CN105837832A - 一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法 - Google Patents

一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法 Download PDF

Info

Publication number
CN105837832A
CN105837832A CN201610278046.9A CN201610278046A CN105837832A CN 105837832 A CN105837832 A CN 105837832A CN 201610278046 A CN201610278046 A CN 201610278046A CN 105837832 A CN105837832 A CN 105837832A
Authority
CN
China
Prior art keywords
molecule
hybrid material
nano particle
aqueous solution
amino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610278046.9A
Other languages
English (en)
Other versions
CN105837832B (zh
Inventor
纪晓寰
孙宾
朱美芳
孙玉山
江晓泽
周哲
吴文华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201610278046.9A priority Critical patent/CN105837832B/zh
Publication of CN105837832A publication Critical patent/CN105837832A/zh
Application granted granted Critical
Publication of CN105837832B publication Critical patent/CN105837832B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法,步骤为:将A的水溶液与B的水溶液搅拌混合,调节pH值,依次滴加金属离子盐溶液和金属硫化物硫源溶液,持续搅拌,加入沉淀剂,过滤,取沉淀物真空干燥后即为负载金属硫化物纳米颗粒的杂化材料。负载金属硫化物纳米颗粒杂化材料中金属硫化物纳米颗粒以离子键和配位键的形式稳定有效的连接到载体分子的分子链上,使其具有水溶性好、金属硫化物纳米颗粒负载量可调的优点。该杂化材料的制备方法无污染、产物杂质少且操作简单。制备的水溶性负载金属硫化物纳米颗粒的杂化材料在抗菌整理液、自组装原液和催化材料等方面有广泛的应用。

Description

一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备 方法
技术领域
本发明涉及一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法,特别是涉及一种稳定的水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法。
背景技术
金属硫化物纳米材料由于其突出的光电物理性能、抗菌性能和催化性能等受到人们的广泛关注。人们已经开发出很多方法制备纳米级金属硫化物,如微乳液法、溶胶-凝胶离子植入技术、模板法和金属有机前驱体法等。这些方法在一定程度上可以制备出金属硫化物纳米材料。但是迄今为止,寻找方便可行且适合大量制备均匀金属硫化物纳米粒子的方法以进一步开发其实际应用仍然是化学工作者的一个重要研究课题。
负载金属硫化物纳米颗粒的杂化材料是指通过化学键或者物理键的作用将金属硫化物纳米颗粒键接到载体分子上,该类杂化材料广泛的应用在金属离子吸附材料、催化材料、自组装单元、抗菌材料和阻燃材料等方面。
发明内容
本发明的目的是提供一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法,特别是提供一种稳定的水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法。采用本发明制备的负载金属硫化物纳米颗粒的杂化材料具有良好的水溶性,其水溶液又具有良好的稳定性,即杂化材料稳定的溶解分散在水溶液中,该水溶液是没有明显的颗粒物悬浮或沉淀的透明体系;杂化材料中的金属硫化物纳米颗粒负载量可调,金属硫化物纳米颗粒以离子键和配位键的形式稳定有效地连接到载体分子的分子链上;该方法还能让金属硫化物纳米颗粒稳定地分散在基体材料中,有效调控金属颗粒尺寸的大小。制备过程采用的仪器设备投入较少,操作过程简单易于实施,反应过程中运用的原材料环境友好且无污染,产物杂质少,易于后处理;整个反应过程有利于工业化放大生产。
本发明的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述水溶性负载金属硫化物纳米颗粒的杂化材料中,羧基、氨基和金属硫化物纳米颗粒间通过离子键和配位键键接;所述羧基和氨基分属分子A和分子B的分子链;
所述分子A和所述分子B中,羧基含量、氨基含量和羟基含量之和大于等于所述分子A和所述分子B的摩尔量之和的160%,A和B复合络合物中的羧基、氨基和羟基亲水性基团是保证复合络合物水溶性的主要因素,160%这个数值是保证复合络合物能够有水溶性的最低数值;
所述通过离子键和配位键键接的羧基和所述通过离子键和配位键键接的氨基含量之和大于等于所述分子A和所述分子B中羧基和氨基摩尔量之和的30%;
所述分子A的相对分子量≥10000,除了羧基的O或氨基的N之外,分子主链主要由C和H组成;
所述分子B的相对分子量≤5000,除了羧基的O或氨基的N之外,分子主链主要由C和H组成;
所述水溶性负载金属硫化物纳米颗粒的杂化材料的结构通式为:
或者
其中,分子链重复单元个数m≥0,n>0;
结构通式中稳定的三角形键合形式形成的机理如下:分子A和B中的-COO-和-NH3 +因为正负电荷的吸引,产生静电引力,即形成离子键;-COO-中的羟基氧上有孤对电子,因此孤对电子进入金属离子的空轨道与金属离子发生共价配位结合,形成配位键;-NH3 +中的N原子也存在孤对电子,同样能够提供孤对电子与金属离子形成配位键结合。金属离子在稳定的三角形键合下加入硫源后变成硫化物纳米颗粒,在此过程中,结构通式示意图中的三角形键合形式依旧能够稳定存在。
在此过程中,反应体系的pH值对体系中-COO-、-NH3 +和Mx+键合结构的形成有很大的影响。分子A或分子B中的-NH2在pH值<7的情况下,能与溶液中过量的H质子结合形成-NH3 +;随着pH值的升高,至中性或碱性条件下,溶液中游离的H质子减少,不能再形成-NH3 +的结构。对于分子A和分子B中的-COOH而言,在强酸条件pH值<2时,-COOH的离解受到抑制,体系中-COO-的含量较少,因此对金属离子的络合能力大大减弱;随着pH值增大,与金属离子的络合能力逐渐增大,当溶液pH值达到5~7时,-COO-与金属离子结合程度趋于最大;但是当体系的pH值再提高时,又会破坏-NH3 +的结构,从而破坏使体系稳定的三角结构关系。因此,为了形成稳定的如示意图中所示的稳定的三角形键合形式,所以必须有效的调控体系的pH值,并保证pH值的范围为4~6。
R1、R2和R3官能团分别为以下官能团中的一种:阳离子基团、阴离子基团或极性非离子基团;所述阳离子基团为叔铵基或季铵基;所述阴离子基团为羧酸基;所述极性非离子基团为羟基、醚基、氨基、酰胺基、巯基或卤基;
MS为金属硫化物,为:Ag2S、FeS、Au2S、Cr2S3、ZnS、PtS2、PdS、CuS、Cu2S、NiS、CdS或者为稀土金属硫化物,所述稀土金属硫化物为La2S3、Ce2S3、Eu2S3、Er2S3、Yb2S3、Tm2S3、Ho2S3或Pr2S3
作为优选的技术方案:
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,带氨基的分子B还包含羟基或羧基;带羧基的分子B还包含羟基或氨基。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述羧基位于分子主链或支链;所述氨基位于分子主链或支链。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述分子A的分子主链还包括有机物中常见的元素O、N或S。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述分子B的分子主链还包括有机物中常见的元素O、N或S。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述分子A和分子B中R1、R2和R3官能团分别为以下官能团中的一种:阳离子基团、阴离子基团或极性非离子基团;所述阳离子基团为叔铵基或季铵基;所述阴离子基团为羧酸基;所述极性非离子基团为羟基、醚基、氨基、酰胺基、巯基或卤基;优选的是:阴离子基团,羧酸基(-COO-);极性非离子基团,羟基(-OH)和氨基(-NH2)。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述金属硫化物纳米颗粒的负载量为14~923mg/g。
本发明还提供了一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,将含分子A物质的水溶液与含分子B物质的水溶液混合,调节反应体系的pH值至4~6,然后向混合液中依次滴加金属离子盐溶液和金属硫化物硫源溶液,滴加完毕后搅拌,得到负载金属硫化物纳米颗粒杂化材料的水溶液,持续搅拌并加入沉淀剂,抽滤,得到湿态的沉淀物,湿态的沉淀物干燥后即得到水溶性负载金属硫化物纳米颗粒的杂化材料;
含分子A物质与含分子B物质交叉含有羧基和氨基,即:含分子A物质含羧基时,含分子B物质含有氨基;反之,含分子A物质含氨基时,含分子B物质含有羧基。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,将含分子A物质的水溶液与含分子B物质的水溶液混合,是在20~60℃条件下;混合时伴以搅拌;调节反应体系的pH值采用0.1~0.3mol/L的HCl溶液、0.05~0.15mol/L的H2SO4溶液或0.1~0.3mol/L的HNO3溶液调节;金属离子盐溶液滴加完毕后搅拌,持续时间为0.5~1h;金属硫化物硫源溶液滴加完毕后搅拌,持续时间为1~2h;用沉淀剂反复冲洗沉淀物2~3次,充分去除沉淀物中的去离子水;湿态的沉淀物干燥采用的是真空烘箱干燥的方式,干燥温度为25~30℃,真空度为0.09~-0.1MPa。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,所述含分子A物质为分子A含羧基的含分子A物质或分子A含氨基的含分子A物质;所述分子A含羧基的含分子A物质选自海藻酸钠、海藻酸钾、羧甲基纤维素钠、羧甲基纤维素钾、羧乙基纤维素钠、羧乙基纤维素钾、羧甲基壳聚糖钠、羧甲基壳聚糖钾、羧乙基壳聚糖钠、羧乙基壳聚糖钾、2,3-二羧甲基纤维素钠、2,3-二羧甲基纤维素钾、聚丙烯酸钠和聚丙烯酸钾中的一种;优选的为海藻酸钠、海藻酸钾、羧甲基纤维素钠、羧甲基纤维素钾、羧甲基壳聚糖钠、羧甲基壳聚糖钾、聚丙烯酸钠和聚丙烯酸钾,最优的为羧甲基纤维素钠和羧甲基纤维素钾;
所述分子A含氨基的含分子A物质为壳聚糖、羧甲基壳聚糖或聚丙烯酰胺;优选的为壳聚糖;
所述含分子B物质为分子B含羧基的含分子B物质或分子B含氨基的含分子B物质;
所述分子B含羧基的含分子B物质选自链长小于6个碳的烷基链酸,具体为正丁酸、正戊酸或正己酸;
所述分子B含氨基的含分子B物质选自链长小于6个碳的烷基链氨、聚醚胺D230、聚醚胺D400、聚醚胺D2000、聚醚胺D4000、聚醚胺T403、聚醚胺T3000、聚醚胺T5000、脂肪胺聚氧乙烯醚AC-1810、脂肪胺聚氧乙烯醚AC-1812、脂肪胺聚氧乙烯醚AC-1815、脂肪胺聚氧乙烯醚AC-1205、脂肪胺聚氧乙烯醚AC-1210和脂肪胺聚氧乙烯醚AC-1215中的一种;优选的为聚醚胺D230、脂肪胺聚氧乙烯醚AC-1810、聚醚胺T403和脂肪胺聚氧乙烯醚AC-1205中的一种,最佳地为聚醚胺D230;所述链长小于6个碳的烷基链胺为正丙胺、正丁胺、正戊胺或正己胺;
所述金属离子盐溶液为AgNO3、FeCl2、HAuCl4、Cr2(SO4)3、ZnCl2、PtCl2、PdCl2、CuSO4、CuCl、Ni(NO3)2、CdCl2水溶液或稀土金属离子盐溶液;
所述稀土金属离子盐溶液为LaCl3、Ce2(SO4)3、Eu(NO3)3、ErCl3、YbCl3、Tm(NO3)3、Ho(NO3)3或Pr(NO3)3水溶液;
所述金属硫化物硫源溶液为硫化钠、硫化钾或硫化铵;
所述沉淀剂为乙醇或丙酮,优选的为乙醇;所述沉淀剂与负载金属硫化物纳米颗粒的杂化材料的水溶液的体积比为2~4:1;
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,所述含分子A物质的水溶液与含分子B物质的水溶液混合时,含分子A物质与含分子B物质的摩尔比为1:0.3~1;
所述含分子A物质的水溶液的质量百分比浓度为0.5%~3%;
所述含分子B物质的水溶液的质量百分比浓度为3%~10%;
所述金属离子盐溶液的浓度为0.005~2g/mL;
所述金属离子盐与含分子A物质的摩尔比为0.1~10:1;
所述金属离子盐与金属硫化物硫源物质的摩尔比为1:0.5~3;
所述负载金属硫化物纳米颗粒的杂化材料水溶液的质量百分比浓度为0.6%~24%。
有益效果:
本发明提供了一种工艺简单,易操作的制备稳定的负载金属硫化物纳米颗粒杂化材料的制备方法,该方法制备得到的负载金属硫化物纳米颗粒杂化材料具有良好的水溶性,金属硫化物纳米颗粒在载体分子上的负载量可调。
