) * 2015-05-28 2020-07-28 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Seeded nanoparticles
CN105355651B (zh) * 2015-10-12 2018-02-16 河南师范大学 一种基于硼氮原子链的负微分电阻原子尺度纳米器件
US10937959B2 (en) * 2016-07-19 2021-03-02 Quantum Silicon Inc. Multiple silicon atom quantum dot and devices inclusive thereof
CN106317124B (zh) * 2016-07-27 2018-08-21 东南大学 一种自旋交叉中空纳米球及其制备方法和应用
CN108206214B (zh) * 2016-12-16 2021-02-02 同济大学 一种基于金-黑磷烯的负微分电阻场效应晶体管及其制备
CN106910817A (zh) * 2017-04-09 2017-06-30 苏州思创源博电子科技有限公司 一种快速制备硒化铜复合热电材料的方法
CN108122963B (zh) * 2017-12-22 2021-02-09 重庆大学 一种电势控制快速横向绝缘栅双极型晶体管
CN108766966A (zh) * 2018-04-16 2018-11-06 河南师范大学 一种基于硼烯的纳米开关器件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907174B2 (ja) * 2006-01-11 2012-03-28 シャープ株式会社 共鳴トンネル素子及びその製造方法並びに記憶素子
CN102292308A (zh) * 2008-10-29 2011-12-21 库拉米克电子学有限公司 复合材料,制备复合材料的方法以及粘合剂和粘结材料
CN101431106A (zh) * 2008-12-05 2009-05-13 中山大学 基于负微分迁移率的平面纳米电磁辐射器结构
WO2011065994A2 (en) * 2009-11-25 2011-06-03 E. I. Du Pont De Nemours And Company CZTS/Se PRECURSOR INKS AND METHODS FOR PREPARING CZTS/Se THIN FILMS AND CZTS/Se-BASED PHOTOVOLTAIC CELLS
CN101871117A (zh) * 2010-06-30 2010-10-27 湖南大学 一种p型半导体纳米材料CuxSe/TiO2纳米管阵列及其制备方法
CN103466564A (zh) * 2013-08-30 2013-12-25 天津大学 一种在多元醇基溶液中合成二硒化铜纳米晶的方法
CN105765748A (zh) * 2013-09-12 2016-07-13 科学与工业研究委员会 具有高热电优值的纳米结构的硒化铜及其制备方法
CN105895670A (zh) * 2016-04-15 2016-08-24 四川大学 带GaN子阱的共振隧穿二极管

Also Published As

Publication number Publication date
CN109659356A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Ma et al. Review of experimental approaches for improving zT of thermoelectric materials
Kharadi et al. Silicene: From material to device applications
Gunst et al. Thermoelectric properties of finite graphene antidot lattices
Wang et al. Electricity generation based on one‐dimensional group‐III nitride nanomaterials
Ganesh Nanomaterials for silicon nanotechnology
Fang et al. Heterostructures and superlattices in one-dimensional nanoscale semiconductors
Jing et al. Electronic transport properties of graphyne and its family
Chen et al. Graphene based hybrid/composite for electron field emission: a review
Cresti et al. Numerical study of electronic transport in gated graphene ribbons
Majidi Effect of doping on the electronic properties of graphyne
Do et al. Graphene and its one-dimensional patterns: from basic properties towards applications
CN109659356B (zh) 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
CN102020240B (zh) 一种具有边界选择性的裁剪石墨烯的方法
Ghaziasadi et al. Rectification of graphene self-switching diodes: First-principles study
Fukuhara et al. Electronic transport behaviors of Ni–Nb–Zr–H glassy alloys
CN108766966A (zh) 一种基于硼烯的纳米开关器件
Zhang et al. Fabrication and anomalous transport properties of an Sb/Bi segment nanowire nanojunction array
CN109149541B (zh) 一种基于氢化硼烯的纳米尺度电流限制器
Shi et al. A novel application of the CuI thin film for preparing thin copper nanowires
TWI657999B (zh) 薄膜電晶體
Nakamura First-principles analysis on Seebeck coefficient in zinc oxide nanowires for thermoelectric devices
Song et al. Two-step synthesis of novel Cu2S nanoflowers for field emission application
Chen et al. Introduction to nanotechnology
CN110957373A (zh) 一种基于过渡金属二硫化物侧面异质结的纳米尺度整流器
Paul et al. Nanocomposites of carbon nanotubes and semiconductor nanocrystals as advanced functional material with novel optoelectronic properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant