WO2016090508A1 - Método microbiológico para producir nanopartículas de sulfuro de cobre - Google Patents

Método microbiológico para producir nanopartículas de sulfuro de cobre Download PDF

Info

Publication number
WO2016090508A1
WO2016090508A1 PCT/CL2014/000074 CL2014000074W WO2016090508A1 WO 2016090508 A1 WO2016090508 A1 WO 2016090508A1 CL 2014000074 W CL2014000074 W CL 2014000074W WO 2016090508 A1 WO2016090508 A1 WO 2016090508A1
Authority
WO
WIPO (PCT)
Prior art keywords
nps
microorganism
microbiological method
copper
fluorescent
Prior art date
Application number
PCT/CL2014/000074
Other languages
English (en)
French (fr)
Inventor
José Manuel PEREZ-DONOSO
Luis SAONA ACUÑA
Original Assignee
Universidad Andrés Bello
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Andrés Bello filed Critical Universidad Andrés Bello
Priority to PCT/CL2014/000074 priority Critical patent/WO2016090508A1/es
Publication of WO2016090508A1 publication Critical patent/WO2016090508A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/59Biological synthesis; Biological purification

Definitions

  • the present invention relates to a synthetic microbiological method for producing nanoparticles (hereinafter, NPs), fluorescent semiconductors of copper sulphide.
  • the method is based on the use of psychophilic, mesophilic or thermophilic microorganisms (for example Escherichia coli, Pseudomonas spp, or other) which are grown in a culture medium, according to the conditions suitable for the type of microorganisms chosen, as for example its optimum temperature of growth. After reaching the stationary phase of growth of the bacterial culture or in full growth (exponential phase), it is centrifuged at 5,000 rpm for 5 minutes, the supernatant (culture medium) is discarded while the cells are resuspended in a buffer solution.
  • psychophilic, mesophilic or thermophilic microorganisms for example Escherichia coli, Pseudomonas spp, or other
  • NPs 50mM potassium phosphate for later treatment with a copper salt (CuS0 4 , CuCI 2 , CuN0 3 , CuBr 2 , CuS, CuSe, CuF 2 , Cu (CH 3 COO) 2 , among other Cu 2+ salts) at a concentration of the same sublethal which will depend on the microorganism used to carry out the synthesis, until the microorganism acquires fluorescent characteristics.
  • a copper salt CuS0 4 , CuCI 2 , CuN0 3 , CuBr 2 , CuS, CuSe, CuF 2 , Cu (CH 3 COO) 2 , among other Cu 2+ salts
  • the copper sulfide NPs produced by the described method have advantageous characteristics: they are semiconducting, fluorescent and with low levels of toxicity. Additionally, the presented method is characterized by its simplicity, safety and economy.
  • a nanoparticle is a microscopic particle with a size smaller than 100 nm, of which there are different types and can be classified based on its composition:
  • Carbon based materials are spherical, ellipsoid or tubular. They are of low weight, high hardness, elasticity and electrical conductivity.
  • Dendrimers Three-dimensional nanometric polymer of arborescent construction. These synthetic macromolecules are highly versatile and can be designed to obtain specific chemical and physical properties for a given application.
  • Composites Correspond to synthetic materials that are mixed heterogeneously and that form a compound. These materials can combine NPs with others or with larger materials.
  • QDs Quantum Dots
  • semiconductor bimetallic inorganic nanometric crystals capable of emitting light.
  • One of its main characteristics is that the larger the particle size, the longer the wavelength they emit.
  • CA 2723655 refers to a method of biosynthesis of NPs and QDs.
  • the method described in this document consists of growing photosynthetic cells and / or multicellular fungal cells in a culture containing one or more compounds with sulfur, selenium and tellurium, and one or more metallic species in ionic or non-ionic form, being the cells capable of synthesizing NPs and QDs that have incorporated the metal.
  • metal ions can be copper, zinc, cadmium, indium and gallium.
  • the photosynthetic cells can be prokaryotes or eukaryotes.
  • the method described in this document is not a synthesis in bacteria.
  • the synthesis proposed in the method of the invention is favored by the presence of phosphate, which reagent is not added in the method described in CA2723655.
  • WO2009120737 A2 refers to marine organisms resistant to tellurite or resistant to selenite capable of precipitating tellurium or selenium when they grow aerobically. It is reported in the document that the isolated marine organisms correspond to organisms of the genus Virgibacillus, Bacillus and Rhodotorula. A method for using these isolated organisms to produce an aqueous suspension of purified NPs, those comprising tellurium or selenium, is disclosed.
  • the method consists of: a) Cultivating one or more organisms resistant to tellurite or selenite under aerobic conditions in a medium containing soluble compounds comprising tellurium or selenium, or the combination of both elements; b) cultivate the organisms in the medium for a period of time sufficient for the organisms to precipitate tellurium or selenium NPs, or the combination of both; c) extract NPs from organisms; and d) recover the extracted NPs.
  • NPs contain cadmium or zinc.
  • NPs copper sulfide NPs or a specific preparation method for NPs of this type. It is also important to consider that NPs with the characteristics indicated in the proposal are not disclosed in this document: semiconductors and fluorescents.
  • WO2012 / 030642 A2 discloses a method for producing semiconductor NPs of the non-oxide type, the method comprises the steps: a) Producing a combination for the reaction of components that lead to the formation of semiconductor NPs of the non-oxide type in a microbial mediated process, said combination comprises: i) anaerobic microbes, ii) an effective culture medium for the growth of said anaerobic microbes, iii) a metallic component comprising at least one type of metal ion, iv) a non-metallic component comprising at least one non-metal selected from the group: S, Se, Te and As, v) one or more electron donors that supply electrons to the anaerobic microorganisms; b) Isolate the semiconductor NPs of the non-oxide type, which contains at least one of the metal ions and at least one of the non-metallic ions.
  • non-metallic element can be some compound containing sulfur, selenium, tellurium or arsenic
  • said non-metallic component can be a compound containing sulfate, sulfite, elemental sulfur or thiosulfate.
  • the types of electron donors are compounds containing carboxylate, compounds of the sugar type, gaseous compounds or elements that can be oxidized by bacteria.
  • an electron donor compound is required in this document, which is not considered relevant for the case of the present invention.
  • a non-metallic component to the synthesis (S, Se, Te or As)
  • unnecessary step in the method of the invention where only the metallic element is added which constitutes the copper sulfide NP plus some organic elements of the culture medium.
  • the proposed new method involves the use of phosphate groups to favor the production of NPs, either by facilitating the incorporation of the metal into the cell as well as in the biosynthetic process itself, which is not described in WO2012 / 030642 A2 where this type of compound is not required to promote synthesis.
  • the method for producing semiconducting NPs presents the steps of: providing a bacterial organism that is tolerant to a metal salt, putting the bacterial organism in an aqueous environment comprising at least one salt of the selected metal, and leaving the bacterial organism in solution water for a period of time sufficient to use the metallic salt to assemble the semiconductor NPs, and recover the NPs semiconductor without requiring the lysis of the bacterial organism. It is specified that the NPs have an average size between 1 and 10 nm.
  • the proposed invention differs from that presented in WO 2013 // 025868 A2 since in the biosynthesis method of the invention, the use of a phosphate salt is required, an addition that favors the synthesis process by increasing the tolerance of the microorganisms to the salt, favor the entrance of the metal to the cell and promote the formation of the fluorescent crystals of copper sulphide inside it, which translates into a faster and more efficient method.
  • the document WO 2013 // 025868 A2 only reports the synthesis in the exponential growth phase of the microorganism, while in the proposed invention the method can be carried out both in exponential phase and in stationary phase, being a flexible protocol that entails more possibilities in the choice of bacteria to be used in biosynthesis.
  • This document differs from the present invention since it does not refer to a method of preparation of NPs based on the use of bacteria but of a fungus and is based on the molecules secreted by the fungus to the culture medium. Additionally, the method described in this scientific article allows to obtain NPs with different composition and properties, with an absorbance and fluorescence spectrum different from that of the NPs generated through the synthesis of the invention.
  • the fluorescence described in this document is not of the NPs synthesized, but rather corresponds to the fluorescence characteristic of the extracellular medium of the fungus, since when adding the precursor (CuS0 4 ) the authors report that the peak fluorescence is reduced, so that would correspond to the fluorescence of proteins dissolved in the extracellular medium.
  • the scientific paper "Characterization of Copper Nanoparticles Synthesized by a Novel Microbiological Method” (Ratnika V. et al., 2010) describes the preparation of copper NPs through the use of the bacterium Pseudomonas stutzeri, which was isolated from the soil.
  • the methodology consists basically of growing the bacteria isolated from the soil in a rich culture medium for this bacterial type at 37 ° C for 24 h. Then, it is centrifuged and the obtained pellet is washed with deionized water. Copper sulfate is added to the medium: 0.1 g bacterial biomass plus 100 mL of 1 mM CuS0 4 in aqueous solution.
  • NPs The suspension is cultivated in an incubator with agitation until obtaining NPs.
  • their size, distribution, UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy were determined.
  • spectroscopic properties of interest as fluorescence, surface plasmon at 410 nm, nor different colors of fluorescence.
  • Ratnika et al The synthesis method is different from the one proposed since the culture is grown until late stationary phase and under these conditions it is exposed to a copper concentration.
  • the synthesis of fluorescent NPs in stationary phase requires the incorporation of a phosphate salt, otherwise the process is not favored in these conditions.
  • the method proposed in this document uses high concentrations of copper with respect to the invention, which suggests that the process occurs in highly stressed or even metabolically inactive cells, which implies that the method proposed by the invention is more efficient and turns out to be really a biosynthesis method with viable bacteria.
  • UV-visible spectrophotometry analysis determined that the produced CdS NPs have a maximum detectable absorbance at 420 nm. The size of the NP is on average 12 nm. Additionally, the antibacterial activity of this type of NPs was evaluated. This scientific article clearly differs from the proposed invention since it does not specifically refer to copper sulfide NPs. In this document it is described that the synthesis is extracellular leaving little clear if the protocol only includes the supernatants of the bacteria, being then a method of production of NPs generated by cellular metabolites and not by the bacterial cell as such.
  • Figure 1 Effect of exposure to UV light from bacterial cells in stationary phase treated with Cu 2+ .
  • Bacterial cells obtained from a stationary phase culture are shown, and treated with different concentrations of CuS0 4 (0, 10, 25 and 50 g / mL) that were exposed to UV light in a transilluminator at 360 nm.
  • Figure 2 Effect of exposure to UV light of bacterial cells in exponential phase treated with Cu 2+ .
  • Pellet obtained from a stationary phase culture and treated with different concentrations of CuSO 4 (0, 10, 25 and 50 g / ml_) exposed to UV light in a transilluminator at 360 nm.
  • FIG. 1 Supernatant of homogenized cells exposed to ultraviolet light.
  • Figure 4 Fractions of gel permeation chromatography exposed to UV light at 360 nm. Photograph of the fractions collected from the size determination by exclusion chromatography, after being exposed to UV light (360 nm).
  • Figure 5 Absorbance spectrum of the copper sulfide NPs synthesized biologically.
  • the graph presents the absorption spectrum of biosynthesized copper sulfide NPs using microorganisms, where the x axis corresponds to the wavelength and the y axis to the absorbance recorded.
  • the graph presents the fluorescence intensity exposed as arbitrary units (y axis), with respect to the wavelength in nm (x axis).
  • the microbiological method for the production of semiconductor, fluorescent copper sulfide NPs comprises the steps of: a) Selecting a copper salt; b) Grow a microorganism tolerant to the copper salt selected until its exponential or stationary phase. c) Resuspend the sediment of the microorganism in a phosphate buffer solution and treat with at least one of the selected salts, until the microorganism acquires fluorescent characteristics; d) Evaluate the production of semiconductor NPs, fluorescent copper sulfide, exposing the bacterial cells to UV light (360 nm); e) Purify the semiconductor, fluorescent copper sulfide NPs.
  • Step (b) is carried out at the temperature suitable for the growth of each type of microorganism, under conditions of aerobiosis or anaerobiosis as appropriate for the type of microorganism selected.
  • the growth of the microorganism must be carried out in a culture medium suitable for the growth of the microorganism and at the optimum temperature of growth of the bacteria to be used, whether thermophilic microorganisms (45-65 ° C), hyperthermophiles (> 70 ° C) are used. , psychrotolerants or psychrophiles (5 - 15 ° C), mesophiles (15 - 40 ° C), among others.
  • the culture can be used after reaching stationary phase or exponential phase as appropriate, according to the growth characteristics of the microorganism.
  • the bacterium In the case of synthesis in stationary phase, the bacterium once reached the desired growth phase, is centrifuged at 5,000 rpm for 5 min, the supernatant is discarded and the bacterial cells are resuspended in a phosphate buffer solution (in a range of concentration between 1 to 1000 mM and a pH in the range 3 to 8, with the preferred conditions being 50 mM and pH 7.0) supplemented with Cu 2+ (CuS0 4 , CuCI 2 , CuN0 3 , CuBr 2 , CuS, CuSe, CuF 2 , Cu (CH 3 COO) 2 , among other Cu 2+ salts) in a concentration ranging from 10 to 50 g / mL of Cu 2+ for 12 to 48 h (time in which the microorganism becomes fluorescent ). Subsequently, the bacterial culture is centrifuged between 5,000 to 10,000 rpm for a time ranging from 2 to 5 min.
  • Cu 2+ CuS0 4 , Cu
  • the bacterial cells exposed to the Cu 2+ treatments are subsequently exposed to UV light through a UV transilluminator at a wavelength of 360 nm, where fluorescence can now be seen. of the treated cells due to the intracellular production of fluorescent NPs of copper sulphide.
  • the bacterial cells are resuspended in a potassium phosphate buffer solution at a pH between 7 and 8, preferably at a pH of 7.4 and then sonicated at an amplitude between 50,000 to 70,000 for a time between 5 and 8 hours. and 10 minutes in a minute series.
  • the cells in the purification step, can be resuspended in the same buffer solution together with glass beads and then subjected to a homogenizer at a speed of 4 m / s between two to three minutes in series of one minute. After the process of sonication or homogenization, the solution is centrifuged between 5,000 and 10,000 rpm for a time ranging from 2 to 5 minutes.
  • microorganisms refers without limitation to: microorganisms Gram (+), Gram (-), thermophiles, hyperthermophiles, psychrophiles, mesophiles, anaerobes, aerobes, halophiles, archaea, yeasts, fungi, enterobacteria, among others.
  • the microorganisms in which biosynthesis can be performed are: Escherichia coli, Pseudomonas sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Bacillus sp., Bacillus subtilis, Bacillus mycoides, Shewanella sp., Staphylococcus aureus, Leptospirillum sp., Acidithiobacillus. sp, Salmonella sp., Psychrobacter sp, Yersinia sp., among many others.
  • the biosynthesis of NPs of copper sulphide can be developed in different types of microorganisms such as archaea, fungi and yeasts, among others.
  • copper salts correspond to salts in which copper is found as Cu +2 , examples being, without limitation: CuS0 4 , CuCI 2 , CUNO3, CuBr2, CuS, CuSe, CUF2, Cu (CH 3 COO) 2, among other salts that meet this condition.
  • copper salts in which it is in its Cu +1 form can also be used , since the copper in this type of salts after entering the bacterial cell is immediately oxidized to Cu +2 , being useful in the biosynthesis of copper sulphide fluorescent NPs.
  • the NPs produced are composed of Cu and S and have a size smaller than 50 nm, with low polydispersity.
  • the spectroscopic properties correspond to NPs of CuS, with spectra of absorption with the plasmon characteristic of this type of NPs (maximum absorbance at 410 nm) as well as fluorescence emission spectra (maximum fluorescence ranging between 600 and 700 nm) .
  • the NPs obtained by the method of the invention are useful for the manufacture of photovoltaic cells, for the manufacture of optoelectronic apparatuses, as probes for detection in imaging, for the detection of tumor cells and for the detection of fingerprints, among others. .
  • Example 1 Biosynthesis of fluorescent semiconductor NPs of copper sulphide from an E. coli culture.
  • the procedure consists of growing an E. coli culture in 100 mL of liquid culture medium (LB or any other medium suitable for this bacterium) at a temperature of 37 ° C. This culture is incubated until exponential phase ( ⁇ of 0,5) or until stationary phase and the protocol is continued depending on the type of phase reached.
  • liquid culture medium LB or any other medium suitable for this bacterium
  • the bacteria When the culture reaches a stationary phase, the bacteria is centrifuged at 5,000 rpm for 5 min, and resuspended in a phosphate buffer solution with a copper salt in a concentration of 10 to 50Mg / mL of Cu 2+ for 12 to 48 minutes. h (time in which the sediment becomes fluorescent). Subsequently, the bacterial culture was centrifuged at 5,000 rpm for 5 min.
  • the culture when the culture reaches the desired optical density ⁇ of 0,5, CuSO 4 , CuC, Cu (CH3COO) 2, Cu (N0 3 ) 2 , or any other copper salt were lead ( II), in a concentration from 50 to 400 g / mL of Cu 2+ . Subsequently, it is incubated in constant agitation at its growth temperature. After 24 h the culture is centrifuged at 5,000 rpm for 5 minutes and the supernatant is discarded. In the case of E. coli, the fluorescence of the bacterial sediment, that is to say of the NPs synthesized, depends on the concentration of CuS0 4 , CuCb or the copper salt used.
  • Figure 1 shows the bacterial cells exposed to ultraviolet light at a specific length of 360 nm through a UV transilluminator, which are treated with different concentrations of Cu (0, 10, 25 and 50 pg / mL) and The fluorescence exhibited depends on these concentrations changing its fluorescence from orange to red.
  • Example 2 Purification procedure of fluorescent semiconductor NPs of copper sulphide.
  • the chosen microorganism was grown in 100 ml_ of liquid culture medium (M9 or LB, or any other means suitable for the bacteria to be used). After the synthesis time has elapsed (either in exponential or stationary phase) the culture is centrifuged at 5,000 rpm for 5 minutes and the supernatant is discarded.
  • M9 or LB liquid culture medium
  • the bacterial cells are purified, resuspending in a potassium phosphate buffer solution at pH 7.4 and then sonicated at an amplitude of 70,000 for 2 minutes in a one minute series.
  • the cells are purified by being resuspended in the same buffer solution together with glass beads and then subjected to a homogenizer at a rate of 4 m / s for three minutes in series of 60 seconds. After the process of sonication or homogenization, the solution is centrifuged at 15,000 rpm for 5 minutes.
  • Example 3 Characterization of fluorescent semiconductor NPs of copper sulfide synthesized using microorganisms.
  • NPs produced according to the methodology set forth in Example 1 were characterized according to their size. For this, they were passed through a molecular exclusion column (Sephadex 60) and fractions of 1 ml were collected. Subsequent to this, the collected fractions were exposed to UV light (360 nm) in order to establish which of them exhibit the fluorescence characteristic.
  • the spectrophotometric characterization of biosynthesized QDs is performed from a stationary phase culture.
  • a pre-inoculum of E coli was made in LB medium, from which an inoculum was originated in a 1: 1000 dilution in 100 ml_ of culture medium.
  • the cells were centrifuged at 5,000 rpm for 2 minutes and the supernatant was discarded.
  • the cells were resuspended in phosphate buffer at pH 7.4 and supplemented with 25 pg / mL of Cu 2+ .
  • the cells were incubated under constant agitation at a temperature of 37 ° C for 24 hours.
  • Example 4 Use of fluorescent semiconductor NPs of copper sulfide in electronic devices and biomedicine.
  • the copper sulfide NPs developed by the present invention Due to the semiconductor characteristics and the fluorescent properties presented by the copper sulfide NPs developed by the present invention, these can be coupled to electronic circuits being useful in the development of technological devices. Thus, in photovoltaic cells sensitized by QDs, the NPs act as an electron acceptor favoring electronic exchange between the cell.
  • the NPs due to their optical and plasmonic properties allow to enhance the technology of LED-type devices, QDs-Laser, sensors, among others.
  • the NPs of copper sulfide developed here present a low cytotoxicity, being possible its use in health, thanks to its biocompatibility.
  • NPs can be applied in the area of medicine, for example in imaging, where these can be used as detection probes.
  • Other applications in biomedicine are its use in the labeling of tumor cells, or in the binding of NP to different biomolecules, peptides, aptamers, dendrimers, and antibodies.
  • copper sulfide NPs can be used in the detection of fingerprints by exploiting their fluorescence properties.
  • Other diverse biotechnological applications are not limited.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Método microbiológico para la producción de nanopartículas (NPs) semiconductoras fluorescentes de sulfuro de cobre que comprende las etapas de: a) Seleccionar una sal de cobre; b) Hacer crecer un microorganismo tolerante a la sal de cobre seleccionada hasta alcanzar su fase exponencial o su fase estacionaria; c) Resuspender el sedimento del microorganismo en una solución tampón de fosfato y tratar con al menos una de las sales de cobre seleccionadas, hasta que el microorganismo adquiera características fluorescentes; d) Evaluar la producción de las NPs semiconductoras, fluorescentes de sulfuro de cobre, exponiendo las células bacterianas a luz UV (360nm); y e) Purificar las NPs semiconductoras, fluorescentes de sulfuro de cobre.

Description

MÉTODO MICROBIOLÓGICO PARA PRODUCIR NANOPARTÍCULAS
DE SULFURO DE COBRE.
La presente invención se refiere a un método microbiológico de síntesis para producir nanopartículas (en adelante, NPs), semiconductoras fluorescentes de sulfuro de cobre.
El método se basa en el uso de microorganismos psicrófilos, mesófilos o termófilos, (por ejemplo Escherichia coli, Pseudomonas spp, u otro) los cuales son crecidos en un medio de cultivo, de acuerdo a las condiciones adecuadas para el tipo de microorganismos escogido, como por ejemplo su temperatura óptima de crecimiento. Tras alcanzar la fase estacionaria de crecimiento del cultivo bacteriano o bien en pleno crecimiento (fase exponencial), éste es centrifugado a 5.000 rpm por 5 minutos, el sobrenadante (medio de cultivo) es descartado mientras que las células son resuspendidas en una solución tampón de fosfato de potasio 50mM para posteriormente ser sometidas a un tratamiento con una sal de cobre (CuS04, CuCI2, CuN03, CuBr2, CuS, CuSe, CuF2, Cu(CH3COO)2, entre otras sales de Cu2+) a una concentración de la misma subletal la cual dependerá del microorganismo usado para realizar la síntesis, hasta que el microorganismo adquiera características fluorescentes. La producción de las NPs se evalúa al exponer las células bacterianas a luz UV (360nm), y observar la fluorescencia característica de éstas. El método finaliza con una etapa de purificación de las NPs obtenidas.
Las NPs de sulfuro de cobre producidas mediante el método descrito, presentan ventajosas características: son semiconductoras, fluorescentes y con bajos niveles de toxicidad. Adicionalmente, el método presentado se caracteriza por su simpleza, seguridad y economía.
i Una nanopartícula es una partícula microscópica con tamaño menor a 100 nm, de las cuales existen diferentes tipos y se pueden clasificar en base a su composición:
1) Materiales de base de Carbón: Las NPs de base de carbón, son de tipo esféricas, elipsoides o tubulares. Son de bajo peso, alta dureza, elasticidad y conductividad eléctrica.
2) Materiales de base metálica: En este grupo se encuentras los denominados quantum dots (NPs semiconductores fluorescentes) o NPs de oro, plata o de materiales reactivos como el dióxido de titanio, entre otras.
3) Dendrímeros: Polímero nanomérico tridimensional de construcción arborescente. Estas macromoléculas sintéticas son de gran versatilidad y pueden diseñarse para obtener propiedades químicas y físicas específicas para una determinada aplicación.
4) Compositos: Corresponden a materiales sintéticos que están mezclados heterogéneamente y que forman un compuesto. Dichos materiales pueden combinar NPs con otras o con materiales de mayor dimensión.
Como se ha indicado, dentro de las NPs se encuentran los Quantum Dots (en adelante QDs), cristales nanométricos inorgánicos bimetálicos semiconductores capaces de emitir luz. Una de sus principales características es que a mayor tamaño de partícula cambia la longitud de onda que emiten.
Antecedentes del Estado del Arte:
Se han descrito diversos métodos tanto químicos como biológicos para la síntesis de NPs. A continuación, se describen algunas invenciones e investigaciones relacionadas con la presente. El documento CA 2723655, se refiere a un método de biosíntesis de NPs y QDs. El método descrito en este documento consiste en hacer crecer células fotosintéticas y/o células de hongos multicelulares en un cultivo que contiene uno o más compuestos con azufre, selenio y teluro, y una o más especies metálicas en forma iónica o no-iónica, siendo las células capaces de sintetizar NPs y QDs que presenten incorporado el metal. Se describe que los iones metálicos pueden ser cobre, zinc, cadmio, indio y galio. Las células fotosintéticas pueden ser procariontes o eucariontes. Sin embargo, el método descrito en este documento no se trata de una síntesis en bacterias. Además, la síntesis propuesta en el método de la invención, se ve favorecida por la presencia de fosfato, reactivo que no se adiciona en el método descrito en CA2723655.
Finalmente, las propiedades de fluorescencia de las NPs sintetizadas en este documento difieren de las descritas en la presente invención, lo cual además refleja diferencias tanto en composición como en características fisicoquímicas de estas.
El documento WO2009120737 A2, se refiere a organismos marinos resistentes a telurito o resistentes a selenito capaces de precipitar teluro o selenio cuando crecen aeróbicamente. En el documento se divulga que los organismos marinos aislados corresponden a organismos del género Virgibacillus, Bacillus y Rhodotorula. Se describe un método para usar estos organismos aislados para producir una suspensión acuosa de NPs purificadas, las que comprenden teluro o selenio. El método consisten en: a) Cultivar uno o más organismos resistentes a telurito o selenito bajo condiciones aeróbicas en un medio que contenga compuestos solubles que comprenda teluro o selenio, o la combinación de ambos elementos; b) cultivar los organismos en el medio por un periodo de tiempo suficiente para que los organismos puedan precipitar NPs de teluro o selenio, o la combinación de ambos; c) extraer las NPs de los organismos; y d) recuperar las NPs extraídas. El documento también menciona que las NPs contienen cadmio o zinc.
Adicionalmente, se divulga un método de remediación en base a los organismos descritos.
Este documento no se refiere a NPs de sulfuro de cobre o un método de preparación específico de NPs de este tipo. Es también importante considerar que en este documento no se divulgan NPs con las características indicadas en la propuesta: semiconductoras y fluorescentes.
En WO2012/030642 A2 se describe un método para producir NPs semiconductoras del tipo no-óxido, el método comprende las etapas: a) Producir una combinación para la reacción de componentes que conduzcan a la formación de NPs semiconductoras del tipo no-oxido en un proceso mediado por microbios, dicha combinación comprende: i) microbios anaerobios, ii) un medio de cultivo efectivo para el crecimiento de dichos microbios anaerobios, iii) un componente metálico que comprende al menos un tipo de ión metálico, iv) un componente no metálico que comprende al menos un no metal seleccionado desde el grupo: S, Se, Te y As, v) uno o más dadores de electrones que provean electrones al microorganismos anaerobio; b) Aislar las NPs semiconductoras del tipo no-oxido, la cual contenga al menos uno de los iones metálicos y al menos uno de los iones no metálicos. Se presenta un listado de elementos metálicos a ser parte de las NPs: Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, W, Pd, Pt, Au, Ag, Cd, Hg, Ga, In, TI, Ge, Sn, Pb, Sb y Bi. Se divulga que el elemento no metálico puede ser algún compuesto que contenga sulfuro, selenio, teluro o arsénico, dicho componente no metálico puede ser un compuesto que contenga sulfato, sulfito, azufre elemental o tiosulfato. Los tipos de dadores de electrones, son compuestos que contienen carboxilato, compuestos del tipo azúcar, compuestos gaseosos o elementos que puedan ser oxidados por la bacteria. Cabe destacar que en este documento se requiere un compuesto dador de electrones el cual no se considera relevante para el caso de la presente invención. Por otra parte, en el método descrito en el documento WO2012/030642 A2 se requiere incorporar un componente no metálico a la síntesis (S, Se, Te o As), etapa innecesaria en el método de la invención donde solo se agrega el elemento metálico que constituye la NP de sulfuro de cobre más algunos elementos orgánicos del medio de cultivo. Siguiendo con esto, el nuevo método propuesto involucra el uso de grupos fosfato para favorecer la producción de NPs, ya sea facilitando la incorporación del metal a la célula así como en el proceso biosintético en sí, lo que no se describe en el documento WO2012/030642 A2 donde no se requiere este tipo de compuesto para favorecer la síntesis. Adicionalmente, cabe destacar, que la síntesis descrita por el método propuesto se puede realizar cuando las bacterias se encuentran en fase estacionaria (no solo en fase exponencial), por lo que la solución de Cu2+ se puede agregar una vez que las bacterias hayan llegado a su fase estacionaria de crecimiento. Finalmente, es importante resaltar que mediante el método propuesto de biosíntesis y posterior purificación es posible obtener NPs con distintos colores de fluorescencia (QDs), fenómeno que no es reportado en el documento WO2012/030642 A2 ni en ningún artículo o patente a la fecha.
En WO 2013//025868 A2 se presenten NPs semiconductoras, nuevos métodos, sistemas y composiciones que las comprenden. El método para producir NPs semiconductoras, presenta los pasos de: proveer un organismo bacteriano que sea tolerante a una sal metálica, poner el organismo bacteriano en un ambiente acuoso que comprende al menos una sal del metal seleccionado, y dejar el organismo bacteriano en la solución acuosa por un periodo de tiempo suficiente para utilizar la sal metálica para ensamblar las NPs semiconductoras, y recuperar las NPs semiconductoras sin requerir de la lisis del organismo bacteriano. Se especifica que las NPs tienen un tamaño promedio de entre 1 y 10 nm. Cabe destacar que la invención propuesta difiere de lo presentado en el documento WO 2013//025868 A2 puesto que en el método de biosíntesis de la invención, se requiere el uso de una sal de fosfato, adición que favorece el proceso de síntesis al aumentar la tolerancia de los microorganismos a la sal, favorecer la entrada del metal a la célula y potenciar la formación de los cristales fluorescentes de sulfuro de cobre al interior de la misma, lo que se traduce en un método más rápido y eficiente. El documento WO 2013//025868 A2 solo reporta la síntesis en fase exponencial de crecimiento del microorganismo, mientras que en la invención propuesta el método puede realizarse tanto en fase exponencial como en fase estacionaria, siendo un protocolo flexible que conlleva más posibilidades en la elección de bacterias a utilizar en la biosíntesis. Más considerable aún, en el documento WO 2013/025868 A2 solo se reporta la síntesis de nano cristales de cadmio, en ningún caso hacen referencia a la producción de NPs de sulfuro de cobre, por lo que el producto es totalmente diferente en cuanto a composición, propiedades y método de síntesis.
El artículo científico "Biologically synthesized copper sulfide nanoparticles: Production and characterization" (Hosseini M. er a/, 2012), se refiere a la preparación y caracterización de NPs de sulfuro de cobre mediante el uso del hongo Fusarium oxysporum. En materiales y métodos se describe la metodología que consiste en hacer crecer el hongo en medios ricos de cultivo, generar una biomasa considerable y adicionarle una solución de CuSO4, e incubar con agitación a 30°C. Tras esto, se caracterizó el tamaño de la NP y se analizó el espectro UV-visible. Este documento se diferencia de la presente invención puesto que no se refiere a un método de preparación de NPs basado en el uso de bacterias si no que de un hongo y se basa en las moléculas secretadas por el hongo al medio de cultivo. Adicionalmente, el método descrito en este artículo científico permite obtener NPs con composición y propiedades distintas, con un espectro de absorbancia y de fluorescencia diferente al que poseen las NPs generadas a través de la síntesis de la invención. La fluorescencia descrita en dicho documento no es de las NPs sintetizadas, más bien corresponde a la fluorescencia propia del medio extracelular del hongo, ya que al agregar el precursor (CuS04) los autores reportan que el peak de fluorescencia se reduce, por lo que correspondería a la fluorescencia de proteínas disueltas en el medio extracelular.
El artículo científico "Characterization of Copper Nanoparticles Synthesized by a Novel Microbiological Method" (Ratnika V. et al., 2010) describe la preparación de NPs de cobre mediante el uso de la bacteria Pseudomonas stutzeri, la cual fue aislada del suelo. La metodología consiste básicamente en hacer crecer la bacteria aislada del suelo en un medio de cultivo rico para este tipo bacteriano a 37°C durante 24 h. Luego, se centrifuga y el pellet obtenido se lava con agua desionizada. Se adiciona sulfato de cobre al medio: 0,1 g biomasa bacteriana más 100 mL de 1 mM de CuS04 en solución acuosa. La suspensión se cultiva en un incubador con agitación hasta obtener NPs. Para confirmar la presencia de NPs y caracterizarlas, se determinó su tamaño, distribución, espectroscopia UV-vísible, difracción de rayos X y microscopía electrónica de transmisión. Si bien en este artículo científico se describe la síntesis de NPs de cobre, éstas difieren totalmente en composición y propiedades a las obtenidas por el método de la invención, puesto que no presentan propiedades espectroscópicas de interés como fluorescencia, plasmón de superficie a 410 nm, ni distintos colores de fluorescencia. Por otra parte, en el documento de Ratnika y colaboradoresel método de síntesis es distinto al propuesto ya que se hace crecer ei cultivo hasta fase estacionaria tardía y en estas condiciones se expone a una concentración de Cobre. En el método de la invención, la síntesis de NPs fluorescentes en fase estacionaria requiere la incorporación de una sal de fosfato, de otro modo el proceso no se ve favorecido en estas condiciones. El método propuesto en este documento utiliza altas concentraciones de cobre respecto a la invención, lo que sugiere que el proceso ocurre en células altamente estresadas o incluso metabólicamente inactivas, lo que implica que el método propuesto por la invención es más eficiente y resulta ser realmente un método de biosíntesis con bacterias viables.
El artículo científico "Biosynthesis of semiconductor nanoparticles by using sulfur reducing bacteria Serratia nematodiphila" (Malarkodi C. et al., 2013) describe la biosíntesis de NPs de sulfuro de cadmio a partir de la reducción de sulfato de cadmio, utilizando la bacteria Serratia nematodiphila. La metodología propuesta corresponde a la inoculación de Serratia nematodiphila en un medio rico para su crecimiento, centrifugar, y adicionar una solución de sulfato de Cadmio (1 mM). El pH se ajustó a 7-7,5 y la suspensión resultante se centrifugo hasta observarse un cambio de color en ésta. El análisis de espectrofotometría UV-visible determinó que las NPs de CdS producidas presentan un máximo de absorbancia detectable a los 420 nm. El tamaño de la NP es de en promedio 12 nm. Adicionalmente se evaluó la actividad antibacteriana de este tipo de NPs. Este artículo científico difiere claramente de la invención propuesta puesto que no se refiere específicamente a NPs de sulfuro de cobre. En este documento se describe que la síntesis es extracelular dejando poco claro si el protocolo solo incluye los sobrenadantes de las bacterias, siendo entonces un método de producción de NPs generadas por metabolitos celulares y no por la célula bacteriana como tal.
El artículo científico "Selection of a suitable method for the synthesis of copper nanoparticles" (Umer A. et al., 2012) presenta el resumen de varios métodos químicos, físicos y biológicos para la producción de NPs de cobre. En el punto 6 denominado byological synthesis se indican los parámetros más importantes a ser considerados en la preparación de NPs utilizando organismos vivos: a) se debe elegir el medio o solvente, b) elegir un agente reductor, c) considerar un material no tóxico para la estabilización de las NPs. Se establece que entre los organismos vivos, se pueden utilizar bacterias, hongos y plantas. Este documento es considerado como parte del estado de la técnica, siendo la base teórica de la metodología utilizada en la preparación general de NPs mediante el uso de organismos vivos.
Descripción de las figuras:
Figura 1 : Efecto de ia exposición a luz UV de células bacterianas en fase estacionaria tratadas con Cu2+.
Se muestran las células bacterianas obtenidas a partir de un cultivo de fase estacionaria, y tratadas con diferentes concentraciones de CuS04 (0, 10, 25 y 50 g/mL)que fueron expuestas a luz UV en un transiluminador a 360 nm.
Figura 2: Efecto de la exposición a luz UV de células bacterianas en fase exponencial tratadas con Cu2+.
Pellet obtenido a partir de un cultivo de fase estacionaria y tratado con diferentes concentraciones de CuSO4 (0, 10, 25 y 50 g/ml_) expuesto a luz UV en un transiluminador a 360 nm.
Figura 3: Sobrenadante de las células homogenizadas expuestos a luz ultravioleta.
Fotografía de los sobrenadantes obtenidos luego de la síntesis y purificación de las NPs de sulfuro de cobre expuestos a luz UV (360 nm).