本发明制备的水溶性负载金属硫化物纳米颗粒的杂化材料,具有良好的水溶性,即该杂化材料能稳定的分散在水中,其水溶液是没有明显的颗粒物悬浮或沉淀的透明体系。与不添加分子B类物质稳定剂的水溶液相比,其水溶液具有良好的稳定性,通过调节体系的pH值,形成金属纳米颗粒与分子A和分子B之间的离子键和配位键键合,金属硫化物会一直稳定地负载在载体分子A类物质上,并分散在水溶液中,而不添加分子B类物质稳定剂时水溶液中的金属硫化物纳米颗粒易团聚;可以通过调控添加的分子B类物质稳定剂的量来调控载体分子A类物质上能负载的金属离子的量;所获得的杂化材料可以通过无水乙醇或者是丙酮提纯成干态的纤维状固体,便于储存,提纯后的固态物质又能重新溶解在水中,配制成水溶液;该材料可以和水复配成溶液后使用。该反应过程中采用水作为反应溶剂,无毒无害,绿色环保;制备工艺本身采用的仪器设备投入较少,操作过程简单易于实施,实验条件温和,便于实现大规模工业生产。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明的一种水溶性负载金属硫化物纳米颗粒的杂化材料,水溶性负载金属硫化物纳米颗粒的杂化材料中,羧基、氨基和金属离子间通过离子键和配位键键接,羧基和氨基分属分子A和分子B的分子链;
所述分子A和所述分子B中,羧基含量、氨基含量和羟基含量之和大于等于所述分子A和所述分子B的摩尔量之和的160%;
所述通过离子键和配位键键接的羧基和所述通过离子键和配位键键接的氨基含量之和大于等于所述分子A和所述分子B中羧基和氨基摩尔量之和的30%;
所述分子A的相对分子量≥10000,除了羧基的O或氨基的N之外,分子主链主要由C和H组成;
所述分子B的相对分子量≤5000,除了羧基的O或氨基的N之外,分子主链主要由C和H组成;
所述水溶性负载金属硫化物纳米颗粒的杂化材料的结构通式为:
或者
其中,分子链重复单元个数m≥0,n>0;
R1、R2和R3官能团分别为以下官能团中的一种:阳离子基团、阴离子基团或极性非离子基团;所述阳离子基团为叔铵基或季铵基;所述阴离子基团为羧酸基;所述极性非离子基团为羟基、醚基、氨基、酰胺基、巯基或卤基;
MS为金属硫化物,为:Ag2S、FeS、Au2S、Cr2S3、ZnS、PtS2、PdS、CuS、Cu2S、NiS、CdS或者为稀土金属硫化物;所述稀土金属硫化物为:La2S3、Ce2S3、Eu2S3、Er2S3、Yb2S3、Tm2S3、Ho2S3或Pr2S3
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,带氨基的分子B还包含羟基或羧基;带羧基的分子B还包含羟基或氨基。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述羧基位于分子主链或支链;所述氨基位于分子主链或支链。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述分子A的分子主链还包括有机物中常见的元素O、N或S。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述分子B的分子主链还包括有机物中常见的元素O、N或S。
如上所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,所述金属硫化物纳米颗粒的负载量为14~923mg/g。
实施例1
一种水溶性负载Ag2S纳米颗粒的杂化材料的制备方法,在20℃条件下,将质量百分比浓度为0.5%的海藻酸钠的水溶液与质量百分比浓度为3%的正戊胺的水溶液混合,海藻酸钠与正戊胺的摩尔比为1:0.3,海藻酸钠和正戊胺的相对分子量分别为25000和87.16,混合时伴以搅拌,用0.1mol/L的HCl溶液将体系的pH值调节到4,然后向混合液中滴加浓度为0.005g/mL的AgNO3水溶液,AgNO3与海藻酸钠的摩尔比为0.1:1,滴加完毕后搅拌,持续时间为0.5h,随后滴加硫化钠溶液,AgNO3与硫化钠的摩尔比为1:0.5,滴加完毕后再持续搅拌,持续时间为1h,即得到负载Ag2S纳米颗粒杂化材料的水溶液,其质量百分比浓度为0.6%,持续搅拌并加入沉淀剂乙醇,乙醇与负载Ag2S纳米颗粒杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物2次,沉淀物在温度为25℃,真空度为0.09MPa条件下真空烘箱干燥后即得到水溶性负载Ag2S纳米颗粒的杂化材料,该杂化材料中Ag2S的负载量为14mg/g。
实施例2
一种水溶性负载FeS纳米颗粒的杂化材料的制备方法,在60℃条件下,将质量百分比浓度为0.6%的海藻酸钾的水溶液与质量百分比浓度为6%的正丁胺的水溶液混合,海藻酸钾与正丁胺的摩尔比为1:0.7,海藻酸钾和正丁胺的相对分子量分别为15000和73.14,混合时伴以搅拌,用0.15mol/L的HCl溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.2g/mL的FeCl2水溶液,FeCl2与海藻酸钾的摩尔比为2.5:1,滴加完毕后搅拌,持续时间为0.55h,随后滴加硫化钾溶液,FeCl2与硫化钾的摩尔比为1:0.8,滴加完毕后再持续搅拌,持续时间为2h,即得到负载FeS纳米颗粒杂化材料的水溶液,其质量百分比浓度为2%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载FeS纳米颗粒杂化材料的水溶液的体积比为4:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物3次,沉淀物在温度为30℃,真空度为0.08MPa条件下真空烘箱干燥后即得到水溶性负载FeS纳米颗粒的杂化材料,该杂化材料中FeS的负载量为25mg/g。
实施例3
一种水溶性负载Au2S纳米颗粒的杂化材料的制备方法,在25℃条件下,将质量百分比浓度为1%的羧甲基纤维素钠的水溶液与质量百分比浓度为4%的聚醚胺D400的水溶液混合,羧甲基纤维素钠与聚醚胺D400的摩尔比为1:0.5,羧甲基纤维素钠和聚醚胺D400的相对分子量分别为19000和400,混合时伴以搅拌,用0.2mol/L的HCl溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.1g/mL的HAuCl4水溶液,HAuCl4与羧甲基纤维素钠的摩尔比为0.5:1,滴加完毕后搅拌,持续时间为0.6h,随后滴加硫化铵溶液,HAuCl4与硫化铵的摩尔比为1:0.68,滴加完毕后再持续搅拌,持续时间为1.5h,即得到负载Au2S纳米颗粒杂化材料的水溶液,其质量百分比浓度为3%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载Au2S纳米颗粒杂化材料的水溶液的体积比为3:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物2次,沉淀物在温度为26℃,真空度为0.07MPa条件下真空烘箱干燥后即得到水溶性负载Au2S纳米颗粒的杂化材料,该杂化材料中Au2S的负载量为55mg/g。
实施例4
一种水溶性负载Cr2S3纳米颗粒的杂化材料的制备方法,在30℃条件下,将质量百分比浓度为1%的羧甲基纤维素钾的水溶液与质量百分比浓度为5%的聚醚胺D2000的水溶液混合,羧甲基纤维素钾与聚醚胺D2000的摩尔比为1:0.5,羧甲基纤维素钾和聚醚胺D2000的相对分子量分别为26000和2000,混合时伴以搅拌,用0.25mol/L的HCl溶液将体系的pH值调节到5,然后向混合液中滴加浓度为1g/mL的Cr2(SO4)3水溶液,Cr2(SO4)3与羧甲基纤维素钾的摩尔比为0.5:1,滴加完毕后搅拌,持续时间为0.65h,随后滴加硫化钾溶液,Cr2(SO4)3与硫化钾的摩尔比为1:0.7,滴加完毕后再持续搅拌,持续时间为1h,即得到负载Cr2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为5%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载Cr2S3纳米颗粒的杂化材料的水溶液的体积比为4:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物2次,沉淀物在温度为27℃,真空度为0.06MPa条件下真空烘箱干燥后即得到水溶性负载Cr2S3纳米颗粒的杂化材料,该杂化材料中Cr2S3的负载量为85mg/g。
实施例5
一种水溶性负载ZnS纳米颗粒的杂化材料的制备方法,在50℃条件下,将质量百分比浓度为1.5%的羧乙基纤维素钠的水溶液与质量百分比浓度为8%的聚醚胺D4000的水溶液混合,羧乙基纤维素钠与聚醚胺D4000的摩尔比为1:0.8,羧乙基纤维素钠和聚醚胺D4000的相对分子量分别为310000和4000,混合时伴以搅拌,用0.3mol/L的HCl溶液将体系的pH值调节到4,然后向混合液中滴加浓度为0.5g/mL的ZnCl2水溶液,ZnCl2与羧乙基纤维素钠的摩尔比为5:1,滴加完毕后搅拌,持续时间为0.7h,随后滴加硫化钠溶液,ZnCl2与硫化钠的摩尔比为1:0.83,滴加完毕后再持续搅拌,持续时间为2h,即得到负载ZnS纳米颗粒杂化材料的水溶液,其质量百分比浓度为6%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载ZnS纳米颗粒的杂化材料的水溶液的体积比为3:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物3次,沉淀物在温度为28℃,真空度为0.05MPa条件下真空烘箱干燥后即得到水溶性负载ZnS纳米颗粒的杂化材料,该杂化材料中ZnS的负载量为130mg/g。
实施例6
一种水溶性负载PtS2纳米颗粒的杂化材料的制备方法,在60℃条件下,将质量百分比浓度为2%的羧乙基纤维素钾的水溶液与质量百分比浓度为6%的聚醚胺T403的水溶液混合,羧乙基纤维素钾与聚醚胺T403的摩尔比为1:0.8,羧乙基纤维素钾和聚醚胺T403的相对分子量分别为35200和400,混合时伴以搅拌,用0.05mol/L的H2SO4溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.03g/mL的PtCl2水溶液,PtCl2与羧乙基纤维素钾的摩尔比为8:1,滴加完毕后搅拌,持续时间为0.75h,随后滴加硫化钾溶液,PtCl2与硫化钾的摩尔比为1:0.85,滴加完毕后再持续搅拌,持续时间为2h,即得到负载PtS2纳米颗粒杂化材料的水溶液,其质量百分比浓度为7%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载PtS2纳米颗粒的杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物3次,沉淀物在温度为30℃,真空度为0.04MPa条件下真空烘箱干燥后即得到水溶性负载PtS2纳米颗粒的杂化材料,该杂化材料中PtS2的负载量为175mg/g。
实施例7
一种水溶性负载PdS纳米颗粒的杂化材料的制备方法,在28℃条件下,将质量百分比浓度为1.7%的羧甲基壳聚糖钠的水溶液与质量百分比浓度为9%的聚醚胺T3000的水溶液混合,羧甲基壳聚糖钠与聚醚胺T3000的摩尔比为1:0.7,羧甲基壳聚糖钠和聚醚胺T3000的相对分子量分别为340000和3000,混合时伴以搅拌,用0.07mol/L的H2SO4溶液将体系的pH值调节到6,然后向混合液中滴加浓度为1.6g/mL的PdCl2水溶液,PdCl2与羧甲基壳聚糖钠的摩尔比为0.5:1,滴加完毕后搅拌,持续时间为0.8h,随后滴加硫化铵溶液,PdCl2与硫化铵的摩尔比为1:0.88,滴加完毕后再持续搅拌,持续时间为1h,即得到负载PdS纳米颗粒杂化材料的水溶液,其质量百分比浓度为8%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载PdS纳米颗粒杂化材料的水溶液的体积比为3:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物2次,沉淀物在温度为30℃,真空度为0.03MPa条件下真空烘箱干燥后即得到水溶性负载PdS纳米颗粒的杂化材料,该杂化材料中PdS的负载量为220mg/g。
实施例8
一种水溶性负载CuS纳米颗粒的杂化材料的制备方法,在40℃条件下,将质量百分比浓度为1.5%的羧甲基壳聚糖钾的水溶液与质量百分比浓度为7%的脂肪胺聚氧乙烯醚AC-1210的水溶液混合,羧甲基壳聚糖钾与脂肪胺聚氧乙烯醚AC-1210的摩尔比为1:0.6,羧甲基壳聚糖钾和脂肪胺聚氧乙烯醚AC-1210的相对分子量分别为200000和1200,混合时伴以搅拌,用0.1mol/L的H2SO4溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.01g/mL的CuSO4水溶液,CuSO4与羧甲基壳聚糖钾的摩尔比为3:1,滴加完毕后搅拌,持续时间为0.85h,随后滴加硫化钾溶液,CuSO4与硫化钾的摩尔比为1:0.9,滴加完毕后再持续搅拌,持续时间为2h,即得到负载CuS纳米颗粒杂化材料的水溶液,其质量百分比浓度为9%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载CuS纳米颗粒的杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物2次,沉淀物在温度为26℃,真空度为0.02MPa条件下真空烘箱干燥后即得到水溶性负载CuS纳米颗粒的杂化材料,该杂化材料中CuS的负载量为285mg/g。
实施例9
一种水溶性负载Cu2S纳米颗粒的杂化材料的制备方法,在50℃条件下,将质量百分比浓度为0.5%的羧乙基壳聚糖钠的水溶液与质量百分比浓度为5%的脂肪胺聚氧乙烯醚AC-1810的水溶液混合,羧乙基壳聚糖钠与脂肪胺聚氧乙烯醚AC-1810的摩尔比为1:0.8,羧乙基壳聚糖钠和脂肪胺聚氧乙烯醚AC-1810的相对分子量分别为21000和1800,混合时伴以搅拌,用0.12mol/L的H2SO4溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.05g/mL的CuCl水溶液,CuCl与羧乙基壳聚糖钠的摩尔比为0.8:1,滴加完毕后搅拌,持续时间为0.9h,随后滴加硫化钠溶液,CuCl与硫化钠的摩尔比为1:1,滴加完毕后再持续搅拌,持续时间为1h,即得到负载Cu2S纳米颗粒杂化材料的水溶液,其质量百分比浓度为10%,持续搅拌并加入170L沉淀剂乙醇,沉淀剂乙醇与负载Cu2S纳米颗粒的杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物3次,沉淀物在温度为29℃,真空度为0.01MPa条件下真空烘箱干燥后即得到水溶性负载Cu2S纳米颗粒的杂化材料,该杂化材料中Cu2S的负载量为340mg/g。
实施例10
一种水溶性负载NiS纳米颗粒的杂化材料的制备方法,在20℃条件下,将质量百分比浓度为2.5%的羧乙基壳聚糖钾的水溶液与质量百分比浓度为5%的脂肪胺聚氧乙烯醚AC-1812的水溶液混合,羧乙基壳聚糖钾与脂肪胺聚氧乙烯醚AC-1812的摩尔比为1:0.6,羧乙基壳聚糖钾和脂肪胺聚氧乙烯醚AC-1812的相对分子量分别为165000和1900,混合时伴以搅拌,用0.15mol/L的H2SO4溶液将体系的pH值调节到4,然后向混合液中滴加浓度为0.16g/mL的Ni(NO3)2水溶液,Ni(NO3)2与羧乙基壳聚糖钾的摩尔比为0.6:1,滴加完毕后搅拌,持续时间为0.55h,随后滴加硫化钾溶液,Ni(NO3)2与硫化钾的摩尔比为1:1.2,滴加完毕后再持续搅拌,持续时间为1.5h,即得到负载NiS纳米颗粒杂化材料的水溶液,其质量百分比浓度为12%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载NiS纳米颗粒杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物2次,沉淀物在温度为30℃,真空度为0.09MPa条件下真空烘箱干燥后即得到水溶性负载NiS纳米颗粒的杂化材料,该杂化材料中NiS的负载量为390mg/g。
实施例11
一种水溶性负载CdS纳米颗粒的杂化材料的制备方法,在40℃条件下,将质量百分比浓度为2.8%的2,3-二羧甲基纤维素钠的水溶液与质量百分比浓度为6%的脂肪胺聚氧乙烯醚AC-1815的水溶液混合,2,3-二羧甲基纤维素钠与脂肪胺聚氧乙烯醚AC-1815的摩尔比为1:0.8,2,3-二羧甲基纤维素钠和脂肪胺聚氧乙烯醚AC-1815的相对分子量分别为40000和900,混合时伴以搅拌,用0.1mol/L的HNO3溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.18g/mL的CdCl2水溶液,CdCl2与2,3-二羧甲基纤维素钠的摩尔比为3:1,滴加完毕后搅拌,持续时间为0.5h,随后滴加硫化钠溶液,CdCl2与硫化钠的摩尔比为1:1.5,滴加完毕后再持续搅拌,持续时间为2h,即得到负载CdS纳米颗粒杂化材料的水溶液,其质量百分比浓度为13%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载CdS纳米颗粒杂化材料的水溶液的体积比为4:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物2次,沉淀物在温度为26℃,真空度为-0.1MPa条件下真空烘箱干燥后即得到水溶性负载CdS纳米颗粒的杂化材料,该杂化材料中CdS的负载量为455mg/g。
实施例12
一种水溶性负载La2S3纳米颗粒的杂化材料的制备方法,在30℃条件下,将质量百分比浓度为0.9%的2,3-二羧甲基纤维素钾的水溶液与质量百分比浓度为8%的脂肪胺聚氧乙烯醚AC-1205的水溶液混合,2,3-二羧甲基纤维素钾与脂肪胺聚氧乙烯醚AC-1205的摩尔比为1:1,2,3-二羧甲基纤维素钾和脂肪胺聚氧乙烯醚AC-1205的相对分子量分别为250000和1200,混合时伴以搅拌,用0.15mol/L的HNO3溶液将体系的pH值调节到5,然后向混合液中滴加浓度为0.006g/mL的LaCl3水溶液,LaCl3与2,3-二羧甲基纤维素钾的摩尔比为0.6:1,滴加完毕后搅拌,持续时间为1h,随后滴加硫化铵溶液,LaCl3与硫化铵的摩尔比为1:1.6,滴加完毕后再持续搅拌,持续时间为1h,即得到负载La2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为14%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载La2S3纳米颗粒的杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物3次,沉淀物在温度为25℃,真空度为-0.09MPa条件下真空烘箱干燥后即得到水溶性负载La2S3纳米颗粒的杂化材料,该杂化材料中La2S3的负载量为470mg/g。
实施例13
一种水溶性负载Ce2S3纳米颗粒的杂化材料的制备方法,在60℃条件下,将质量百分比浓度为3%的羧甲基壳聚糖钠的水溶液与质量百分比浓度为10%的聚醚胺T5000的水溶液混合,羧甲基壳聚糖钠与聚醚胺T5000的摩尔比为1:1,羧甲基壳聚糖钠和聚醚胺T5000的相对分子量分别为340000和5000,混合时伴以搅拌,用0.2mol/L的HNO3溶液将体系的pH值调节到4,然后向混合液中滴加浓度为2g/mL的Ce2(SO4)3水溶液,Ce2(SO4)3与羧甲基壳聚糖钠的摩尔比为10:1,滴加完毕后搅拌,持续时间为0.6h,随后滴加硫化钾溶液,Ce2(SO4)3与硫化钾的摩尔比为1:0.75,滴加完毕后再持续搅拌,持续时间为2h,即得到负载Ce2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为22%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载Ce2S3纳米颗粒的杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物3次,沉淀物在温度为30℃,真空度为-0.08MPa条件下真空烘箱干燥后即得到水溶性负载Ce2S3纳米颗粒的杂化材料,该杂化材料中Ce2S3的负载量为510mg/g。
实施例14
一种水溶性负载Eu2S3纳米颗粒的杂化材料的制备方法,在40℃条件下,将质量百分比浓度为1.2%的聚丙烯酸钾的水溶液与质量百分比浓度为3%的脂肪胺聚氧乙烯醚AC-1215的水溶液混合,聚丙烯酸钾与脂肪胺聚氧乙烯醚AC-1215的摩尔比为1:0.5,聚丙烯酸钾和脂肪胺聚氧乙烯醚AC-1215的相对分子量分别为20000和800,混合时伴以搅拌,用0.25mol/L的HNO3溶液将体系的pH值调节到5,然后向混合液中滴加浓度为0.12g/mL的Eu(NO3)3水溶液,Eu(NO3)3与聚丙烯酸钾的摩尔比为2:1,滴加完毕后搅拌,持续时间为0.65h,随后滴加硫化钾溶液,Eu(NO3)3与硫化钾的摩尔比为1:1.8,滴加完毕后再持续搅拌,持续时间为1h,即得到负载Eu2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为15%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载Eu2S3纳米颗粒杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物2次,沉淀物在温度为26℃,真空度为-0.1MPa条件下真空烘箱干燥后即得到水溶性负载Eu2S3纳米颗粒的杂化材料,该杂化材料中Eu2S3的负载量为580mg/g。
实施例15
一种水溶性负载Er2S3纳米颗粒的杂化材料的制备方法,在30℃条件下,将质量百分比浓度为1.6%的壳聚糖的水溶液与质量百分比浓度为7%的正丁酸的水溶液混合,壳聚糖与正丁酸的摩尔比为1:0.9,壳聚糖和正丁酸的相对分子量分别为240000和88.1,混合时伴以搅拌,用0.3mol/L的HNO3溶液将体系的pH值调节到5,然后向混合液中滴加浓度为0.8g/mL的ErCl3水溶液,ErCl3与壳聚糖的摩尔比为6:1,滴加完毕后搅拌,持续时间为0.7h,随后滴加硫化钠溶液,ErCl3与硫化钠的摩尔比为1:2,滴加完毕后再持续搅拌,持续时间为1h,即得到负载Er2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为17%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载Er2S3纳米颗粒杂化材料的水溶液的体积比为3:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物3次,沉淀物在温度为28℃,真空度为0.09MPa条件下真空烘箱干燥后即得到水溶性负载Er2S3纳米颗粒的杂化材料,该杂化材料中Er2S3的负载量为610mg/g。
实施例16
一种水溶性负载Yb2S3纳米颗粒的杂化材料的制备方法,在20℃条件下,将质量百分比浓度为2.4%的羧甲基壳聚糖的水溶液与质量百分比浓度为6%的正戊酸的水溶液混合,羧甲基壳聚糖与正戊酸的摩尔比为1:0.4,羧甲基壳聚糖和正戊酸的相对分子量分别为10000和102.13,混合时伴以搅拌,用0.1mol/L的HCl溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.06g/mL的YbCl3水溶液,YbCl3与羧甲基壳聚糖的摩尔比为0.8:1,滴加完毕后搅拌,持续时间为0.75h,随后滴加硫化钾溶液,YbCl3与硫化钾的摩尔比为1:2.3,滴加完毕后再持续搅拌,持续时间为2h,即得到负载Yb2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为18%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载Yb2S3纳米颗粒杂化材料的水溶液的体积比为3:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物2次,沉淀物在温度为29℃,真空度为-0.1MPa条件下真空烘箱干燥后即得到水溶性负载Yb2S3纳米颗粒的杂化材料,该杂化材料中Yb2S3的负载量为660mg/g。
实施例17
一种水溶性负载Tm2S3纳米颗粒的杂化材料的制备方法,在25℃条件下,将质量百分比浓度为0.8%的聚丙烯酰胺的水溶液与质量百分比浓度为5%的正己酸的水溶液混合,聚丙烯酰胺与正己酸的摩尔比为1:0.7,聚丙烯酰胺和正己酸的相对分子量分别为1×106和115.15,混合时伴以搅拌,用0.3mol/L的HCl溶液将体系的pH值调节到4,然后向混合液中滴加浓度为0.08g/mL的Tm(NO3)3水溶液,Tm(NO3)3与聚丙烯酰胺的摩尔比为3.5:1,滴加完毕后搅拌,持续时间为0.8h,随后滴加硫化铵溶液,Tm(NO3)3与硫化铵的摩尔比为1:2.6,滴加完毕后再持续搅拌,持续时间为2h,即得到负载Tm2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为19%,持续搅拌并加入沉淀剂丙酮,沉淀剂丙酮与负载Tm2S3纳米颗粒杂化材料的水溶液的体积比为3:1,抽滤收集沉淀物,用丙酮反复冲洗沉淀物3次,沉淀物在温度为29℃,真空度为0.09MPa条件下真空烘箱干燥后即得到水溶性负载Tm2S3纳米颗粒的杂化材料,该杂化材料中Tm2S3的负载量为720mg/g。
实施例18
一种水溶性负载Ho2S3纳米颗粒的杂化材料的制备方法,在50℃条件下,将质量百分比浓度为2.6%的海藻酸钠的水溶液与质量百分比浓度为5%的正己胺的水溶液混合,海藻酸钠与正己胺的摩尔比为1:0.5,海藻酸钠和正己胺的相对分子量分别为25000和101.19,混合时伴以搅拌,用0.05mol/L的H2SO4溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.5g/mL的Ho(NO3)3水溶液,Ho(NO3)3与含海藻酸钠的摩尔比为5:1,滴加完毕后搅拌,持续时间为0.85h,随后滴加硫化钠溶液,Ho(NO3)3与硫化钠的摩尔比为1:2.8,滴加完毕后再持续搅拌,持续时间为1h,即得到负载Ho2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为20%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载Ho2S3纳米颗粒杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物2次,沉淀物在温度为27℃,真空度为0.09MPa条件下真空烘箱干燥后即得到水溶性负载Ho2S3纳米颗粒的杂化材料,该杂化材料中Ho2S3的负载量为830mg/g。
实施例19
一种水溶性负载Pr2S3纳米颗粒的杂化材料的制备方法,在60℃条件下,将质量百分比浓度为1.4%的海藻酸钾的水溶液与质量百分比浓度为3%的正丙胺的水溶液混合,海藻酸钾与正丙胺的摩尔比为1:0.3,海藻酸钾和正丙胺的相对分子量分别为15000和59.11,混合时伴以搅拌,用0.15mol/L的H2SO4溶液将体系的pH值调节到5,然后向混合液中滴加浓度为0.15g/mL的Pr(NO3)3水溶液,Pr(NO3)3水溶液与海藻酸钾的摩尔比为0.6:1,滴加完毕后搅拌,持续时间为0.9h,随后滴加硫化铵溶液,Pr(NO3)3与硫化铵的摩尔比为1:0.6,滴加完毕后再持续搅拌,持续时间为1h,即得到负载Pr2S3纳米颗粒杂化材料的水溶液,其质量百分比浓度为21%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载Pr2S3纳米颗粒的杂化材料的水溶液的体积比为2:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物3次,沉淀物在温度为26℃,真空度为-0.1MPa条件下真空烘箱干燥后即得到水溶性负载Pr2S3纳米颗粒的杂化材料,该杂化材料中Pr2S3的负载量为782mg/g。
实施例20
一种水溶性负载Ag2S纳米颗粒的杂化材料的制备方法,在20℃条件下,将质量百分比浓度为2.9%的聚丙烯酸钠的水溶液与质量百分比浓度为4%的聚醚胺D230的水溶液混合,聚丙烯酸钠与聚醚胺D230的摩尔比为1:0.6,聚丙烯酸钠和聚醚胺D230的相对分子量分别为30000和230,混合时伴以搅拌,用0.3mol/L的HNO3溶液将体系的pH值调节到6,然后向混合液中滴加浓度为0.5g/mL的AgNO3水溶液,AgNO3与聚丙烯酸钠的摩尔比为3:1,滴加完毕后搅拌,持续时间为1h,随后滴加硫化铵溶液,AgNO3与硫化铵的摩尔比为1:3,滴加完毕后再持续搅拌,持续时间为2h,即得到负载Ag2S纳米颗粒杂化材料的水溶液,其质量百分比浓度为24%,持续搅拌并加入沉淀剂乙醇,沉淀剂乙醇与负载Ag2S纳米颗粒杂化材料的水溶液的体积比为4:1,抽滤收集沉淀物,用乙醇反复冲洗沉淀物3次,沉淀物在温度为25℃,真空度为-0.1MPa条件下真空烘箱干燥后即得到水溶性负载Ag2S纳米颗粒的杂化材料,该杂化材料中Ag2S的负载量为855mg/g。

Claims (10)

1.一种水溶性负载金属硫化物纳米颗粒的杂化材料,其特征是:所述水溶性负载金属硫化物纳米颗粒的杂化材料中,羧基、氨基和金属离子间通过离子键和配位键键接;所述羧基和氨基分属分子A和分子B的分子链;
所述分子A和所述分子B中,羧基含量、氨基含量和羟基含量之和大于等于所述分子A和所述分子B的摩尔量之和的160%;
所述通过离子键和配位键键接的羧基和所述通过离子键和配位键键接的氨基含量之和大于等于所述分子A和所述分子B中羧基和氨基摩尔量之和的30%;
所述分子A的相对分子量≥10000,除了羧基的O或氨基的N之外,分子主链主要由C和H组成;
所述分子B的相对分子量≤5000,除了羧基的O或氨基的N之外,分子主链主要由C和H组成;
所述水溶性负载金属硫化物纳米颗粒的杂化材料的结构通式为:
或者
其中,分子链重复单元个数m≥0,n>0;
R1、R2和R3官能团分别为以下官能团中的一种:阳离子基团、阴离子基团或极性非离子基团;所述阳离子基团为叔铵基或季铵基;所述阴离子基团为羧酸基;所述极性非离子基团为羟基、醚基、氨基、酰胺基、巯基或卤基;
MS为金属硫化物,为:Ag2S、FeS、Au2S、Cr2S3、ZnS、PtS2、PdS、CuS、Cu2S、NiS、CdS或者为稀土金属硫化物;所述稀土金属硫化物为La2S3、Ce2S3、Eu2S3、Er2S3、Yb2S3、Tm2S3、Ho2S3或Pr2S3
2.根据权利要求1所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,其特征在于,带氨基的分子B还包含羟基或羧基;带羧基的分子B还包含羟基或氨基。
3.根据权利要求1所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,其特征在于,所述羧基位于分子主链或支链;所述氨基位于分子主链或支链。
4.根据权利要求1所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,其特征在于,所述分子A的分子主链还包括元素O、N或S。
5.根据权利要求1所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,其特征在于,所述分子B的分子主链还包括元素O、N或S。
6.根据权利要求1所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料,其特征在于,所述金属硫化物纳米颗粒的负载量为14~923mg/g。
7.如权利要求1~6中任一项所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,其特征是:将含分子A物质的水溶液与含分子B物质的水溶液混合,调节反应体系的pH值至4~6,然后向混合液中滴加金属离子盐溶液,滴加完毕后搅拌,随后滴加金属硫化物硫源溶液,滴加完毕后再持续搅拌,即得到负载金属硫化物纳米颗粒杂化材料的水溶液,持续搅拌并加入沉淀剂,过滤收集沉淀物,沉淀物干燥后即得到水溶性负载金属硫化物纳米颗粒的杂化材料;
含分子A物质与含分子B物质交叉含有羧基和氨基,即:含分子A物质含羧基时,含分子B物质含有氨基;反之,含分子A物质含氨基时,含分子B物质含有羧基。
8.根据权利要求7所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,其特征在于,将含分子A物质的水溶液与含分子B物质的水溶液混合,是在20~60℃条件下;混合时伴以搅拌;调节反应体系的pH值采用0.1~0.3mol/L的HCl溶液、0.05~0.15mol/L的H2SO4溶液或0.1~0.3mol/L的HNO3溶液调节;金属离子盐溶液滴加完毕后搅拌,持续时间为0.5~1h;金属硫化物硫源溶液滴加完毕后搅拌,持续时间为1~2h;沉淀物干燥采用真空烘箱干燥。
9.根据权利要求7所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,其特征在于,所述含分子A物质为分子A含羧基的含分子A物质或分子A含氨基的含分子A物质;所述分子A含羧基的含分子A物质选自海藻酸钠、海藻酸钾、羧甲基纤维素钠、羧甲基纤维素钾、羧乙基纤维素钠、羧乙基纤维素钾、羧甲基壳聚糖钠、羧甲基壳聚糖钾、羧乙基壳聚糖钠、羧乙基壳聚糖钾、2,3-二羧甲基纤维素钠、2,3-二羧甲基纤维素钾、聚丙烯酸钠和聚丙烯酸钾中的一种;
所述分子A含氨基的含分子A物质为壳聚糖、羧甲基壳聚糖或聚丙烯酰胺;
所述含分子B物质为分子B含羧基的含分子B物质或分子B含氨基的含分子B物质;
所述分子B含羧基的含分子B物质选自链长小于6个碳的烷基链酸,具体为正丁酸、正戊酸或正己酸;
所述分子B含氨基的含分子B物质选自链长小于6个碳的烷基链氨、聚醚胺D230、聚醚胺D400、聚醚胺D2000、聚醚胺D4000、聚醚胺T403、聚醚胺T3000、聚醚胺T5000、脂肪胺聚氧乙烯醚AC-1810、脂肪胺聚氧乙烯醚AC-1812、脂肪胺聚氧乙烯醚AC-1815、脂肪胺聚氧乙烯醚AC-1205、脂肪胺聚氧乙烯醚AC-1210和脂肪胺聚氧乙烯醚AC-1215中的一种;所述链长小于6个碳的烷基链胺为正丙胺、正丁胺、正戊胺或正己胺;
所述金属离子盐溶液为AgNO3、FeCl2、HAuCl4、Cr2(SO4)3、ZnCl2、PtCl2、PdCl2、CuSO4、CuCl、Ni(NO3)2、CdCl2水溶液或稀土金属离子盐溶液;所述稀土金属离子盐溶液为LaCl3、Ce2(SO4)3、Eu(NO3)3、ErCl3、YbCl3、Tm(NO3)3、Ho(NO3)3或Pr(NO3)3水溶液;
所述金属硫化物硫源溶液为硫化钠、硫化钾或硫化铵;
所述沉淀剂为乙醇或丙酮。
10.根据权利要求7所述的一种水溶性负载金属硫化物纳米颗粒的杂化材料的制备方法,其特征在于,所述含分子A物质的水溶液与含分子B物质的水溶液混合时,含分子A物质与含分子B物质的摩尔比为1:0.3~1;
所述含分子A物质的水溶液的质量百分比浓度为0.5%~3%;
所述含分子B物质的水溶液的质量百分比浓度为3%~10%;
所述金属离子盐溶液的浓度为0.005~2g/mL;
