CN105836937A - 一种去除废水中氟化物的方法 - Google Patents

一种去除废水中氟化物的方法 Download PDF

Info

Publication number
CN105836937A
CN105836937A CN201610233884.4A CN201610233884A CN105836937A CN 105836937 A CN105836937 A CN 105836937A CN 201610233884 A CN201610233884 A CN 201610233884A CN 105836937 A CN105836937 A CN 105836937A
Authority
CN
China
Prior art keywords
fluoride
reaction
fluorine
wastewater
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610233884.4A
Other languages
English (en)
Other versions
CN105836937B (zh
Inventor
刘咏
范琴
刘燕兰
汪诗翔
周安澜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deepblue Environmental Protection Technologies Co., Ltd.
Original Assignee
Sichuan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Normal University filed Critical Sichuan Normal University
Priority to CN201610233884.4A priority Critical patent/CN105836937B/zh
Publication of CN105836937A publication Critical patent/CN105836937A/zh
Application granted granted Critical
Publication of CN105836937B publication Critical patent/CN105836937B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • C02F2101/14Fluorine or fluorine-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Water Treatment By Sorption (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明公开了一种去除废水中氟化物的方法,它包括预处理、内电解反应、沉淀反应和混凝反应。本发明采用铝铜双金属内电解反应产生的OH和氢氧化钙联合提升pH值,大大减少了氢氧化钙的投加量,与传统钙盐沉淀法相比减少了CaF2沉淀对Ca(OH)2颗粒表面的包裹问题;本发明与传统的铝盐络合‑钙盐凝聚除氟法相比,采用自然界广泛存在、价格低廉的腐植酸作为吸附剂和絮凝剂,不仅吸附废水中的氟铝络离子,减少了钙的投加量,提高了除氟效果,降低了除氟处理成本,而且还可有效地去除水中的铝离子,从而大大减少了处理出水中铝的残留,减少了二次污染的产生;本发明的方法控制参数简单,条件温和,容易实施,适用于工业化大规模生产。

Description

一种去除废水中氟化物的方法
技术领域
本发明属于水处理技术领域,具体涉及一种去除废水中氟化物的方法。
背景技术
工业含氟废水,来源于含氟矿石开采、焦炭、玻璃、化肥、电镀、电子、太阳能电池生产等行业。工业含氟废水成分复杂,浓度涵盖范围大,从几十毫克每升到几千,甚至上万。以晶体硅太阳能电池片行业含氟废水的产生为例,在晶体硅太阳能电池片生产过程中,利用氢氟酸对晶体硅表面进行腐蚀、制绒以及表面冲洗,导致高氟酸性废水的产生。由于不同生产阶段产生的废水浓度有别,导致废水总排放口的氟离子浓度不断变化,波动范围从几百毫克每升到几千,甚至上万。
氟是人类及动植物必需的微量元素之一,微量氟能促进儿童生长发育和防龋齿。但过量的氟摄入机体不仅对骨骼系统造成损伤,还对消化、呼吸、神经系统造成损害,引起心血管、中枢神经等全身性的疾病;此外,过量氟还会对动植物造成一定的损伤。
中国是太阳能电池生产第一大国,晶体硅太阳能电池片是太阳能电池的重要组成。鉴于晶体硅太阳能电池生产废水中氟化物浓度高,酸性极强,危害大,因此,这类含氟工业废水的排放必须受到严格控制,在排放前必须对其进行处理以达到国家规定的排放标准(《污水综合排放标准》(GB8978-1996)中规定,氟化物排放的三级标准为<20mg/L,一级和二级标准为<10mg/L,大致呈中性)。
目前,去除该类废水中氟化物的方法主要为石灰和氯化钙联合沉淀法,该方法用消化石灰乳加入含氟废水中至充分呈碱性,再利用强电解质氯化钙来沉淀氟离子,由于生成的氟化钙晶体的粒径较小,难以过滤,为了进行固液分离,通常需要加入大分子的絮凝剂,如铝盐或铝酸盐、高分子聚合物,形成的絮状物先进行沉降分离。但这种方法的缺点是溶液中Ca(OH)2颗粒的表面被生成的CaF2沉淀包裹,无法让其与溶液充分反应,导致石灰和钙盐的用量很大。尽管如此,除氟效果仍然较差,而且还使得药剂成本增加,生成的泥渣量较多;铝盐混凝沉淀过程一般需增大投药量才能提高氟的去除率,这会使处理成本增大,同时也使处理出水中含有大量的铝离子而造成二次污染。此外,传统的高分子聚合物无法将处理过程中形成的络合态氟化物进行有效絮凝去除,导致处理出水中氟化物的含量较高,很难稳定地达标排放。因此,在用钙盐和铝盐联合处理含氟废水时,必须优化工艺过程和工艺条件使水中氟化物得以有效去除的同时处理成本较低且二次污染少。
发明内容
本发明的目的在于克服现有技术的缺点,提供一种经济、高效、环保的去除废水中氟化物的方法。
本发明的目的通过以下技术方案来实现:一种去除废水中氟化物的方法,它包括以下步骤:
S1. 预处理:收集废水将废水中氟化物浓度调至以氟离子计为1000~3000mg/L,并调节废水的pH值至酸性,得预处理后的含氟废水;
S2. 内电解反应:向预处理后的含氟废水中加入铝铜双金属,在搅拌的条件下进行铝铜内电解反应;
S3. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至6~9,并在搅拌的条件下发生沉淀反应,固液分离,所得液体备用;
S4. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,再加入聚丙烯酰胺进行混凝反应,待反应结束后固液分离,所得液体为去除氟化物的水。
进一步地,所述废水为晶体硅太阳能电池片生产废水。
进一步地,步骤S1中所述废水的pH值为1~3。
进一步地,,步骤S2中所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为0.5~3%的硫酸铜溶液中进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在40~60℃的无氧条件下干燥50~70min。
进一步地,所述铝铜双金属的投加量与预处理后含氟废水中氟化物的质量比为25~75:1,处理后含氟废水中氟化物的质量以氟离子计。
进一步地,步骤S2中所述铝铜内电解反应的温度为15~25℃,反应时间为30~80min,搅拌强度为60~120r/min。
进一步地,步骤S3中所述沉淀反应的时间为30~130min,搅拌强度为60~120r/min。
进一步地,步骤S4中所述腐植酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质量比为0.25~1.25:0.25~1.25:1,处理后含氟废水中氟化物的质量以氟离子计。
进一步地,步骤S4中所述络合、吸附和胶凝反应的温度为15~25℃,反应时间为5~25min,并在60~120r/min的转速下进行搅拌。
进一步地,步骤S4中所述混凝反应的温度为15~25℃,反应时间为20~40min,并在60~120r/min的转速下进行搅拌。
本发明的原理是:铝刨花表面有很多油性物质和氧化铝的钝化膜,分别用NaOH溶液和HCl清洗铝刨花表面时,可有效除去其表面的油性物质和氧化铝钝化膜。当预处理后的铝刨花加入硫酸铜溶液中时,发生金属的置换反应,溶液中的铜离子沉积在铝刨花表面,将此材料进行洗涤、干燥后可制得铝铜双金属。
当铝铜双金属放入含氟废水中时,铝铜双金属在溶液中形成电偶原电池,铝作为阳极失去电子进入溶液中,产生的电子传递到铜电极,利用铜的反应界面,溶液中的H+和O2在铜表面上得到电子而被还原,使溶液的pH值逐渐上升。在电偶腐蚀过程中,由于阴极铜的电催化作用,加快了阳极Al→Al3+的反应过程,使溶液中的铝离子不断增多。A13+与水反应而水解,低pH值条件下主要以Al(H20)6 3+存在,由于反应过程中pH值逐渐上升,水合分子逐步被OH-所取代,生成各种羟基铝离子使其以游离态和各种羟基络合态存在,各种形态的铝离子将水中游离态氟离子(F-)转化为各种形态的络合态氟AlFx(OH)(3-x)(其中X为单个铝原子对应的氟的配位数)。
游离态氟转化为络合态氟之后,再引入石灰,一方面将pH 值调节至适当范围使废水中生成大量的水合氢氧化铝,有利于氟的凝聚去除过程;另一方面使溶液中生成大量的氟铝钙和氟化钙,使氟由溶解态转化成颗粒态,使其容易从水中分离。由于在铝铜内电解反应阶段,有大量OH-产生导致的pH值上升,使得在钙沉淀阶段所加入的石灰量较少,这大大减少了CaF2对Ca(OH)2颗粒的包裹。
进一步地,采用固液分离反应器去除颗粒态氟后,废水中还残留有大量的铝离子和络合态的氟离子,腐植酸可通过络合作用吸附这部分离子。腐植酸是自然界中分布最为广泛的天然高分子有机物,来源广泛且价格低廉。腐植酸具有疏松的“海绵状”结构和巨大的表面面积(330-340m2/g),腐植酸分子富含许多具有化学活性的含氧官能团,特别是羧基(-COOH)和羟基(-OH),这使得腐植酸既可通过范德华引力又可通过官能团的络合作用来吸附废水中的铝离子和络合态的氟离子。此外,腐植酸是一种高分子电解质,在具有高浓度的铝离子溶液中容易发生胶凝作用,形成小的絮凝体。在聚丙烯酰胺作助凝剂的作用下,这些吸附有铝离子和络合态氟离子的腐植酸絮凝体会形成更大的絮凝体,通过固体分离,可使其从水中分离出来,得到净化后的出水。
本发明涉及的化学方程式如下:
(1)铝铜内电解反应
阳极(Al):Al-3e-→Al3+
阴极(Cu):2H++2e-→2[H]→H2
有氧气时 O2+4H++4e-→2H20
(2)铝离子的水解以及与氟的络合
A13+与水反应而水解,低pH值条件下主要以Al(H20)6 3+存在,pH值大于3以后,水合分子逐步被OH-所取代,生成各种羟基铝离子,其主要反应为:
Al(H2O)6 3+ ←→[Al(OH)(H2O)5]2++H+
[Al(OH)(H2O)5]2+←→[Al(OH)2(H2O)4]++H+
[Al(OH)2(H2O)4]+ ←→[Al(OH)3(H2O)3]+H+
随着羟基离子的增多,各离子羟基之间发生架桥粘结(或称羟基桥连),可生成带正电的多核羟基络合物:
2[Al(OH)(H2O)5]2+←→[(H2O)4Al Al(H2O)4]4++2H20
进一步桥连,则又可生成[A13(OH)4(H2O)10]5+、[A16(OH)15]3+、[Al8(OH)20]4+以及[Al13O4(OH)24]7+等。
其除氟机理为A13+水解生成Al(OH)3胶体或绒絮体,这些絮体再对F-的配位体交换、物理吸附、卷扫作用除去废水中的F-;A13+将水中游离态氟离子(F-)转化为AlF2+、[Al2FO2(H2O)]+、[AlF(OH)(H2O)2]+、[Al2FO2(H2O)2]+、[Al3FO3(OH)(H2O)2]+ 、[Al4FO5(H2O)4]+、[Al6F3O7(H2O)3]+、[Al13F2O17(OH)]2+、[Al13F6O15(OH)(H2O)8]2+等各种形态的络合态氟AlFx(OH)(3-x)(其中X为单个铝原子对应的氟的配位数),从而达到除氟的目的。
(3)石灰调节pH同时进行钙沉淀反应
AlFx(OH)(3-x)+ Ca2+= AlCaFx(OH)(5-x)
F-+Ca2+=CaF2
本发明具有以下优点:
(1)本发明采用铝铜双金属内电解反应产生的OH-和氢氧化钙联合提升pH值,大大减少了氢氧化钙的投加量,与传统钙盐沉淀法相比,减少了CaF2沉淀对Ca(OH)2颗粒表面的包裹问题;
(2)本发明采用的原料是铝刨花,制备铝铜双金属的方法简单、操作方便,不仅实现变废为宝,还使得制得的铝铜双金属成本低廉;本发明采用该铝铜双金属在水溶液中发生电偶腐蚀产生的铝盐来络合水中的氟化物,与传统方法中直接投加铝盐相比,本发明的方法成本更低;
(3)本发明与传统的铝盐络合-钙盐凝聚除氟法相比,本发明采用自然界广泛存在、价格低廉的腐植酸作为吸附剂和絮凝剂,不仅吸附废水中的氟铝络离子,减少了钙的投加量,提高了除氟效果,降低了除氟处理成本,而且还可有效地去除水中的铝离子,从而大大减少了处理出水中铝的残留,减少了二次污染的产生;
(4)本发明的方法控制参数简单,条件温和,容易实施,适用于工业化大规模生产。
附图说明
图1为本发明中腐植酸分子对铝离子的吸附、络合作用示意图,图中,腐植酸大分子以HnHSg表示,金属盐以Me(H2O)nFx (m-x)+水合离子表示。
具体实施方式
下面结合附图及实施例对本发明做进一步的描述,本发明的保护范围不局限于以下所述。
实施例1:一种去除废水中氟化物的方法,它包括以下步骤:
S1. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计为1000mg/L,并调节废水的pH值至3,得预处理后的含氟废水;
S2. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与预处理后含氟废水中氟化物的质量比为25:1,处理后含氟废水中氟化物的质量以氟离子计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为15℃,反应时间为30min,搅拌强度为60r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为0.5%的硫酸铜溶液中进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在40℃的无氧条件下干燥50min;
S3. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至6,并在搅拌的条件下发生沉淀反应,所述沉淀反应的时间为30min,搅拌强度为60r/min固液分离,所得液体备用;
S4. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温度为15℃,反应时间为5min,并在60r/min的转速下进行搅拌,再加入聚丙烯酰胺进行混凝反应,反应的温度为15℃,反应时间为20min,并在60r/min的转速下进行搅拌,待反应结束后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质量比为0.25:0.25:1,处理后含氟废水中氟化物的质量以氟离子计。此反应步骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分子不断脱去质子(即H+) ,而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电数,二者在水溶液中不断演变并发生络合反应。
实施例2:一种去除废水中氟化物的方法,它包括以下步骤:
S1. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计为3000mg/L,并调节废水的pH值至1,得预处理后的含氟废水;
S2. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与预处理后含氟废水中氟化物的质量比为75:1,处理后含氟废水中氟化物的质量以氟离子计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为25℃,反应时间为80min,搅拌强度为120r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为3%的硫酸铜溶液中进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在60℃的无氧条件下干燥70min;
S3. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至9,并在搅拌的条件下发生沉淀反应,所述沉淀反应的时间为130min,搅拌强度为120r/min固液分离,所得液体备用;
S4. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温度为25℃,反应时间为25min,并在120r/min的转速下进行搅拌,再加入聚丙烯酰胺进行混凝反应,反应的温度为25℃,反应时间为40min,并在120r/min的转速下进行搅拌,待反应结束后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质量比为1.25:1.25:1,处理后含氟废水中氟化物的质量以氟离子计。此反应步骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分子不断脱去质子(即H+) ,而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电数,二者在水溶液中不断演变并发生络合反应。
实施例3:一种去除废水中氟化物的方法,它包括以下步骤:
S1. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计为1500mg/L,并调节废水的pH值至2.5,得预处理后的含氟废水;
S2. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与预处理后含氟废水中氟化物的质量比为43:1,处理后含氟废水中氟化物的质量以氟离子计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为18℃,反应时间为48min,搅拌强度为82r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为1.5%的硫酸铜溶液中进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在48℃的无氧条件下干燥60min;
S3. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至7,并在搅拌的条件下发生沉淀反应,所述沉淀反应的时间为80min,搅拌强度为85r/min固液分离,所得液体备用;
S4. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温度为18℃,反应时间为16min,并在85r/min的转速下进行搅拌,再加入聚丙烯酰胺进行混凝反应,反应的温度为18℃,反应时间为28min,并在90r/min的转速下进行搅拌,待反应结束后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质量比为0.7:1:1,处理后含氟废水中氟化物的质量以氟离子计。此反应步骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分子不断脱去质子(即H+) ,而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电数,二者在水溶液中不断演变并发生络合反应。
实施例4:一种去除废水中氟化物的方法,它包括以下步骤:
S1. 预处理:收集晶体硅太阳能电池片生产废水将废水中氟化物浓度调至以氟离子计为2300mg/L,并调节废水的pH值至1.5,得预处理后的含氟废水;
S2. 内电解反应:将预处理后的含氟废水中加入铝铜双金属,铝铜双金属的投加量与预处理后含氟废水中氟化物的质量比为70:1,处理后含氟废水中氟化物的质量以氟离子计;在搅拌的条件下进行铝铜内电解反应,铝铜内电解反应的温度为22℃,反应时间为70min,搅拌强度为110r/min;其中,所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为2.3%的硫酸铜溶液中进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在54℃的无氧条件下干燥60min;
S3. 沉淀反应:在电解反应后的含氟废水中加入石灰调节溶液的pH值至8,并在搅拌的条件下发生沉淀反应,所述沉淀反应的时间为115min,搅拌强度为110r/min固液分离,所得液体备用;
S4. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,反应的温度为22℃,反应时间为20min,并在100r/min的转速下进行搅拌,再加入聚丙烯酰胺进行混凝反应,反应的温度为22℃,反应时间为35min,并在100r/min的转速下进行搅拌,待反应结束后固液分离,所得液体为去除氟化物的水,其中,所述腐植酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质量比为1:0.75:1,处理后含氟废水中氟化物的质量以氟离子计。此反应步骤中腐植酸分子对铝离子的吸附、络合作用如图1所示,在反应过程中,腐植酸大分子不断脱去质子(即H+) ,而带负电性,由于水中羟基的加入,金属水合离子也会改变荷电数,二者在水溶液中不断演变并发生络合反应。
实验例1:
某晶硅太阳能电池片生产废水中氟化物浓度2040 mg/L,pH值为1.5。通过以下步骤去除该废水中的氟化物。
将用氢氧化钠和盐酸溶液分别对铝刨花(长2cm、宽3mm、厚0.25mm)进行表面处理,将进行表面处理过的铝刨花放入质量分数为1%的硫酸铜溶液中(铝刨花与溶液中硫酸铜的质量比为8:1)浸渍25min后,固液分离,用水洗涤至洗出液中无铜离子检出;将所得固体在温度为40℃的无氧条件下干燥60min,制得铝铜双金属;
取10L废水于15L至耐酸碱的聚四氟乙烯容器1中,往容器1内的废水中加入1.2Kg铝铜双金属,在搅拌强度为100r/min、温度为25℃的条件下进行铝铜内电解反应60min,往内电解反应结束后的溶液中加入石灰使溶液的pH调整为7,在搅拌强度为100r/min的条件下,在温度为25℃的条件下进行沉淀反应120min,反应结束后,固液分离,将清液备用;
将所得的清液汇集至15L耐酸碱的聚四氟乙烯容器2中,往容器2中加入腐植酸9g,在反应温度为25℃的条件下,搅拌(搅拌强度为80r/min)20min,再加入聚丙烯酰胺9g,在快速搅拌(搅拌强度为120r/min)5min,慢速搅拌(搅拌强度为60r/min)20min的条件下进行混凝反应。将混凝反应结束后的混合液进行固液分离,清液为处理出水。测定处理出水中氟化物的浓度为9.815mg/L,氟化物的去除率为99.5%,出水中pH为6.72。
实验例2:
某晶硅太阳能电池片生产废水中氟化物浓度1040mg/L,pH值为2。通过以下步骤去除该废水中的氟化物。
将用氢氧化钠和盐酸溶液分别对铝刨花(长2cm、宽3mm、厚0.25mm)进行表面处理,将进行表面处理过的铝刨花放入质量分数为1%的硫酸铜溶液中(铝刨花与溶液中硫酸铜的质量比为12:1)浸渍15min后,固液分离、用水洗涤至洗出液中无铜离子检出;将所得固体在温度为60℃的无氧条件下干燥50min,制得铝铜双金属;
取20L废水于30L至耐酸碱的聚四氟乙烯容器1中,往容器1内的废水中加入1.5Kg铝铜双金属,在搅拌强度为80r/min,温度为20℃的条件下进行铝铜内电解反应30min,往内电解反应结束后的溶液中加入石灰使溶液的pH调整为8,在搅拌强度为90r/min,温度为20℃的条件下进行沉淀反应60min,反应结束后,固液分离,将清液备用;
将所得的清液汇集至30L耐酸碱的聚四氟乙烯容器2中,往容器2中加入腐植酸7g,在反应温度为20℃的条件下,搅拌(搅拌强度为80r/min)10min,再加入7g聚丙烯酰胺,在快速搅拌(搅拌强度为120r/min)3 min,慢速搅拌(搅拌强度为80r/min)15min的条件下进行混凝反应。将混凝反应结束后的混合液进行固液分离,清液为处理出水。测定处理出水中氟化物的浓度为8.126mg/L,氟化物的去除率为99.2%,出水中pH为6.84。