Figura 4: Fracciones de la cromatografía de exclusión molecular expuestas a luz UV a 360 nm. Fotografía de las fracciones recolectadas a partir de la determinación de tamaño mediante cromatografía de exclusión, luego de ser expuestas a luz UV (360 nm).
Figura 5: Espectro de absorbancia de las NPs de sulfuro de cobre sintetizadas biológicamente.
La gráfica presenta el espectro de absorción de las NPs de sulfuro de cobre biosintetizadas utilizando microorganismos, donde el eje x corresponde a la longitud de onda y el eje y a la absorbancia registrada.
Figura 6: Espectro de fluorescencia de las NPs de sulfuro de cobre sintetizadas biológicamente
La gráfica presenta la intensidad de fluorescencia expuesta como unidades arbitrarias (eje y), respecto a la longitud de onda en nm (eje x.).
Descripción de la Invención:
De forma general, el método microbiológico para la producción de NPs semiconductoras, fluorescentes de sulfuro de cobre comprende las etapas de: a) Seleccionar una sal de cobre; b) Hacer crecer un microorganismo tolerante a la sal de cobre seleccionada hasta su fase exponencial o estacionaria. c) Resuspender el sedimento del microorganismo en una solución tampón de fosfato y tratar con al menos una de las sales seleccionadas, hasta que el microorganismo adquiera características fluorescentes; d) Evaluar la producción de NPs semiconductoras, fluorescentes de sulfuro de cobre, exponiendo las células bacterianas a la luz UV (360 nm); e) Purificar las NPs semiconductoras, fluorescentes de sulfuro de cobre.
La etapa (b) se lleva a cabo a la temperatura adecuada para el crecimiento de cada tipo de microorganismo, en condiciones de aerobiosis o anaerobiosis según corresponda para el tipo de microorganismo seleccionado.
El crecimiento del microorganismo debe realizarse en un medio de cultivo adecuado para el crecimiento del microorganismo y a la temperatura óptima de crecimiento de la bacteria a usar, ya sea se utilicen microorganismos termófilos (45 - 65 °C), hipertermofilos (> 70 °C), psicrotolerantes o psicrófilos (5 - 15 °C), mesófilos (15 - 40 °C), entre otros.
El cultivo puede ser utilizado luego de llegar a fase estacionaria o a fase exponencial según corresponda, de acuerdo a las características de crecimiento del microorganismo.
En el caso de síntesis en fase estacionaria, la bacteria una vez alcanzada la fase de crecimiento deseada, se centrifuga a 5.000 rpm por 5 min, el sobrenadante es descartado y las células bacterianas son resuspendidas en una solución tampón de fosfato (en un rango de concentración entre 1 a 1000 mM y un pH en el rango 3 a 8, siendo las condiciones preferentes 50 mM y pH 7,0) suplementada con Cu2+ (CuS04, CuCI2, CuN03, CuBr2, CuS, CuSe, CuF2, Cu(CH3COO)2, entre otras sales de Cu2+) en una concentración que va desde 10 hasta 50 g/mL de Cu2+ por 12 a 48 h (tiempo en el que el microorganismo se torna fluorescente). Posteriormente, el cultivo bacteriano se centrifuga entre 5.000 hasta 10.000 rpm por un tiempo que va desde 2 a 5 min.
Para el caso de la síntesis en fase exponencial, al cultivo una vez llegado a fase exponencial se le adiciona CuS04, CuCI2, CuN03, CuBr2, CuS, CuSe, CuF2, Cu(CH3COO)2, o cualquier otra sal de cobre(ll), en una concentración que va desde 50 hasta 400 pg/mL de Cu . Posteriormente, se deja bajo agitación constante a la misma temperatura de crecimiento que dependerá del microorganismo utilizado. Luego de un tiempo entre 12 y 48 h (tiempo en el que el microorganismo se torna fluorescente) el cultivo se centrifuga entre 5.000 hasta 10.000 rpm por un tiempo que va desde 2 hasta 5 minutos.
Las células bacterianas expuestas a los tratamientos con Cu2+, tanto en fase exponencial como en fase estacionaria, posteriormente son expuestas a luz UV a través de un transiluminador UV a una longitud de onda de 360 nm, en donde ahora se puede apreciar la fluorescencia de las células tratadas debido a la producción intracelular de NPs fluorescentes de sulfuro de cobre.
En la etapa de purificación, las células bacterianas se resuspenden en una solución tampón de fosfato de potasio a un pH entre 7 y 8, preferentemente a un pH 7,4 y luego son sonicadas a una amplitud entre 50.000 hasta 70.000 por un tiempo entre 5 y 10 minutos en series de un minuto. En otra forma de la invención, en la etapa de purificación, las células pueden ser resuspendidas en la misma solución tampón junto con perlas de vidrio y luego someterlas a un homogenizador a una velocidad de 4 m/s entre dos a tres minutos en serie de un minuto. Posterior al proceso de sonicación u homogenización, la solución es centrifugada entre 5.000 a 10.000 rpm por un tiempo que va desde 2 a 5 minutos.
Los resultados indican que tanto el sedimento bacteriano obtenido en el cultivo de fase estacionaria (figura 1) como el sedimento obtenido en el cultivo de fase exponencial (figura 2) presentan fluorescencia al ser expuestos a luz UV. Sin perjuicio de lo anterior también es posible que la síntesis sea extracelular y en estas condiciones los sobrenadantes, tanto de células tratadas en fase exponencial como estacionaria, se tornan fluorescentes al ser expuestos a la longitud de onda antes mencionada. En la presente invención, microorganismos se refiere sin limitarse a: microorganismos Gram (+), Gram (-), termófilos, hipertermófilos, psicrofilos, mesófilos, anaerobios, aerobios, halófilos, arqueas, levaduras, hongos, enterobacterias, entre otros. De forma particular los microorganismos en los que se puede realizar biosintesis son: Escherichia coli, Pseudomonas sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Bacillus sp., Bacillus subtilis, Bacillus mycoides, Shewanella sp, Staphylococcus aureus, Leptospirillum sp, Acidithiobacillus sp, Salmonella sp., Psychrobacter sp, Yersinia sp., entre muchas otras.
En otro forma de la invención la biosintesis de NPs de sulfuro de cobre, en las condiciones descritas, puede ser desarrollada en diferentes tipos de microorganismos como: arqueas, hongos y levaduras, entre otros.
En la metodología cuando se refiere a sales de cobre, éstas corresponden a sales en las que el cobre se encuentre como Cu+2, siendo ejemplos, sin limitarse: CuS04, CuCI2, CUNO3, CuBr2, CuS, CuSe, CUF2, Cu(CH3COO)2, entre otras sales que cumplan con esta condición. Adicionalmente, en la invención también pueden ser utilizadas sales de cobre en el que se encuentre en su forma Cu+1 , puesto que el cobre en este tipo de sales luego de entrar a la célula bacteriana se oxida inmediatamente a Cu+2, siendo útil en la biosintesis de NPs fluorescentes de sulfuro de cobre.
Las NPs producidas están compuestas por Cu y S y presentan un tamaño menor a los 50 nm, con una baja polidispersidad. Además las propiedades espectroscópicas corresponden a NPs de CuS, con espectros de absorción con el plasmón característico de este tipo de NPs (máximo de absorbancia a 410 nm) además de espectros de emisión de fluorescencia (máximo de fluorescencia que va entre 600 y 700 nm). Las NPs, obtenidas a través del método de la invención son útiles para la fabricación de celdas fotovoltaicas, para la fabricación de aparatos optoelectrónicos, como sondas de detección en imagenología, para la detección de células tumorales y para la detección de huellas dactilares, entre otros.
Ejemplos
Ejemplo 1 : Biosíntesis de NPs semiconductoras fluorescentes de sulfuro de cobrea partir de un cultivo de E. coli.
En este ejemplo se presenta la metodología de biosíntesis de NPs de sulfuro de cobre a partir de un cultivo de Escherichia coli.
El procedimiento consiste en hacer crecer un cultivo de E. coli en 100 mL de medio de cultivo líquido (LB o cualquier otro medio apto para esta bacteria) a una temperatura de 37°C. Este cultivo se incuba hasta fase exponencial (Οϋβοο de 0,5) o hasta fase estacionaria y se continúa el protocolo dependiendo del tipo de fase alcanzada.
Cuando el cultivo llega a fase estacionaria, la bacteria se centrifuga a 5.000 rpm por 5 min, y se resuspende en una solución tampón de fosfato con una sal de cobre en una concentración desde 10 hasta 50Mg/mL de Cu2+por 12 a 48 h (tiempo en el que el sedimento se torna fluorescente). Posteriormente, el cultivo bacteriano se centrifugó a 5.000 rpm por 5 min.
Para el caso de la síntesis en fase exponencial, cuando el cultivo alcanza la densidad óptica deseada Οϋβοο de 0,5, se leadicionóCuS04, CuC , Cu(CH3COO)2, Cu(N03)2, o cualquier otra sal de cobre (II), en una concentración desde 50 hasta 400 g/mL de Cu2+. Posteriormente se incuba en agitación constante a su temperatura de crecimiento. Luego de 24 h el cultivo se centrifuga a 5.000 rpm por 5 minutos y se descarta el sobrenadante. En el caso de E. coli, la fluorescencia del sedimento bacteriano, es decir de las NPs sintetizadas, depende de la concentración de CuS04, CuCb o de la sal de cobre usada. En la figura 1 se pueden apreciar las células bacterianas expuestas a luz ultravioleta a una longitud específica de 360 nm a través de un transiluminador UV, las cuales están tratadas con diferentes concentraciones de Cu (0, 10, 25 y 50 pg/mL) y la fluorescencia exhibida depende de estas concentraciones cambiando su fluorescencia de naranjo a rojo.
Ejemplo 2: Procedimiento de purificación de NPs semiconductoras fluorescentes de sulfuro de cobre.
Luego de la obtención del sedimento bacteriano, corresponde extraer las NPs de sulfuro de cobre desde el interior de las células bacterianas.
Para comenzar el procedimiento de extracción de las NPs se hizo crecer el microorganismo escogido en 100 ml_ de medio de cultivo líquido (M9 o LB, o cualquier otro medio apto para la bacteria a usar). Luego de que el tiempo de síntesis ha transcurrido (ya sea en fase exponencial o estacionaria) el cultivo se centrifuga a 5.000 rpm por 5 minutos y el sobrenadante es descartado.
Posteriormente, las células bacterianas se purifican, resuspendiéndose en una solución tampón de fosfato de potasio a pH 7,4 y luego sonicados a una amplitud de 70.000 por 2 minutos en serie de un minuto. En otra forma de la invención, las células se purifican siendo resuspendidas en la misma solución tampón junto con perlas de vidrio y luego sometidas a un homogenizador a una velocidad de 4 m/s por tres minutos en serie de 60 segundos. Posterior al proceso de sonicación u homogenización, la solución es centrifugada a 15.000 rpm por 5 minutos.
Los resultados indican que tras exponer las NPs biosintetizadas a luz UV (360 nm), la mayoría de las NPs sintetizadas quedan en el sobrenadante en donde se puede apreciar claramente la fluorescencia (figura 3). No obstante, los restos celulares mantuvieron fluorescencia, lo que se asocia a NPs que quedan atrapadas en restos de membranas y otras estructuras celulares.
Ejemplo 3: Caracterización de NPs semiconductoras fluorescentes de sulfuro de cobre sintetizadas utilizando microorganismos.
En este ejemplo se presenta la caracterización de las NPs de sulfuro de cobre biosintetizadas con microorganismos, de acuerdo a su determinación de tamaño y a la evaluación de sus propiedades espectrofotométricas y de fluorescencia.
Determinación de tamaño mediante purificación por cromatografía de exclusión molecular.
Las NPs producidas según la metodología expuesta en el ejemplo 1 se caracterizaron de acuerdo a su tamaño. Para esto, se pasaron por una columna de exclusión molecular (Sephadex 60) y se recolectaron fracciones de 1 ml_. Posterior a esto, las fracciones recolectadas se expusieron a luz UV (360 nm) con el objetivo de establecer cuál de ellas presentan la característica de fluorescencia.
A partir de los resultados, se observa que la fluorescencia no se asocia específicamente a una fracción, si no que múltiples fracciones presentan características de fluorescencia (figura 4). Así, la fluorescencia que antes se observó naranja (figura 3) luego del paso por la columna de exclusión se observa una gama de colores que van desde al rojo al verde. Las partículas más pequeñas (fluorescencia verde) quedaron embebidas en la matriz demorándose en salir, mientras que las partículas grandes que presentaron fluorescencia roja atravesaron la matriz sin problema, por lo que fueron recolectadas en las primeras fracciones. Por tanto, el método de biosíntesis de NPs mediante bacterias permite obtener QDs de sulfuro de cobre de diferentes tamaños. Caracterización mediante espectro-fotometría UV-Vis y fluorescencia.
Se realiza la caracterización espectrofotométrica de QDs biosintetizados a partir de un cultivo en fase estacionaria. Para este tipo de síntesis en fase estacionara se hizo un pre inoculo de E coli en medio LB, del que se originó un inoculo en una dilución 1 :1000 en 100 ml_ de medio de cultivo. Cuando el OD6oo del cultivo indicaba haber llegado a fase estacionaria, las células fueron centrifugadas a 5.000 rpm por 2 minutos y el sobrenadante fue descartado. Las células fueron resuspendidas en buffer fosfato a pH 7,4 y suplementadas con 25 pg/mL de Cu2+.Las células se incubaron bajo agitación constante a una temperatura de 37 °C durante 24 horas. Posteriormente fueron homogenizadas con perlas de vidrio en 3 series de 60 segundos a una velocidad de 4 m/s. Luego, el homogenizado fue centrifugado a 15.000 rpm por 5 minutos, y el sobrenadante se fue utilizando en la caracterización espectrofotométrica mientras que los restos celulares fueron descartados.
Para la caracterización, se tomaron alícuotas de 200 L y fueron traspasadas a una placa multipocillo. Posteriormente se realizó una lectura de absorbancia desde 300 a 700 nm y espectros de fluorescencia excitando a 360 nm en un citoflorímetro Synergy H1 de Biotek.
Los resultados obtenidos de la caracterización espectrofotométrica de los QDs de sulfuro de cobre sintetizados biológicamente se presentan en la figura 5. Se puede apreciar un máximo de absorbancia a 410 nm característico de NPs metálicas semiconductoras correspondiente a un plasmón de resonancia de superficie localizado (LSPR). Los plasmones de superficie son un fenómeno que se produce cuando los electrones excitados (al ser irradiados por luz UV en el caso de éstos QDs) quedan en constante vibración en la banda de conducción del material, la energía absorbida se conserva en regiones espaciales de la NPs, denominada LSPR. Esto, confirma otra característica clave de las NPs, que es el plasmón de superficie.
Por otro lado, al realizar un espectro de fluorescencia (figura 6) de los QDs de sulfuro de cobre, se aprecia que las NPs, al restar la fluorescencia intrínseca de las proteínas, tienen un máximo de fluorescencia que va entre 600 y 700 nm lo que se coindice con lo observado el irradiar con luz UV.
Ejemplo 4: Uso de NPs semiconductoras fluorescentes de sulfuro de cobre en dispositivos electrónicos v biomedicina.
En este ejemplo se indican los potenciales usos o aplicaciones de las NPs semiconductoras fluorescentes de sulfuro de cobre. La información que a continuación se describe, en ningún caso puede considerarse excluyente de otras aplicaciones, si no solo como ejemplo ilustrativo de la invención.
Aplicación de NPs de sulfuro de cobre en celdas fotovoltaicas y aparatos optoelectrónicos:
Debido a las características semiconductoras y las propiedades fluorescentes que presentaron las NPs de sulfuro de cobre desarrolladas mediante la presente invención, éstas pueden ser acopladas a circuitos electrónicos siendo útiles en el desarrollo de dispositivos tecnológicos. Así, en celdas fotovoltaicas sensibilizadas por QDs, las NPs actúan como aceptor de electrones favoreciendo el intercambio electrónico entre la celda.
Para el caso de aparatos optoelectrónicos, los cuales son aparatos electrónicos cuyo funcionamiento está relacionado con la óptica, las NPs debido a sus propiedades ópticas y plasmónicas permiten potenciar la tecnología de dispositivos de tipo LEDs, QDs-Laser, sensores, entre otros. Aplicación de NPs semiconductoras fluorescentes de sulfuro de cobre ciencias de la vida:
Además de las importantes características ya descritas, las NPs de sulfuro de cobre aquí desarrolladas presentan una baja citotoxicidad, siendo posible su uso en salud, gracias a su biocompatibilidad.
De esta forma, las NPs pueden ser aplicadas en el área de la medicina, por ejemplo en la imagenología, donde éstas pueden utilizarse como sondas de detección. Otras aplicaciones en biomedicina son su uso en el mareaje de células tumorales, o en la unión de la NP a diferentes biomoléculas, péptidos, aptámeros, dendrímeros, y anticuerpos.
En otra forma de la invención, las NPs de sulfuro de cobre pueden ser utilizadas en la detección de huellas dactilares aprovechando sus propiedades de fluorescencia. No se limitan otras diversas aplicaciones biotecnológicas.

Claims

REIVINDICACIONES
1. - Método microbiológico para la producción de nanopartículas (NPs) semiconductoras fluorescentes de sulfuro de cobre CARACTERIZADO porque comprende las etapas de: a) Seleccionar una sal de cobre; b) Hacer crecer un microorganismo tolerante a la sal de cobre seleccionada hasta alcanzar su fase exponencial o su fase estacionaria; c) Resuspender el sedimento del microorganismo en una solución tampón de fosfato y tratar con al menos una de las sales de cobre seleccionadas, hasta que el microorganismo adquiera características fluorescentes; d) Evaluar la producción de las NPs semiconductoras, fluorescentes de sulfuro de cobre, exponiendo las células bacterianas a luz UV (360nm); y e) Purificar las NPs semiconductoras, fluorescentes de sulfuro de cobre.
2. - Método microbiológico, de acuerdo a la reivindicación 1 CARACTERIZADO porque la sal de cobre se selecciona del grupo de: CuS0 , CuCI2, CuN03, CuBr2, CuS, CuSe, CuF2, Cu(CH3COO)2, entre otras sales de Cu2+.
3. - Método microbiológico, de acuerdo a las reivindicaciones anteriores CARACTERIZADO porque el microorganismo tolerante a la sal de cobre se selecciona del grupo de: microorganismos Gram (+), Gram (- ), termófilos, hipertermofilos, psicrotolerantes o psicrófilos, rhesófilos, anaerobios, aerobios, arqueas, levaduras, hongos, sin limitarse a otros microorganismos.
4. - Método microbiológico, de acuerdo a la reivindicación 3 CARACTERIZADO porque el microorganismo se selecciona de: Escherichia coli, Pseudomonas sp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Bacillus sp., Bacillus subtilis, Bacillus mycoides,Shewanella sp, Staphylococcus aureus, Leptospirillum sp, Acidithiobacillus sp, Salmonella sp., Psychrobacter sp, Yersinia sp., entre muchas otras.
5. - Método microbiológico, de acuerdo a la reivindicación 4 CARACTERIZADO porque el microorganismo preferido es Escherichia coli.
6. - Método microbiológico, de acuerdo a cualquiera de las reivindicaciones anteriores CARACTERIZADO porque el crecimiento del microorganismo se lleva a cabo en un medio de cultivo de acuerdo a las condiciones adecuadas para el tipo de microorganismo utilizado, a una temperatura óptima de crecimiento del mismo.
7. - Método microbiológico, de acuerdo a cualquiera de las reivindicaciones anteriores CARACTERIZADO porque la solución tampón de fosfato posee una concentración en un rango entre 1 a 1000 mM y un pH entre 3 y 8, siendo las condiciones preferentes 50 mM y pH 7,0.
8. - Método microbiológico, de ácuerdo a cualquier de las reivindicaciones anteriores CARACTERIZADO porque la sal de cobre que se agrega en la etapa (b) se adiciona en una concentración subletal dependiente del microorganismo usado para realizar la síntesis.
9. - Método microbiológico, de acuerdo a cualquiera de las reivindicaciones anteriores CARACTERIZADO porque el microorganismo se hace crecer en la etapa (b) hasta alcanzar la fase estacionaria de crecimiento del cultivo y posteriormente se centrifuga entre 5.000 a 10.000 rpm por un tiempo que va desde 2 a 5 minutos.
10. - Método microbiológico, de acuerdo a las reivindicaciones 1 a la 8 CARACTERIZADO porque el microorganismo se hace crecer en la etapa (b) hasta alcanzar la fase exponencial (OD6oo de 0,5) de crecimiento del cultivo.
11. - Método microbiológico, de acuerdo a las reivindicaciones 8 y 9 CARACTERIZADO porque para el caso del crecimiento del cultivo hasta alcanzar la fase estacionaria, la etapa de resuspensión (c), se lleva a cabo a una concentración de 10 - 50 μg/mL de Cu2+ en una solución tampón de fosfato en un rango entre 1 a 1000 mM y un pH entre 3 y 8, siendo las condiciones preferentes 50 mM y pH 7,0.
12. - Método microbiológico, de acuerdo a las reivindicaciones 8 y 10 CARACTERIZADO porque para el caso del crecimiento del cultivo hasta alcanzar la fase exponencial, la etapa de resuspensión (c), se lleva a cabo a una concentración de 50 - 400 μg mL de Cu2+.
13. - Método microbiológico, de acuerdo a cualquiera de las reivindicaciones anteriores CARACTERIZADO porque el tiempo de resuspensión de la etapa (c) varía entre 12 y 48 hrs (tiempo que el microorganismo se torna fluorescente).
14. - Método microbiológico, de acuerdo a cualquiera de las reivindicaciones anteriores CARACTERIZADO porque una vez que el microorganismo adquiere características fluorescentes en la etapa (c), el cultivo se centrifuga entre 5.000 y 10.000 rpm por un tiempo que va desde 2 a 5 minutos.
15. - Método microbiológico, de acuerdo a las reivindicaciones anteriores CARACTERIZADO porque la etapa (e) de purificación de las NPs consiste en resuspender el sedimento bacteriano en una solución tampón de fosfato de potasio (50 mM)a un pH de 7,4 y sonicar a una amplitud de entre 50.000 y 70.000 por un tiempo entre 5 y 10 minutos en series de un minuto.
16. - Método microbiológico, de acuerdo a las reivindicaciones 1 a la 14 CARACTERIZADO porque la etapa (e) de purificación de las NPs consiste en resuspender el sedimento bacteriano en una solución tampón de fosfato de potasio (50 mM) a un pH de 7,4, junto con perlas de vidrio y luego someterlos a un homogenizador a una velocidad de 4 m/s por tres minutos en series de 1 minuto.
17. - Método microbiológico, de acuerdo a las reivindicaciones 15 ó 16 CARACTERIZADO porque luego de la sonicación o de la homogenización, la solución se centrifuga entre 10.000 y 15.000 rpm por un tiempo que va desde 2 a 5 minutos.
18. - Nanopartículas semiconductoras, fluorescentes de sulfuro de cobre, obtenidas por el método de las reivindicaciones anteriores CARACTERIZADAS porque presentan un tamaño menor a 50 nm y espectros de absorción y emisión característicos (400 -450 nm y 600-700 nm, respectivamente).
19. - Uso de las nanopartículas semiconductoras, fluorescentes de sulfuro de cobre CARACTERIZADO porque son útiles para la producción de celdas fotovoltaicas, para la fabricación de aparatos optoelectrónicos, como sondas de detección en imagenología, para la detección de células tumorales, para la detección de huellas dactilares.
PCT/CL2014/000074 2014-12-11 2014-12-11 Método microbiológico para producir nanopartículas de sulfuro de cobre WO2016090508A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2014/000074 WO2016090508A1 (es) 2014-12-11 2014-12-11 Método microbiológico para producir nanopartículas de sulfuro de cobre

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2014/000074 WO2016090508A1 (es) 2014-12-11 2014-12-11 Método microbiológico para producir nanopartículas de sulfuro de cobre

Publications (1)

Publication Number Publication Date
WO2016090508A1 true WO2016090508A1 (es) 2016-06-16

Family

ID=56106380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2014/000074 WO2016090508A1 (es) 2014-12-11 2014-12-11 Método microbiológico para producir nanopartículas de sulfuro de cobre

Country Status (1)

Country Link
WO (1) WO2016090508A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659356A (zh) * 2018-12-18 2019-04-19 河南师范大学 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
CN109809466A (zh) * 2019-03-27 2019-05-28 泉州师范学院 一种基于鸡蛋壳模板的硫化铜纳米材料的制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2723655A1 (en) * 2010-12-03 2012-06-03 Queen's University At Kingston Biosynthesis of nanoparticles

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2723655A1 (en) * 2010-12-03 2012-06-03 Queen's University At Kingston Biosynthesis of nanoparticles

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
GALLARDO, J.P . ET AL.: "Low-temperature biosynthesis of fluorescent semiconductornanoparticles (CdS) by oxidative stress resistant Antarctic bacteria.", JOURNAL OF BIOTECHNOLOGY, vol. 187, 2014, pages 108 - 115, XP029075072, DOI: doi:10.1016/j.jbiotec.2014.07.017 *
HOSSEINI, M. R. ET AL.: "Biologically synthesized copper sulfide nanoparticles: Production and characterization.", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, vol. 15, no. 2, 2012, pages 222 - 225, XP028521876, DOI: doi:10.1016/j.mssp.2012.03.012 *
HOSSEINI, M.R. ET AL.: "A novel electrically enhanced biosynthesis of copper sulfide Nanoparticles", MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, vol. 16, no. 2, April 2013 (2013-04-01), pages 250 - 255, XP028986758, DOI: doi:10.1016/j.mssp.2012.11.002 *
SWEENEY, R. Y. ET AL.: "Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals.", CHEMISTRY & BIOLOGY, vol. 11, no. 11, 2004, pages 1553 - 1559, XP025940186, ISSN: 1074-5521, DOI: doi:10.1016/j.chembiol.2004.08.022 *
VARSHNEY, R. ET AL.: "Characterization of copper nanoparticles synthesized by a novel microbiological method.", JOM, vol. 62, no. 12, 2010, pages 102 - 104 *
VENEGAS, F. ET AL.: "Importance of inorganic phosphate in the biosynthesis of CdS QDs by Escherichia coli.", III CONGRESO NACIONAL DE NANOTECNOLOGIA (CNN2014) RESUMEN DE POSTER 222., 10 September 2014 (2014-09-10), Puerto Varas, Chile., Retrieved from the Internet <URL:http//www.nanomaterial.cl/Aceptados.html> *
YAN, Z. ET AL.: "Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells.", MATER. RES. EXPRESS, vol. 1, no. 1, pages 015401 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659356A (zh) * 2018-12-18 2019-04-19 河南师范大学 基于硒化铜单层的具有负微分电阻和开关作用的纳米器件
CN109809466A (zh) * 2019-03-27 2019-05-28 泉州师范学院 一种基于鸡蛋壳模板的硫化铜纳米材料的制备方法及应用
CN109809466B (zh) * 2019-03-27 2021-06-29 泉州师范学院 一种基于鸡蛋壳模板的硫化铜纳米材料的制备方法及应用

Similar Documents

Publication Publication Date Title
Husen et al. Plants and microbes assisted selenium nanoparticles: characterization and application
Karthik et al. Multifunctional properties of microwave assisted CdO–NiO–ZnO mixed metal oxide nanocomposite: enhanced photocatalytic and antibacterial activities
Zhang et al. Biosynthesis and structural characteristics of selenium nanoparticles by Pseudomonas alcaliphila
Baker et al. Biogenic nanoparticles bearing antibacterial activity and their synergistic effect with broad spectrum antibiotics: Emerging strategy to combat drug resistant pathogens
Wang et al. Carbon nitride based photocatalysts for solar photocatalytic disinfection, can we go further?
Verma et al. Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity
Borovaya et al. Biosynthesis of cadmium sulphide quantum dots by using Pleurotus ostreatus (Jacq.) P. Kumm
Bhuyan et al. A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action
Ahammed et al. Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity
Quigg et al. Direct and indirect toxic effects of engineered nanoparticles on algae: role of natural organic matter
Jan et al. Superior antibacterial activity of ZnO-CuO nanocomposite synthesized by a chemical Co-precipitation approach
Wang et al. Highly efficient near-infrared photothermal antibacterial membrane with incorporated biogenic CuSe nanoparticles
Bruna et al. Synthesis of salt-stable fluorescent nanoparticles (quantum dots) by polyextremophile halophilic bacteria
Swamy et al. Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity
Kim et al. Phototoxicity of CdSe/ZnSe quantum dots with surface coatings of 3-mercaptopropionic acid or tri-n-octylphosphine oxide/gum arabic in Daphnia magna under environmentally relevant UV-B light
Khan et al. Metal nanoparticle–microbe interactions: synthesis and antimicrobial effects
Ubaid et al. Fate and risk of metal sulfide nanoparticles in the environment
US8465721B2 (en) Biosynthesis of nanoparticles
Beena et al. Enhanced photocatalytic and antibacterial activities of ZnSe nanoparticles
Das et al. Sunlight irradiation induced synthesis of silver nanoparticles using glycolipid bio-surfactant and exploring the antibacterial activity
Badireddy et al. Formation of silver nanoparticles in visible light-illuminated waters: mechanism and possible impacts on the persistence of AgNPs and bacterial lysis
Khataee et al. The toxic effects of L-cysteine-capped cadmium sulfide nanoparticles on the aquatic plant Spirodela polyrrhiza
Ruttkay-Nedecky et al. Development of new silver nanoparticles suitable for materials with antimicrobial properties
CN105154474A (zh) 红色纳米硒的生物制备方法
Kashyap et al. Synthesis, characterization and application of intracellular Ag/AgCl nanohybrids biosynthesized in Scenedesmus sp. as neutral lipid inducer and antibacterial agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907904

Country of ref document: EP

Kind code of ref document: A1