所述金属离子盐与含分子A物质的摩尔比为0.1~10:1;
所述金属离子盐与金属硫化物硫源物质的摩尔比为1:0.5~3;
所述负载金属硫化物纳米颗粒的杂化材料水溶液的质量百分比浓度为0.6%~24%;
所述沉淀剂与负载金属纳米颗粒杂化材料的水溶液的体积比为2~4:1;
所述沉淀物干燥的温度为25~30℃,真空度为0.09~-0.1MPa。
CN201610278046.9A 2016-04-28 2016-04-28 一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法 Active CN105837832B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610278046.9A CN105837832B (zh) 2016-04-28 2016-04-28 一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610278046.9A CN105837832B (zh) 2016-04-28 2016-04-28 一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105837832A true CN105837832A (zh) 2016-08-10
CN105837832B CN105837832B (zh) 2018-07-17

Family

ID=56590074

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610278046.9A Active CN105837832B (zh) 2016-04-28 2016-04-28 一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105837832B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548522A (zh) * 2019-07-19 2019-12-10 华南师范大学 一种降解四环素a环的可回收光催化材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136742A1 (en) * 2005-05-25 2009-05-28 Posco Ag-containing solution, antibacterial resin composition comprising the solution and antibacterial resin coated steel plate
CN103212720A (zh) * 2013-04-02 2013-07-24 环保化工科技有限公司 一种纳米银分散液及其制备方法,以及一种纳米银抑菌涂层的制备方法
CN104073911A (zh) * 2014-07-17 2014-10-01 东华大学 一种纳米银抗菌涤纶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136742A1 (en) * 2005-05-25 2009-05-28 Posco Ag-containing solution, antibacterial resin composition comprising the solution and antibacterial resin coated steel plate
CN103212720A (zh) * 2013-04-02 2013-07-24 环保化工科技有限公司 一种纳米银分散液及其制备方法,以及一种纳米银抑菌涂层的制备方法
CN104073911A (zh) * 2014-07-17 2014-10-01 东华大学 一种纳米银抗菌涤纶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110548522A (zh) * 2019-07-19 2019-12-10 华南师范大学 一种降解四环素a环的可回收光催化材料及其制备方法
CN110548522B (zh) * 2019-07-19 2021-09-07 华南师范大学 一种降解四环素a环的可回收光催化材料及其制备方法

Also Published As

Publication number Publication date
CN105837832B (zh) 2018-07-17

Similar Documents

Publication Publication Date Title
CN105777934B (zh) 一种水溶性负载金属离子的杂化材料及其制备方法
CN105860152B (zh) 一种水溶性负载金属纳米颗粒的杂化材料及其制备方法
CN105821523A (zh) 一种负载金属离子的海藻酸钠阻燃纤维及其制备方法
CN103586461B (zh) 一种纳米银溶胶及其制备与纯化方法
CN105926084A (zh) 一种负载稀土离子的海藻酸钠纤维催化材料及其制备方法
CN104070177B (zh) 一种银、金纳米粒子的制备方法
CN105821659A (zh) 一种抗菌整理剂及制备方法和抗菌应用
CN102302903A (zh) 一种纳米银-聚偏氟乙烯复合分离膜及其制备方法
CN110104751A (zh) 一种重金属稳定剂及其制备方法和用途
CN105925260B (zh) 一种负载稀土金属离子的纳米发光材料及其制备方法
CN102581300A (zh) 一种金纳米粒子的制备方法
CN105879909B (zh) 一种负载稀土金属离子的海藻酸盐微球催化材料及其制备方法
CN103862036A (zh) 一种用于二氧化硅包覆贵金属纳米晶的制备方法
CN101475149B (zh) 一种硒化铋纳米颗粒的制备方法
CN105837832A (zh) 一种水溶性负载金属硫化物纳米颗粒的杂化材料及其制备方法
CN113956862B (zh) 一种可降低pH依赖的胍胶压裂液凝胶、胍胶压裂液体系及其制备方法与应用
CN102653396A (zh) 具有高分散性的金属纳米点规则修饰的石墨烯片复合材料及原位制备方法
CN102951718A (zh) 一种适用于地下水治理的改性零价纳米铁的制备方法
CN105949526B (zh) 一种负载金属纳米颗粒的杂化材料水溶液及其制备方法
CN105949479A (zh) 一种负载金属离子的杂化材料水溶液及其制备方法
CN114794149B (zh) 一种纳米木质素抗菌材料及其制备方法和应用
CN105949347B (zh) 一种负载金属硫化物纳米颗粒的杂化材料水溶液及其制备方法
CN109019661B (zh) 一种氯化银纳米粉体的合成方法
CN113025301B (zh) 压裂液及其制备方法与应用
CN105778747A (zh) 一种水性耐蚀抗静电涂料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant