CN105861823B - 一种强化黄铜矿微生物浸出的方法 - Google Patents

一种强化黄铜矿微生物浸出的方法 Download PDF

Info

Publication number
CN105861823B
CN105861823B CN201610199120.8A CN201610199120A CN105861823B CN 105861823 B CN105861823 B CN 105861823B CN 201610199120 A CN201610199120 A CN 201610199120A CN 105861823 B CN105861823 B CN 105861823B
Authority
CN
China
Prior art keywords
chalcopyrite
leaching
pyrite
zincblende
bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610199120.8A
Other languages
English (en)
Other versions
CN105861823A (zh
Inventor
尹华群
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201610199120.8A priority Critical patent/CN105861823B/zh
Publication of CN105861823A publication Critical patent/CN105861823A/zh
Application granted granted Critical
Publication of CN105861823B publication Critical patent/CN105861823B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Biotechnology (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一种强化黄铜矿微生物浸出的方法,包括以下步骤:(1)将黄铜矿矿样、黄铁矿矿样和闪锌矿矿样也粉粹成颗粒;(2)将培养基,黄铜矿,及将要添加的闪锌矿和/或黄铁矿进行高温高压灭菌;(3)将灭菌后的矿样按要求加入装有培养基的摇瓶中,并接种浸矿微生物;(4)将步骤(3)的摇瓶放置恒温摇床培养;(5)测定浸出过程中铜的浸出效率。本发明通过在黄铜矿微生物浸出体系中添加黄铁矿及闪锌矿,使得溶液中的pH较低,铁离子浓度和氧化还原电位较高,在生物和物理化学因子的协同作用下,强化了黄铜矿的氧化分解,提高了铜的浸出率,与不添加任何矿物的微生物浸出结果比较,其浸出率提高了5.0%~5.5%。本发明对黄铜矿的高效浸出提供了技术指导。

Description

一种强化黄铜矿微生物浸出的方法
技术领域
本发明属于硫化矿微生物冶金技术领域,具体涉及一种强化黄铜矿微生物浸出的方法。
背景技术
随着社会的迅速发展,人们对矿物资源的需求量正在不断增加,传统的冶金过程不仅能耗大,对人们耐以生存的生活环境的污染也很大,因此,反应温和、环境友好、流程简单、能耗低、效率高的生物浸矿技术对我们的作用日益明显。利用微生物的作用从矿石中回收重金属离子,已经是全世界都建立的生物技术过程。目前,该技术主要应用于应用于铜、镍、金和银等。
黄铜矿矿物品位低,结构复杂,不利于持续进行生物浸出,而且矿物中铁和硫所占比例较高,极易产生两种钝化反应。当前,多种强化策略例如高温浸出、低pH、添加表面活性剂、银离子、氯离子及低Eh体系都被尝试用于解决黄铜矿钝化问题,但是这些方法都有一些局限性。黄铜矿生物浸出是一个生物和化学同时进行的过程,两个过程相互促进并之约,因此在生物浸出过程中,需要综合考虑化学和生物反应效应。
发明内容
本发明的目的是提供一种强化黄铜矿微生物浸出的方法,解决微生物对黄铜矿氧化分解效果差、浸出率低的问题,为黄铜矿的高效开发利用提供技术指导。
本发明提供的技术方案是:一种强化黄铜矿微生物浸出的方法,包括以下步骤:
(1)将黄铜矿矿样粉粹成颗粒,同时将要添加的黄铁矿矿样和/或闪锌矿矿样也粉粹成颗粒;
(2)将培养基,黄铜矿,及将要添加的闪锌矿和/或黄铁矿进行高温高压灭菌;
(3)将灭菌后的黄铜矿加入装有培养基的摇瓶中,再分别加入黄铁矿或闪锌矿,并接种浸矿微生物;
(4)将步骤(3)的摇瓶放置恒温摇床培养;
(5)测定浸出过程中铜的浸出效率。
本发明的一个具体技术方案是,一种强化黄铜矿微生物浸出的方法,包括以下步骤:
(1) 将黄铜矿矿样粉粹成粒度大小约为0.074mm的颗粒,同时将要添加的黄铁矿矿样和/或闪锌矿矿样也粉粹成粒度大小约为0.074mm的颗粒;
(2)将9K培养基和黄铜矿及添加黄铁矿和/或闪锌矿均高温高压灭菌;
(3)将灭菌后的黄铜矿加入装有培养基的摇瓶中,再分别加入黄铁矿或闪锌矿,矿浆浓度为2%,调节矿浆pH值为2.0,并接种浸矿微生物,使得溶液中微生物浓度为1.0×106个/毫升;
(4)将(3)的摇瓶放置恒温摇床培养,调控温度为40°C,并在转速为170rpm条件下浸出30天;
(5)测定浸出过程中铜的浸出效率。
浸矿微生物包括:从德兴铜矿中分离的三株细菌喜温硫杆菌Acidithiobacillus caldus(保藏号:CBCBSUCSU208026,菌株号:S1),嗜热氧化硫硫化杆菌Sulfobacillus thermosulfidooxidans(保藏号:CBCBSUCSU208043,菌株号:YN22),嗜铁钩端螺旋菌Leptospirillum ferriphilum(保藏号:CBCBSUCSU208015,菌株号:YSK)和一株古菌嗜热铁质菌Ferroplasma thermophilum(保藏号:CBCBSUCSU208123,菌株号:L1)组成的人工共培养体系。微生物富集物的富集培养条件为:分别在不同能源(硫酸亚铁,元素硫,硫酸亚铁+元素硫+ 0.01% wt/vol 酵母抽提液),不同的温度(30°C, 40°C,50°C)和不同的 pH (1.0,1.8,2.5)下分别培养后混合。人工共培养体系中四株菌的浓度是相同的,按菌数比例1:1:1:1加入。
上述方法优选几种工艺如下:
喜温硫杆菌Acidithiobacillus caldus,嗜热氧化硫硫化杆菌Sulfobacillus thermosulfidooxidans,嗜铁钩端螺旋菌Leptospirillum ferriphilum和嗜热铁质菌Ferroplasma thermophilum构成的人工共培养体系浸出加入黄铁矿的黄铜矿体系:将黄铜矿和黄铁矿矿石粉粹成约0.074mm的颗粒,投入到含有人工共培养体系的9K培养基中,浸出条件为矿浆浓度2%,接种后浸溶液微生物浓度为1.0×106个/毫升,pH值为2.0,培养温度为40°C,摇床转速170rpm,浸出30天,其中黄铜矿与黄铁矿是等比例加入。
喜温硫杆菌Acidithiobacillus caldus,嗜热氧化硫硫化杆菌Sulfobacillus thermosulfidooxidans,嗜铁钩端螺旋菌Leptospirillum ferriphilum和嗜热铁质菌Ferroplasma thermophilum构成的人工共培养体系浸出加入黄铁矿和闪锌矿的黄铜矿体系:将黄铜矿、黄铁矿和闪锌矿矿石粉粹成约0.074mm的颗粒,投入到含有人工共培养体系的9K培养基中,浸出条件为矿浆浓度2%,接种后浸溶液微生物浓度为1.0×106个/毫升,pH值为2.0,培养温度为40°C,摇床转速170rpm,浸出30天,其中黄铜矿、黄铁矿与闪锌矿是等比例加入。
上述方法取样导致的浸出液的损失用9K培养基补充,蒸发损失用无菌pH2.0的蒸馏水补充
本发明具有以下有益效果:
黄铁矿的静电位比黄铜矿高,黄铁矿充当阴极被保护,黄铜矿因为静电位相对较低,充当阳极,被氧化,加速黄铜矿的溶解,有利于铜的生物浸出。本发明所采用的技术方案在强酸性的细菌培养基溶液中添加黄铁矿和/或闪锌矿,使得溶液中铁离子浓度和氢离子浓度提高,在微生物与高铁离子、高氢离子的协同作用下,显著提高了黄铜矿的氧化分解。本发明的针对性强,解决了黄铜矿浸出时间长,浸出效率低的问题。
附图说明
图1所示三种不同矿物在人工共培养体系中和非人工共培养体系中pH随时间的变化情况。
图2所示三种不同矿物在人工共培养体系中和非人工共培养体系中氧化还原电位随时间的变化情况。
图3所示三种不同矿物在人工共培养体系中和非人工共培养体系中铁离子浓度随时间的变化情况。
图4所示三种不同矿物在人工共培养体系中和非人工共培养体系中铜的浸出率随时间的变化情况。
具体实施方式
本发明有下列实施例进一步说明,但不受这些实施例的限制。
实施例1
喜温硫杆菌Acidithiobacillus caldus,嗜热氧化硫硫化杆菌Sulfobacillus thermosulfidooxidans,嗜铁钩端螺旋菌Leptospirillum ferriphilum和嗜热铁质菌Ferroplasma thermophilum(这四类菌株均保存在武汉大学保藏中心,位于湖北省武汉市武昌区八一路299号武汉大学校内)构成的人工共培养体系浸出加入黄铁矿的黄铜矿体系:将黄铜矿和黄铁矿矿石粉粹成约0.074mm的颗粒,投入到含有微生物富集物的9K培养基中,浸出条件为矿浆浓度2%,接种后浸溶液微生物浓度为1.0×106个/毫升,pH值为2.0,培养温度为40°C,摇床转速170rpm,浸出30天,其中黄铜矿与黄铁矿是等比例加入。当黄铜矿单独微生物浸出体系中,浸出9天后,pH值为1.75(图1),Eh为662(图2),铁离子浓度为1.365g/L(图3,黄铜矿的浸出率仅为29.39%(图4);添加等量的10g/L黄铁矿体系中,浸出9天,Eh为682(图2),pH值为2.0(图1),铁离子浓度为0.006g/L(图3),黄铜矿的浸出率达到37.48%(图4),提高了8.09%。
实施例2
喜温硫杆菌Acidithiobacillus caldus,嗜热氧化硫硫化杆菌Sulfobacillus thermosulfidooxidans,嗜铁钩端螺旋菌Leptospirillum ferriphilum和嗜热铁质菌Ferroplasma thermophilum构成的人工共培养体系浸出加入黄铁矿和闪锌矿的黄铜矿体系:将黄铜矿、黄铁矿和闪锌矿矿石粉粹成约0.074mm的颗粒,投入到含有人工共培养体系的9K培养基中,浸出条件为矿浆浓度2%,接种后浸溶液微生物浓度为1.0×106个/毫升,pH值为2.0,培养温度为40°C,摇床转速170rpm,浸出30天,其中黄铜矿、黄铁矿与闪锌矿是等比例加入。当黄铜矿单独微生物浸出体系中,浸出9天后,pH值为1.75(图1),Eh为662(图2),铁离子浓度为1.365g/L(图3),黄铜矿的浸出率仅为29.39%(图4);添加等量的10g/L黄铁矿和闪锌矿体系中,浸出9天,pH值为1.49(图1),Eh为644(图2),铁离子浓度为2.16g/L(图3),黄铜矿的浸出率达到42.94%(图4),提高了13.55% 。

Claims (7)

1.一种强化黄铜矿微生物浸出的方法,其特征在于,包括以下步骤:
(1)将黄铜矿矿样粉粹成颗粒,同时将要添加的黄铁矿矿样和/或闪锌矿矿样也粉粹成颗粒;
(2)将培养基,黄铜矿,及将要添加的闪锌矿和黄铁矿进行高温高压灭菌;
(3)将灭菌后的黄铜矿加入装有培养基的摇瓶中,再加入黄铁矿和闪锌矿,调节矿浆pH值为2.0,并接种浸矿微生物;
(4)将步骤(3)的摇瓶放置恒温摇床培养;
(5)测定浸出过程中铜的浸出效率;
其中,所述浸矿微生物包括:从德兴铜矿中分离的三株细菌喜温硫杆菌Acidithiobacillus caldus,嗜热氧化硫硫化杆菌Sulfobacillus thermosulfidooxidans,嗜铁钩端螺旋菌Leptospirillum ferriphilum和一株古菌嗜热铁质菌Ferroplasma thermophilum组成的人工共培养体系。
2.根据权利要求1所述的方法,其特征在于,所述人工共培养体系中三株细菌喜温硫杆菌Acidithiobacillus caldus,嗜热氧化硫硫化杆菌Sulfobacillus thermosulfidooxidans,嗜铁钩端螺旋菌Leptospirillum ferriphilum和一株古菌嗜热铁质菌Ferroplasma thermophilum,四株菌按菌数比例1:1:1:1加入。
3.根据权利要求1所述的方法,其特征在于,黄铜矿矿样、添加的黄铁矿矿样和闪锌矿矿样粉粹成颗粒的粒度大小为0.074mm。
4.根据权利要求1至3任一项所述的方法,其特征在于,第(3)步中的矿浆浓度为2%,并接种浸矿微生物,使得溶液中微生物浓度为1.0×106个/毫升。
5.根据权利要求1至3任一项所述的方法,其特征在于,第(4)步培养条件为温度为40°C,并在转速为170rpm条件下浸出30天。
6.根据权利要求1至3任一项所述的方法,其特征在于,所述培养基为9K培养基。
7.根据权利要求1至3任一项所述的方法,其特征在于,黄铜矿与黄铁矿,或者是黄铜矿与闪锌矿等质量比加入,或者黄铜矿,与黄铁矿和闪锌矿混合矿是等质量比加入。
CN201610199120.8A 2016-04-01 2016-04-01 一种强化黄铜矿微生物浸出的方法 Expired - Fee Related CN105861823B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610199120.8A CN105861823B (zh) 2016-04-01 2016-04-01 一种强化黄铜矿微生物浸出的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610199120.8A CN105861823B (zh) 2016-04-01 2016-04-01 一种强化黄铜矿微生物浸出的方法

Publications (2)

Publication Number Publication Date
CN105861823A CN105861823A (zh) 2016-08-17
CN105861823B true CN105861823B (zh) 2017-10-13

Family

ID=56627534

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610199120.8A Expired - Fee Related CN105861823B (zh) 2016-04-01 2016-04-01 一种强化黄铜矿微生物浸出的方法

Country Status (1)

Country Link
CN (1) CN105861823B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RS62573B1 (sr) * 2017-04-06 2021-12-31 Tech Resources Pty Ltd Izluživanje ruda koje sadrže bakar
CN109055717B (zh) * 2018-10-12 2020-11-06 中南大学 一种利用斑铜矿调控高铁闪锌矿氧化溶解的方法
CN110863117B (zh) * 2019-11-22 2021-05-04 江南大学 一种促进贫辉铜矿生物柱浸方法
CN112375903B (zh) * 2020-11-12 2022-03-18 西安建筑科技大学 一种强化砷黄铁矿微生物浸出的方法
CN113046579B (zh) * 2021-03-09 2022-04-29 中南大学 一种生物与化学协同浸出风化壳淋积型稀土矿的方法
CN113355531B (zh) * 2021-05-28 2022-11-04 河南豫光金铅股份有限公司 一种黄铜原料直接冶炼成铜阳极板的生产方法
CN115287453A (zh) * 2022-06-29 2022-11-04 中南大学 一种浮选捕收剂强化黄铜矿生物浸出的方法
CN115404341A (zh) * 2022-08-31 2022-11-29 安徽省地质矿产勘查局321地质队 一种利用云母促进黄铜矿微生物浸出的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560485A (zh) * 2009-05-27 2009-10-21 中南大学 一种用于黄铜矿浸矿的中度嗜热富集物
JP5454815B2 (ja) * 2012-03-19 2014-03-26 住友金属鉱山株式会社 製鉄用ヘマタイトの製造方法
CN102643769A (zh) * 2012-04-28 2012-08-22 江南大学 一株极端嗜酸硫杆菌及其在黄铜矿浸出中的应用
CN103805777B (zh) * 2014-01-23 2015-06-10 中南大学 一种强化黄铁矿微生物浸出的方法

Also Published As

Publication number Publication date
CN105861823A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105861823B (zh) 一种强化黄铜矿微生物浸出的方法
CN105734285B (zh) 一种强化闪锌矿微生物浸出的方法
CN101260465B (zh) 用含分离的微生物的浸滤液连续接种来提高金属硫化物矿石或精矿的生物浸滤速度的方法
CN104862250B (zh) 一种嗜酸铁氧化微生物复合菌剂及其制备方法
CN103396964B (zh) 一种浸出硫化矿复合菌群及其复配和应用方法
CN101560485A (zh) 一种用于黄铜矿浸矿的中度嗜热富集物
CN104877933B (zh) 可用于配制嗜酸铁氧化微生物复合菌剂的菌株及其应用
CN104862474B (zh) 一种基于pH和电位共调控的生物浸提含重金属废物中重金属的方法
CN104745498B (zh) 一种耐氟浸矿菌及其应用于高氟铀矿的高效浸出工艺
CN108004402B (zh) 一种氧化亚铁硫杆菌浸取废弃印刷电路板中铜的方法
CN107794368B (zh) 一种基于微生物生长和化学调控增强黄铜矿浸出的方法
CN109628357A (zh) 一种氧化亚铁微生物复合菌剂及其应用
CN100362117C (zh) 利用嗜热嗜酸菌处理硫化矿的方法
CN105733992B (zh) 一种低成本铁硫氧化菌的高密度培养方法
Dan et al. Reductive leaching of manganese from manganese dioxide ores by bacterial-catalyzed two-ores method
CN101805829B (zh) 高硫/铜比次生硫化铜矿选择性生物浸出工艺
CN106609252A (zh) 耐氟浸矿混合菌及其用于铀矿石中铀的两段浸出工艺
CN105132319B (zh) 一种嗜酸微生物复合菌剂及其制备方法和在处理废覆铜板浮选残渣中的应用
CN108130424B (zh) 一种硫铁矿烧渣生物脱硫提质协同回收有价金属的方法
CN108148771A (zh) 低温耐氟浸矿菌及其用于含氟铀矿的生物浸出工艺
CN109439586A (zh) 一种嗜酸铁氧化微生物、菌剂及其用途
CN109182751B (zh) 一种基于铁硫代谢调控促进黄铜矿生物浸出的方法
CA2558468A1 (en) Microorganism and method for leaching mineral sulphides
CN107012325A (zh) 一种细菌氧化处理金尾矿‑氰化回收尾矿中金的方法
CN104130963B (zh) 一株嗜酸铁氧化菌及其在铜矿浸出中的用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171013

Termination date: 20190401

CF01 Termination of patent right due to non-payment of annual fee