CN105355651B - 一种基于硼氮原子链的负微分电阻原子尺度纳米器件 - Google Patents

一种基于硼氮原子链的负微分电阻原子尺度纳米器件 Download PDF

Info

Publication number
CN105355651B
CN105355651B CN201510654878.1A CN201510654878A CN105355651B CN 105355651 B CN105355651 B CN 105355651B CN 201510654878 A CN201510654878 A CN 201510654878A CN 105355651 B CN105355651 B CN 105355651B
Authority
CN
China
Prior art keywords
boron nitrogen
nitrogen
atoms
boron
atoms chain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510654878.1A
Other languages
English (en)
Other versions
CN105355651A (zh
Inventor
安义鹏
康军帅
张梦君
刘志勇
刘海瑞
王天兴
付召明
焦照勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201510654878.1A priority Critical patent/CN105355651B/zh
Publication of CN105355651A publication Critical patent/CN105355651A/zh
Application granted granted Critical
Publication of CN105355651B publication Critical patent/CN105355651B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种基于硼氮原子链的负微分电阻纳米器件,由左电极、右电极及左电极和右电极之间的硼氮原子链构成,其中左电极和右电极分别为锯齿型硼氮石墨烯纳米条带,硼氮原子链根据硼原子和氮原子个数不同分为以下三类BnNn+1、BnNn‑1和BnNn,硼氮原子链中硼原子与氮原子交替连接并且该硼氮原子链的两端分别连接左电极和右电极。本发明通过调控硼氮原子链中硼氮原子个数来实现不同的电子输运性质,得到不同的负微分电阻行为,可作为负微分电阻原子尺度纳米器件的候选材料。

Description

一种基于硼氮原子链的负微分电阻原子尺度纳米器件
技术领域
本发明属于负微分电阻原子尺度纳米器件,具体涉及一种基于硼氮原子链的负微分电阻原子尺度纳米器件。
背景技术
传统电子器件朝着“更小(生产工艺更先进),更快(反应速度快)和更冷(发热小、功耗低)”的微型化趋势发展,越来越接近于分子甚至原子尺度,纳米电子器件的研究已引起世界范围内的广泛关注。例如,澳大利亚新南威尔士大学Michelle Y.Simmons课题组研究发现,单个磷原子在一定条件下就可以表现出晶体管特性(Martin Fuechsle,JillA.Miwa,Suddhasatta Mahapatra,et al.,A single-atom transistor[J].NatureNanotech.2012,7:242-246)。
研究发现,一些原子链结构可以表现出一些奇特的现象,甚至在纳米电子器件领域具有一些潜在应用价值。例如,新加坡国立大学Y.P.Feng课题组构造了石墨烯电极-碳链-石墨烯电极的纳米结结构,并采用密度泛函理论结合非平衡格林函数的方法研究了碳原子链的自旋输运行为,发现其表现出完美的自旋过滤效应,可作为自旋阀器件(M.G.Zeng,L.Shen,Y.Q.Cai,et al.,Perfect spin-filter and spin-valve in carbonatomic chains[J].Appl.Phys.Lett.,2010,96:042104)。法国史特拉斯堡大学FlorianBanhart课题组通过从石墨烯纳米带上拆解出来一条碳原子链,并首次测量了单个碳原子链的电子输运性质(Ovidiu Cretu,Andrés R.Botello-Mendez,Izabela Janowska,etal.,Electrical Transport Measured in Atomic Carbon Chains[J].Nano Lett.,2013,13:3487-3493)。2014年,日本高级工业科学技术研究所Ovidiu Cretu课题组通过电子束在透射式电子显微镜中从硼氮片分解得到了单个硼氮原子链(Ovidiu Cretu,Hannu-PekkaKomas,Ossi Lehtinen,et al.,Experiment al Observation of Boron Nitride Chains[J].2014,8:11950-11957)。然而,对于这种单个硼氮原子链的一些电学性质及在纳米电子器件方面的应用还尚未有相关报道。
发明内容
本发明的目的是提供了一种基于硼氮原子链(BN chains)的负微分电阻原子尺度纳米器件,通过设计硼氮原子链中硼氮两种原子的个数来调控其电学性质,进而得到具有不同功能特性的纳米电子器件。
本发明所采用的技术方案是:本发明构造了硼氮石墨烯电极-硼氮原子链-硼氮石墨烯电极的两电极器件结构。通过使用Virtual NanoLab-Atomistix ToolKit工具,利用非平衡格林函数方法和Landauer–Büttiker公式对硼氮原子链的电子输运特性进行了研究(M.Brandbyge,J.L.Mozos,P.Ordejón,et al.,Density-functional method fornonequilibrium electron transport[J].Phys.Rev.B,2002,65:165401.An Yipeng,WangKedong,Yang Zhongqin,et al.,Negative differential resistance andrectification effects in step-like graphene nanoribbons[J].Org.Electron.,2015,17:262-269)。通过对其电学性质的模拟计算,揭示该硼氮原子链的电子输运物理机制,并为设计和实现具有优良性能的基于硼氮原子链的负微分电阻纳米器件提供了理论依据。
本发明所述的的基于硼氮原子链的负微分电阻原子尺度纳米器件由左电极、右电极及左电极和右电极之间的硼氮原子链构成,其中左电极和右电极分别为锯齿型硼氮石墨烯纳米条带,硼氮原子链根据硼原子和氮原子个数不同分为以下三类BnNn+1、BnNn-1和BnNn,硼氮原子链中硼原子与氮原子交替连接并且该硼氮原子链的两端分别连接左电极和右电极。
进一步限定,所述的硼氮原子链BnNn+1、BnNn-1或BnNn中n为3、4、5或6。
本发明通过调控硼氮原子链中硼氮原子个数来实现不同的电子输运性质,得到不同的负微分电阻行为,可作为负微分电阻原子尺度纳米器件的候选材料。
附图说明
图1是三类硼氮原子链的两电极器件结构图,图1中1和3分别为左电极和右电极,2为中间散射区(由硼氮原子链和部分电极组成);
图2是BnNn+1型硼氮原子链负微分电阻原子尺度纳米器件的伏安特性曲线;
图3是BnNn+1型硼氮原子链负微分电阻原子尺度纳米器件在0.1V和1.0V时的电子透射率曲线;
图4是BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件的伏安特性曲线;
图5是BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件在0.1V、0.3V、0.6V和1.0V时的电子透射率曲线;
图6是BnNn型硼氮原子链负微分电阻原子尺度纳米器件的伏安特性曲线。
具体实施方式
结合附图详细描述本发明的具体内容。基于硼氮原子链的负微分电阻纳米器件由左电极、右电极和中间硼氮原子链三部分构成,其中左电极和右电极分别为锯齿型硼氮石墨烯纳米条带,而中间硼氮原子链根据硼原子和氮原子个数不同分为三类,即BnNn+1、BnNn-1和BnNn,如图1所示。此类纳米器件电子输运性质的计算,包括电导,电流-电压曲线可按照如下步骤完成:
一、根据Landauer公式,通过硼氮原子链的电子的透射率为:
T(E,Vb)=Tr[ΓL(E)GR(E)ΓR(E)GA(E)]
其中,GR(E)和GA(E)为中间散射区(包含部分电极层和硼氮原子链,如图1所示)的延迟和超前格林函数,ΓL和ΓR为左右电极的展宽函数。
二、当在左右电极施加偏压时,通过硼氮原子链的电流可通过Landauer–Büttiker公式计算得到:
其中,Vb为施加在左右电极上的偏压,μL和μR为左右电极化学势,fL和fR为左右电极的费米分布函数。
以下为3类基于硼氮原子链的负微分电阻原子尺度纳米器件的测试过程及测试结果。
1、BnNn+1型硼氮原子链负微分电阻原子尺度纳米器件
如图1(a)所示,对于BnNn+1型硼氮原子链负微分电阻原子尺度纳米器件,中间硼氮原子链中的硼氮原子交替连接,且氮原子数比硼原子数多一个。此时,硼氮原子链两端分别连接两个半无限长的硼氮石墨烯纳米带电极,这样三部分共同构成了BnNn+1型硼氮原子链两电极器件结构。
当在左右电极施加偏压时,此两电极结构达到一种非平衡状态,此时通过采用非平衡格林函数方法,根据Landauer公式计算得到中间硼氮原子链的电子透射函数T(E,Vb);然后通过Landauer–Büttiker公式计算各个偏压下通过硼氮原子链的电流值。
这里给出了三个例子,即B3N4、B4N5和B5N6三个样品的结果。施加偏压范围从0到1.0V,其伏安特性曲线如图2所示。可见三个样品均表现出负微分电阻行为,均有一个较明显的电流峰值,约3μA。为了理解这一现象,以B3N4为例,分析了其在0.1V和1.0V时的电子透射率函数,如图3所示。在0.1V时,偏压窗内(两虚线之间)有一较大的透射峰,透射率近乎为1,这主要是由于其具有较广延的电子传输态。例如,在-0.05eV处,其电子传输态如图3中插图所示。在中间硼氮原子链上和两端电极上侧均有较广延的电子态分布,这对其电子输运起主要贡献。然而,随着偏压的增大,费米能级附近的透射谱峰逐渐远离费米能级向负能量方向移动,甚至在1.0V时移除偏压窗,此时费米能级附近不再有电子态分布,电子透射率也几乎为零,进而导致了负微分电阻行为。因此,BnNn+1型硼氮原子链可成为负微分电阻纳米器件的候选材料。
2、BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件
如图1(b)所示,对于BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件,中间硼氮原子链中的硼氮原子交替连接,且氮原子数比硼原子数少一个。同理,硼氮原子链两端分别连接两个半无限长的硼氮石墨烯纳米带电极,这样三部分共同构成了BnNn-1型硼氮原子链两电极器件结构。
技术方法与上述情况相同。
这里也给出了三个例子,即B4N3、B5N4和B6N5三个样品的结果,其伏安特性曲线如图4所示。与BnNn+1型硼氮原子链负微分电阻原子尺度纳米器件不同是的BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件的伏安特性曲线出现了两个明显的电导峰,有两个负微分电阻过程。为了理解这一现象,以B4N3为例,分析了其在0.1V、0.4V、0.5V和1.0V时的电子透射率函数,如图5所示。可见,在0.1V时,在费米能级附近电子传输态较广延,在偏压窗内出现了较大的透射谱峰,进而导致了其第一个电导峰,但随着偏压增大,透射谱峰逐渐向负能量区间移动,在0.3V时移出了偏压窗。此时偏压窗内电子传输态比较局域化,导致电子透射率较小,而出现了电导谷。随后,偏压增大,电子传输态变得更广延些,透射谱峰暂未向负能量区间移动,此时电导变大,在0.6V时出现了第二个电导峰。但随着偏压进一步增大,费米能级附近的电子传输态变得非常局域化直至消失,导致电子不能透射,通过硼氮原子链的电流几乎为零。因此,经过这一系列的变化,BnNn-1型硼氮原子链纳米器件有两个电导峰值,出现了两个负微分电阻过程。
3、BnNn型硼氮原子链负微分电阻原子尺度纳米器件
如图1(c)所示,对于BnNn型硼氮原子链负微分原子尺度纳米器件,中间硼氮原子链中的硼氮原子交替连接,且氮原子数等于硼原子数。同理,硼氮原子链两端分别连接两个半无限长的硼氮石墨烯纳米带电极,这样三部分共同构成了BnNn型硼氮原子链两电极器件结构。
技术方法与上述情况相同。
这里给出的三个例子分别是B3N3、B4N4和B5N5三个样品的结果,其伏安特性曲线如图6所示。与BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件相似,BnNn型硼氮原子链负微分电阻原子尺度纳米器件的伏安曲线也表现出了双负微分电阻过程行为。然而,不同的是,其电流峰值仅为约6nA量级,远小于BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件的3μA电流峰值,相关机制与BnNn-1型硼氮原子链负微分电阻原子尺度纳米器件相同。
以上描述了本发明的基本形状构造、技术方案、基本原理、主要特征及优点。本行业的技术人员应该了解。本发明不受上述样品例子的限制,凡符合上述三种硼氮原子链(即BnNn+1、BnNn-1、BnNn)纳米器件分类的结构均落入本发明保护范围内。

Claims (2)

1.一种基于硼氮原子链的负微分电阻原子尺度纳米器件,其特征在于由左电极、右电极及左电极和右电极之间的硼氮原子链构成,其中左电极和右电极分别为锯齿型硼氮石墨烯纳米条带,硼氮原子链根据硼原子和氮原子个数不同分为以下三类BnNn+1、BnNn-1和BnNn,硼氮原子链中硼原子与氮原子交替连接并且该硼氮原子链的两端分别连接左电极和右电极。
2.根据权利要求1所述的基于硼氮原子链的负微分电阻原子尺度纳米器件,其特征在于:所述的硼氮原子链BnNn+1、BnNn-1或BnNn中n为3、4、5或6。
CN201510654878.1A 2015-10-12 2015-10-12 一种基于硼氮原子链的负微分电阻原子尺度纳米器件 Expired - Fee Related CN105355651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510654878.1A CN105355651B (zh) 2015-10-12 2015-10-12 一种基于硼氮原子链的负微分电阻原子尺度纳米器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510654878.1A CN105355651B (zh) 2015-10-12 2015-10-12 一种基于硼氮原子链的负微分电阻原子尺度纳米器件

Publications (2)

Publication Number Publication Date
CN105355651A CN105355651A (zh) 2016-02-24
CN105355651B true CN105355651B (zh) 2018-02-16

Family

ID=55331585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510654878.1A Expired - Fee Related CN105355651B (zh) 2015-10-12 2015-10-12 一种基于硼氮原子链的负微分电阻原子尺度纳米器件

Country Status (1)

Country Link
CN (1) CN105355651B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108766966A (zh) * 2018-04-16 2018-11-06 河南师范大学 一种基于硼烯的纳米开关器件
CN109659356B (zh) * 2018-12-18 2021-08-27 河南师范大学 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
CN116314303A (zh) * 2023-02-25 2023-06-23 苏州复数智能科技有限公司 一种基于石墨烯的自旋流整流器

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026490A (zh) * 2010-05-05 2013-04-03 新加坡国立大学 石墨烯的空穴掺杂

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009153669A2 (en) * 2008-06-17 2009-12-23 National Research Council Of Canada Atomistic quantum dots
US9059265B2 (en) * 2012-12-18 2015-06-16 The United States Of America, As Represented By The Secretary Of The Navy Graphene resonant tunneling transistor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026490A (zh) * 2010-05-05 2013-04-03 新加坡国立大学 石墨烯的空穴掺杂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Experimental Observation of Boron Nitride Chains;Ovidiu Cretu et al;《ACS Nano》;20141009;第8卷(第12期);第11950-11957页 *

Also Published As

Publication number Publication date
CN105355651A (zh) 2016-02-24

Similar Documents

Publication Publication Date Title
Han et al. Point‐defect‐passivated MoS2 nanosheet‐based high performance piezoelectric nanogenerator
Liu et al. A novel strain sensor based on graphene composite films with layered structure
Rincón-García et al. Molecular design and control of fullerene-based bi-thermoelectric materials
Zhang et al. Room-temperature SO 2 gas-sensing properties based on a metal-doped MoS 2 nanoflower: an experimental and density functional theory investigation
Kou et al. Tunable magnetism in strained graphene with topological line defect
Renteria et al. Low-frequency 1/f noise in MoS2 transistors: Relative contributions of the channel and contacts
Wang et al. Synthesis, characterization and electrical properties of silicon-doped graphene films
Peyghan et al. Theoretical study of carbonyl sulfide adsorption on Ag-doped SiC nanotubes
CN105355651B (zh) 一种基于硼氮原子链的负微分电阻原子尺度纳米器件
Ding et al. Electronic structures of reconstructed zigzag silicene nanoribbons
Omidvar et al. Edge-functionalized graphene nanoflakes as selective gas sensors
Shi et al. Highly-sensitive gas sensor based on two-dimensional material field effect transistor
Nagarajan et al. CO and NO monitoring using pristine germanene nanosheets: DFT study
Ouyang et al. Effects of edge hydrogenation on structural stability, electronic, and magnetic properties of WS2 nanoribbons
Jia et al. Electromechanical properties of armchair graphene nanoribbons under local torsion
Bui et al. Anisotropic electronic heat capacity and electrical conductivity of monolayer biased impurity-infected black phosphorus
Li et al. Electronic transport properties in benzene-based heterostructure: Effects of anchoring groups
Ru et al. Superlubricity in bilayer isomeric tellurene and graphene/tellurene van der Waals heterostructures
Chen et al. Electronic properties of zigzag carbon nanotubes under uniaxial strain
Cadore et al. Metal-graphene heterojunction modulation via H2 interaction
Yamacli Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons
Chen et al. First-principles investigation on B/N co-doping of metallic carbon nanotubes
Sun et al. Structures, electronic properties and charge carrier mobility of graphdiyne-like BN nanoribbons
Christensen et al. Identification of pristine and defective graphene nanoribbons by phonon signatures in the electron transport characteristics
Rashid et al. Simulations of propane and butane gas sensor based on pristine armchair graphene nanoribbon

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: An Yipeng

Inventor after: Kang Junshuai

Inventor after: Zhang Mengjun

Inventor after: Liu Zhiyong

Inventor after: Liu Hairui

Inventor after: Wang Tianxing

Inventor after: Fu Zhaoming

Inventor after: Jiao Zhaoyong

Inventor before: An Yipeng

Inventor before: Zhang Mengjun

Inventor before: Liu Hairui

Inventor before: Liu Zhiyong

Inventor before: Wang Tianxing

Inventor before: Fu Zhaoming

Inventor before: Jiao Zhaoyong

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180216

Termination date: 20181012