Claims (10)

1.一种去除废水中氟化物的方法,其特征在于,它包括以下步骤:
S1. 预处理:收集废水将废水中氟化物浓度调至以氟离子计为1000~3000mg/L,并调节废水的pH值至酸性,得预处理后的含氟废水;
S2. 内电解反应:向预处理后的含氟废水中加入铝铜双金属,在搅拌的条件下进行铝铜内电解反应;
S3. 沉淀反应:在内电解反应后的含氟废水中加入石灰调节溶液的pH值至6~9,并在搅拌的条件下发生沉淀反应,固液分离,所得液体备用;
S4. 混凝反应:将步骤S3所得液体中加入腐植酸进行络合、吸附和胶凝反应,再加入聚丙烯酰胺进行混凝反应,待反应结束后固液分离,所得液体为去除氟化物的水。
2.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,所述废水为晶体硅太阳能电池片生产废水。
3.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S1中所述废水的pH值为1~3。
4.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S2中所述铝铜双金属采用以下方法制备:用氢氧化钠和盐酸溶液依次对铝刨花进行处理,将处理后的铝刨花放入质量百分浓度为0.5~3%的硫酸铜溶液中进行浸渍,浸渍后固液分离,所得固体用水洗涤至洗出液无铜离子,将洗涤后的固体在40~60℃的无氧条件下干燥50~70min。
5.如权利要求1或4所述的一种去除废水中氟化物的方法,其特征在于,所述铝铜双金属的投加量与预处理后含氟废水中氟化物的质量比为25~75:1,处理后含氟废水中氟化物的质量以氟离子计。
6.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S2中所述铝铜内电解反应的温度为15~25℃,反应时间为30~80min,搅拌强度为60~120r/min。
7.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S3中所述沉淀反应的时间为30~130min,搅拌强度为60~120r/min。
8.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S4中所述腐植酸、聚丙烯酰胺与预处理后含氟废水中氟化物的质量比为0.25~1.25:0.25~1.25:1,处理后含氟废水中氟化物的质量以氟离子计。
9.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S4中所述络合、吸附和胶凝反应的温度为15~25℃,反应时间为5~25min,并在60~120r/min的转速下进行搅拌。
10.如权利要求1所述的一种去除废水中氟化物的方法,其特征在于,步骤S4中所述混凝反应的温度为15~25℃,反应时间为20~40min,并在60~120r/min的转速下进行搅拌。
CN201610233884.4A 2016-04-16 2016-04-16 一种去除废水中氟化物的方法 Active CN105836937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610233884.4A CN105836937B (zh) 2016-04-16 2016-04-16 一种去除废水中氟化物的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610233884.4A CN105836937B (zh) 2016-04-16 2016-04-16 一种去除废水中氟化物的方法

Publications (2)

Publication Number Publication Date
CN105836937A true CN105836937A (zh) 2016-08-10
CN105836937B CN105836937B (zh) 2019-02-19

Family

ID=56588461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610233884.4A Active CN105836937B (zh) 2016-04-16 2016-04-16 一种去除废水中氟化物的方法

Country Status (1)

Country Link
CN (1) CN105836937B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106587321A (zh) * 2016-11-23 2017-04-26 辽宁石油化工大学 一种利用双金属体系和碳量子点强化零价金属处理污染物的方法
CN108975440A (zh) * 2017-05-31 2018-12-11 南京博络金环保科技有限公司 一种深度脱除水中可溶性残留铝的方法
CN110590027A (zh) * 2019-09-04 2019-12-20 山西晋城无烟煤矿业集团有限责任公司 一种工业排污水的除氟方法
CN110902791A (zh) * 2019-12-10 2020-03-24 福建超强建设有限公司 一种节能型污水处理装置及处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657680A (en) * 1985-11-12 1987-04-14 Amax Inc. Wastewater treatment
JP2001340870A (ja) * 2000-03-31 2001-12-11 Sumitomo Metal Mining Co Ltd フッ素含有排水の処理方法
CN102363546A (zh) * 2011-06-20 2012-02-29 上海明诺环境科技有限公司 一种高含盐制药废水的处理系统
CN103191740A (zh) * 2013-03-18 2013-07-10 环境保护部华南环境科学研究所 一种铜-海绵铁双金属催化剂及其制备方法和应用
CN105084591A (zh) * 2015-08-11 2015-11-25 安徽锦洋氟化学有限公司 一种氟化工高含氟废水处理工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4657680A (en) * 1985-11-12 1987-04-14 Amax Inc. Wastewater treatment
JP2001340870A (ja) * 2000-03-31 2001-12-11 Sumitomo Metal Mining Co Ltd フッ素含有排水の処理方法
CN102363546A (zh) * 2011-06-20 2012-02-29 上海明诺环境科技有限公司 一种高含盐制药废水的处理系统
CN103191740A (zh) * 2013-03-18 2013-07-10 环境保护部华南环境科学研究所 一种铜-海绵铁双金属催化剂及其制备方法和应用
CN105084591A (zh) * 2015-08-11 2015-11-25 安徽锦洋氟化学有限公司 一种氟化工高含氟废水处理工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张志等: "微电解-氯化钙沉淀法处理电镀含氟废水的试验研究", 《工程建设与设计》 *
贺启环: ""微电解技术在印制电路板生产综合废水处理中的应用"", 《印制电路信息》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106587321A (zh) * 2016-11-23 2017-04-26 辽宁石油化工大学 一种利用双金属体系和碳量子点强化零价金属处理污染物的方法
CN108975440A (zh) * 2017-05-31 2018-12-11 南京博络金环保科技有限公司 一种深度脱除水中可溶性残留铝的方法
CN110590027A (zh) * 2019-09-04 2019-12-20 山西晋城无烟煤矿业集团有限责任公司 一种工业排污水的除氟方法
CN110902791A (zh) * 2019-12-10 2020-03-24 福建超强建设有限公司 一种节能型污水处理装置及处理方法

Also Published As

Publication number Publication date
CN105836937B (zh) 2019-02-19

Similar Documents

Publication Publication Date Title
CN105084591B (zh) 一种氟化工高含氟废水处理工艺
CN105836937B (zh) 一种去除废水中氟化物的方法
CN113443640B (zh) 一种利用磷酸铁锂电池正负极废粉制备电池级碳酸锂和电池级磷酸铁的方法
CN108341424A (zh) 硫酸铜的生产方法
CN105126742A (zh) 一种利用改性高岭土吸附剂处理含氟废水的方法
CN110857454B (zh) 一种从含铅废料中回收铅的方法
CN113072048B (zh) 一种钠法生产磷酸铁的污水处理及渣料回收利用工艺
CN106803588B (zh) 一种硫酸钠废液的回收再利用方法
CN100343187C (zh) 生产vb12的工业废水的资源化处理工艺及其专用废水处理机
CN101525752B (zh) 高纯度四氧化三钴粉体的清洁生产方法
CN111048862A (zh) 一种高效回收锂离子电池正负极材料为超级电容器电极材料的方法
CN105886781A (zh) 一种从电解锰阳极泥中回收二氧化锰的方法
CN107416863A (zh) 磷酸铁生产的废水制备工业级铵盐的方法
WO2024055510A1 (zh) 一种镍铁合金制备磷酸铁锂的方法及应用
CN217265182U (zh) 锂电池电解液废液的处理系统
CN113897490B (zh) 锂离子电池正极材料浸出液的除氟方法及应用
CN105860335B (zh) 一种pvc热稳定剂的制备方法
CN114671420A (zh) 一种化学镀镍含磷废渣制备电池级磷酸铁的方法
CN108588723A (zh) 一种碱性蚀刻废液的再生循环系统及方法
CN114524548A (zh) 锂电池电解液废液的处理方法及处理系统
CN110581274B (zh) 一种碳包覆磷酸钒钠的制备方法
CN112250090A (zh) 一种硫酸锂溶液深度除氟的生产方法
CN107699694B (zh) 一种处理含氯化铜酸性刻蚀废液及制得铁负极材料的方法
CN218359235U (zh) 一种六氟磷酸根和锂的回收系统
CN213060218U (zh) 一种化学镀镍废液处理系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20181213

Address after: 610041, 24th Floor, New Hope International C Block, No. 8, Jitai No. 3 Road, Chengdu High-tech Zone, Sichuan Province (1-8)

Applicant after: Deepblue Environmental Protection Technologies Co., Ltd.

Address before: 610068 No. 5 Jing'an Road, Jinjiang District, Chengdu City, Sichuan Province

Applicant before: Sichuan Normal University

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant