CN1058357C - 具有降压功率变换器特性的全波升隆压功率变换器 - Google Patents

具有降压功率变换器特性的全波升隆压功率变换器 Download PDF

Info

Publication number
CN1058357C
CN1058357C CN95191617A CN95191617A CN1058357C CN 1058357 C CN1058357 C CN 1058357C CN 95191617 A CN95191617 A CN 95191617A CN 95191617 A CN95191617 A CN 95191617A CN 1058357 C CN1058357 C CN 1058357C
Authority
CN
China
Prior art keywords
voltage
buck
power
converter
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN95191617A
Other languages
English (en)
Other versions
CN1140512A (zh
Inventor
弗莱德·欧·巴斯罗德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN1140512A publication Critical patent/CN1140512A/zh
Application granted granted Critical
Publication of CN1058357C publication Critical patent/CN1058357C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/337Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration
    • H02M3/3372Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only in push-pull configuration of the parallel type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Prostheses (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种集成升降压(回扫)和降压变换器特性的连续式全波功率变换器布局。该升降压(回扫)变换器的特征是电压转换函数为M=(D/(1-D))。该全波降压变换器的特征是,感应器电流在交变D时段期间是连续电源,在同时(1-D)时段期间是不连续电源,以及在D和(1-D)两个时段期间是连续负载。一种集成升降压(回扫)和降压特性的连续式全波功率变换器布局。该升降压(回扫)变换器的特征是电压转换函数为Eout=Ein(D/(1-D))。该降压变换器的特征是,感应器电流在交变D时段期间是连续电源,在同时(1-D)时段期间是不连续电源,以及在D和(1-D)两个时段期间是连续负载。

Description

具有降压功率变换器特性的全波升降压功率变换器
本发明涉及开关式功率变换器。特别是,本发明涉及其中有利地集成了基本降压或升压变换器形式的特征和特性的开关式功率变换器。更具体地说,本发明涉及基本降压变换器形式与以前集成的升降压变换器形式的有利集成。
在开关式电源中通常使用三种基本的电路系列,即降压、升压和升降压(通常称作“回扫”)。升降压(回扫)变换器很可能是有利地集成基本降压和升压变换器形式的最早例子。虽然有些管理当局把升降压变换器看作是一种基本形式,但是另一种主要意见认为升降压变换器是一种集成形式。
无论升降压变换器形式的成因怎样,管理当局关于升降压变换器形式,M=D/(1-D),和升压变换器形式,M=1/(1-D)两者的连续式输出控制传递函数的布局特性有一致意见。这种一致意见认为,在所有连续式脉冲宽度调制控制的固定频率的开关式升压和升降压变换器形式中,都存在非最小相特性,即右半s平面零点。这种叫做RHP零点的一阶特性归因于(1-D)项所相应而生的感应电流/负载电流的不连续性。这种RHP零点在降压系列的电路中从不出现。作为一种“非常讨厌的右半平面零点”的痛骂方式,以及一种“不可能补偿”的绝望情绪,这种RHP零点已被歪曲地戏称为“在每个获得升压的变换器的传递函数中无需额外费用就包括了右半平面零点”。已认定不存在与全波降压(正向)变换器形式等效的升降压(回扫)变换器形式。各种各样减轻这种RHP零点的努力包括不连续方式操作、前沿调制、功率和控制元件值控制,以及平均电流方式控制技术。现代变换器控制回路补偿技术广泛地提出有效地抑制这种RHP零点效应的要求。
于1967年作出假设,并在1972年得到分析证明,这种RHP零点效应二十余年来一直是连续认真研究的课题。这种努力的理由在升降压变换器形式的种种有利特性的集合中得到了体现,在这些有利特性集合中,有简单性、容易实现多输出、复合电压传递函数、宽输入线范围、降低的半导体应力、负载保护,以及和正向(降压)变换器相同的功率密度和效率。
尽管没有经受住这种RHP零点效应,但是专门以单端和全波两种布置工作,以及经广大泛围公共领域的努力,升降压变换器形式(回扫)已经在功率转换应用中得到了广泛的使用。
上述讨论连同适当确定的应用准则使其相当清楚,即如果这种RHP零点效应被消除,那么已经十分普遍的升降压变换器形式将会得到更广泛的应用。
本发明是一种连续式、全波、升降压(回扫)、脉冲宽度调制控制、固定频率、开关式的功率变换器,其中单个通量交换中介(储能感应器)这样置于(耦合在)交变(变换)电源与负载开关装置之间,以便同时提供标准升降压变换器电压传递函数,M=D/(1-D),以及在交变D时段期间为连续电源,在同时(1-D)时段期间为不连续电源,和在交变D和同时(1-D)两个时段期间为连续负载的特有的全波降压感应电流特性。
由于RHP零点从不在降压系列的电路中出现,所以这种变换器布局不呈现在讨论现有技术时所述的特有的获得升压的RHP零点,然而保持所有其它的内在全波升降压特性。响应常规控制装置,回路带宽仅由理论上脉冲调制率最大值所限制。
整个功率磁函数,即感应和变换(隔离)两部分,可以用单个磁元件得到,全波正向变换器的回扫等效可以用单个变换器芯得到。
参考附图,将会进一步理解本发明及其优选实施例的详细情况,其中:
图1说明本发明的标准形式。
图2A说明图3A、图4A、图5A、图7A、图8A和图9A的磁结构特征(identity)。
图2B是沿图2A直线A-A所取的图2A的断面图。
图3连同电压、电流和传递函数特征,示意说明现有技术获得降压的变换器形式。
图3A连同电压和电流特征,说明图3的磁结构。
图4连同电压、电流和传递函数特征,示意说明本发明的非隔离式单磁变换器实施例。
图4A连同电压和电流特征,说明图4的磁结构。
图5连同电压、电流和传递函数特征,示意说明本发明的隔离式单磁多输出变换器实施例。
图5A连同电压和电流特征,说明图5的磁结构。
图6是多条曲线,连同时间、电压和电流求和表达式,说明图2、图2A、图3、图3A、图4、图4A、图5、图5A、图7、图7A、图8、图8A、图9和图9A的时间、电压和电流特征。
图7连同电压、电流和传递函数特征,示意说明本发明的隔离式三磁变换器实施例。
图7A连同电压和电流特征,说明图7的磁结构。
图8连同电压、电流和传递函数特征,示意说明本发明的隔离式两磁变换器实施例。
图8A连同电压和电流特征,说明图8的磁结构。
图9连同电压、电流和传递函数特征,示意说明本发明的隔离式单磁变换器实施例。
图9A连同电压和电流特征,说明图9的磁结构。
为了说明本发明,假定理想开关,单向导电装置,以及磁性元件。理想化的磁特性包括用于下文讨论的变换器T11和T12的常规低磁阻磁芯结构,以及用于L的常规磁阻相对较高的磁芯结构,这样实现是为了获得必要的安匝(磁势)特征。M项是理想电压转换率,用D项来表示。D项是开关闭合时间tON,表示为(T)的函数。(T)项是一个全波操作周期,以任意时间单位表示。
1。现在参考图3和图3A,其时间、电压和电流特征在图6中连同时间、电压和电流表达式,用(T)、(A)、(E)、(F)和(H)表示。给定n=0.5,可见对图3现有技术获得降压的电路的电压传递函数应用交变(全波)开关装置将表示2D项,即M=n2D/{1+2D(n-1)}=0.5(2D)/{1+2D(-0.5)}=D/(1-D)。这个表达式精确地模拟常规全波降压变换器,其中如施加在各开关上的D项被全波降压感应器的Et等效特征有效地加倍,也就是,在稳态操作下,在每个开关周期上感应器两端之间电压的平均值必须为零。[(Ein-Eout)2D]+[-Eout(1-2D)]=0,2DEin-2DEout-Eout+2DEout=0,2DEin-Eout=0,Eout=2DEin,M=2D。
2.现在参考图7和图7A,其时间、电压和电流特征在图6中连同时间、电压和电流表达式,用(T)、(A)、(B)、(C)、(D)、(E)、(F)、(G)、(H)、(I)、(J)、(K)、(L)和(M)表示。
开关S11或S12的交替闭合tON将表示对应变换器T11或T12的Np、NT和Ns两端之间的Ein。对应的单向导电装置D11或D12将为不导通。组合的变换器和感应器的作用将通过导电的非对应单向导电装置D11或D12,表示非对应变换器T11或T12的Np、NT和Ns两端之间的Eout。配置并极化T11的Np与T12的NT的串联组合以及T11的NT与T12的Np的串联组合,以便在每个tON时段期间表示电压Ein-Eout,即电压(A)。这些串联组合并联连接在感应器L两端之间,这样通过导电的非对应单向导电装置D11或D12,把感应器L串联置于Ein与Eout之间。在每个tON时段期间,感应器L电流(G)与电源电流(E)、开关电流(I)或(J)、单向导电装置电流(L)或(M),以及输出电流(H)相连续。
同时断开开关S11和S12将因感应器L中的常规安匝(磁势)守恒而允许电压(A)的极性反向。单向导电装置D11和D12都导通,表示T11的Ns和T12的Ns两端之间的电压Eout,这个电压Eout由T11和T12的变换率(Np+NT)/Ns,即2∶1,表示为L两端之间电压。电压(A)在每个(T/2-tON)时段期间为-2Eout。图7A的全波回扫感应器L的Et等效表示为[(Ein-Eout)2D]+[-2Eout(1-2D)]=0,2DEin-2DEout-2Eout+4DEout=0,2DEin-2Eout+2DEout=0,DEin+DEout=Eout,DEin=Eout-DEout,EinD=Eout(1-D),Eout=Ein[D/(1-D)],M=D/(1-D),还是取交替地施加在开关装置上的D项。感应器L电流(G)通过比率Ns/(Np+NT),即1∶2并联变换为输出电流(H)。各单向导电装置传导电流(K),这些电流的和是电流(F)。感应器L电流(G)在每个(T/2-tON)时段期间与各单向导电装置电流(K)和输出电流(H)同时连续。感应器L电流(G)在开关装置S11或S12闭合时段tON期间为连续电源,在开关装置S11和S12同时断开时段(T/2-tON)期间为不连续电源,以及在tON和(T/2-tON)两个时段期间为连续输出。因此,IL=IM,IR(LOAD)=2DIM+(1-2D)2IM,IR(LOAD)=2IM[D+(1-2D)],IR(LOAD)=2IM(1-D),IM=0.5IR(LOAD)/(1-D)。通过集成电容器C2,连续的感应器L电流(G)/输出电流(H)以IR(LOAD)传送,这样表示使用负载R(LOAD)两端之间的Eout。
3.现在参考图8和图8A,其时间、电压和电流特征在图6中连同时间、电压和电流表达式,用(T)、(A)、(B)、(C)、(D)、(E)、(F)、(G)、(H)、(I)、(J)、(K)、(L)和(M)表示。除感应器L两端之间所表示的电压(A)是通过把T11和T12集成在单个低磁阻磁芯结构中而获得外,这个电路功能上与图7和图7A的电路相同。感应器L保持为一个分开的磁阻相对较高的磁芯结构。表示任一个Np两端之间的Ein和表示任一个非对应Ns两端之间的Eout的通量总和在tON时段期间产生Nt电压Ein-Eout。在(T/2-tON)时段期间同时表示各Ns两端之间的Eout的通量总和产生Nt电压,-2Eout。磁积分和通量总和技术按功率转换规定适当地建立。
4.现在参考图9和图9A,其时间、电压和电流特征在图6中连同时间、电压和电流表达式,用(T)、(A)、(B)、(C)、(D)、(E)、(F)、(H)、(I)、(J)、(K)、(L)和(M)表示。除表示虚线圈NEMF两端之间的电压(A)还是安匝(磁势)特征的模拟量外,这个电路功能上与图7和图7A电路相同。NL和NT线圈集成在T11和T12中。磁结构的外臂保持相对低的磁阻特性。感应器L的磁阻相对较高的磁特性集成在磁结构中臂中。感应器电流(G)的平均值现在是IM,它是较高磁阻的磁电流,为电流(I)、(J)和(K)的合成。磁积分和通量总和技术与第3段那些技术的出处,以及两线圈架推导共享。
5.现在参考图4和图4A,其时间、电压和电流特征在图6中连同时间、电压和电流表达式,用(T)、(A)、(B)、(C)、(D)、(E)、(F)、(H)、(I)、(J)、(K)、(L)和(M)表示。除在这个非隔离式实施例中缺少Ns线圈外,这个电路功能上与图9和图9A电路相同。
6.现在参考图5和图5A,其时间、电压和电流特征在图6中连同时间、电压和电流表达式,用(T)、(A)、(B)、(C)、(D)、(E)、(F)、(H)、(I)、(J)、(K)、(L)和(M)表示。除在这个隔离式多输出实施例中外加Ny线圈外,这个电路功能上与图9和图9A电路相同。
7.现在参考图1,这个电路实施了本发明的标准形式,并且功能上与电压极性和电源/负载方向无关。单、双、三和四象限方式函数是显而易见的。
8.在阅读本公开文本基础上,本发明的上述和其它特点(如本发明技术方案中所述)对本领域技术人员将是显而易见的。同样将显而易见,对任何给定的操作方式,控制装置CM可以用各种各样的方式实现。同样还显而易见,布局可以加以调配和扩增,以布置所有现有技术全波和多相电路几何形状,即半桥形、全桥形等。
在阅读本公开文本基础上,本发明的其它应用、变化和分支对本领域技术人员将变得显而易见。如附加权利要求所限定那样,这些了解打算包括在本发明的范围之内。

Claims (4)

1.一种全波升降压变换器布局,包括:
一个直流电源电压,具有不连续的电源电流;
一个第一电容器,并联连接在所述直流电源电压两端之间,适应累积所述不连续的电源电流;
一个使用负载;
一个直流输出电压,表示所述使用负载两端之间的电压;
一个第一功率变换器,包括一次、二次和三次线圈,具有低磁阻磁芯结构;一个第二功率变换器,包括一次、二次和三次线圈,具有低磁阻磁芯结构;
一个第一开关装置,有选择地把所述直流电源电压和所述第一电容器耦合在所述第一功率变换器的一次线圈两端之间;
一个第二开关装置,有选择地把所述直流电源电压和所述第一电容器耦合在所述第二功率变换器的一次线圈两端之间,所述第一和第二开关装置同时操作;
一个第一单向导电装置,把所述第一功率变换器的二次线圈与所述使用负载串联连接,并且在所述第一开关装置为不导通时段期间适应导电;
一个第二单向导电装置,把所述第二功率变换器的二次线圈与所述使用负载串联连接,并且在所述第二开关装置为不导通时段期间适应导电;
一个感应器,具有磁阻相对较高的磁芯结构,并联连接在所述第一功率变换器的一次线圈与所述第二功率变换器的三次线圈的串联组合,以及所述第二功率变换器的一次线圈与所述第一功率变换器的三次线圈的串联组合的两端之间,布置并极化这些被并联的串联线圈组合,以便在所述第一和第二开关装置交替导通时段期间,表示电压等于所述直流电源电压减去所述直流输出电压,而在所述第一和第二开关装置同时为不导电时段期间,表示电压等于所述直流输出电压的两倍;
一个第二电容器,并联连接在所述使用负载两端之间,适应累积所述第一电容器,所述第一和第二功率变换器,所述第一和第二开关装置,所述第一和第二单向导电装置,以及所述感应器的连续输出电流乘积;
一个控制装置,用于有选择地断开和闭合所述第一和第二开关装置,以便通过所述第一电容器,所述第一和第二功率变换器,所述第一和第二单向导电装置,所述感应器,以及所述第二电容器,按全波方式整个响应电压传递函数M=D/(1-D),从所述直流电压源对所述使用负载实现全波电流转换,其中M表示理想电压转换率,以及D表示开关闭合时间,表示为全波操作周期的分数,而全波操作周期以任意时间单位表示。
2.权利要求1的变换器,其中所述第一和第二功率变换器集成在单个低磁阻磁芯结构中,所述感应器保持分开的磁阻相对较高的磁芯结构。
3.权利要求1的变换器,其中所述第一和第二功率变换器以及所述感应器集成在单个磁芯结构中,分别具有相对低以及相对高的两种磁阻特性。
4.一种连续式、全波、升降压、脉冲宽度调制控制、固定频率、开关式的功率变换器布局,包括一个直流电源电压,具有连续的电源电流;一个使用负载;一个单通量交换中介这样置于交变的直流电源电压与使用负载开关装置之间,以便同时提供标准升降压变换器电压传递函数,M=D/(1-D),以及在交变D时段期间为电源电压连续,在同时(1-D)时段期间为电源不连续,以及在交变D和同时(1-D)两个时段期间为使用负载连续的特有的全波降压变换器感应电流耦合特性,其中M表示理想电压转换率,以及D表示开关闭合时间,表示为全波操作周期的分数,而全波操作周期以任意时间单位表示。
CN95191617A 1994-02-14 1995-02-13 具有降压功率变换器特性的全波升隆压功率变换器 Expired - Fee Related CN1058357C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/196,398 1994-02-14
US08/195,398 US5436818A (en) 1994-02-14 1994-02-14 Full wave buck-boost power converter with buck power converter properties

Publications (2)

Publication Number Publication Date
CN1140512A CN1140512A (zh) 1997-01-15
CN1058357C true CN1058357C (zh) 2000-11-08

Family

ID=22721272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN95191617A Expired - Fee Related CN1058357C (zh) 1994-02-14 1995-02-13 具有降压功率变换器特性的全波升隆压功率变换器

Country Status (11)

Country Link
US (1) US5436818A (zh)
EP (1) EP0801841B1 (zh)
JP (1) JP3488240B2 (zh)
KR (1) KR100334694B1 (zh)
CN (1) CN1058357C (zh)
AT (1) ATE241870T1 (zh)
AU (1) AU1917495A (zh)
DE (1) DE69530941T2 (zh)
IL (1) IL112651A (zh)
MX (1) MX9603368A (zh)
WO (1) WO1995022193A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355194C (zh) * 2004-03-08 2007-12-12 耿宪温 一种开关电源变换器的拓扑结构

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29522242U1 (de) * 1995-10-24 2000-12-21 Abb Patent Gmbh Schaltungsanordnung für einen AC/DC-Konverter mit Potentialtrennung und induktives Bauelement zur Verwendung in einer solchen Schaltungsanordnung
US7034647B2 (en) * 2001-10-12 2006-04-25 Northeastern University Integrated magnetics for a DC-DC converter with flexible output inductor
US6522110B1 (en) 2001-10-23 2003-02-18 Texas Instruments Incorporated Multiple output switching regulator
US6657495B2 (en) 2002-04-01 2003-12-02 Texas Instruments Incorporated Operational amplifier output stage and method
US6515457B1 (en) * 2002-05-21 2003-02-04 National Semiconductor Corporation Discontinuous-mode buck-boost slave converter working off a continuous-mode master buck converter
US8237530B2 (en) * 2009-08-10 2012-08-07 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
US7965165B2 (en) * 2002-12-13 2011-06-21 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US7898379B1 (en) 2002-12-13 2011-03-01 Volterra Semiconductor Corporation Method for making magnetic components with N-phase coupling, and related inductor structures
US8299885B2 (en) 2002-12-13 2012-10-30 Volterra Semiconductor Corporation Method for making magnetic components with M-phase coupling, and related inductor structures
US8102233B2 (en) * 2009-08-10 2012-01-24 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
US7498920B2 (en) * 2002-12-13 2009-03-03 Volterra Semiconductor Corporation Method for making magnetic components with N-phase coupling, and related inductor structures
US7352269B2 (en) 2002-12-13 2008-04-01 Volterra Semiconductor Corporation Method for making magnetic components with N-phase coupling, and related inductor structures
US6952353B2 (en) * 2003-02-04 2005-10-04 Northeastern University Integrated magnetic isolated two-inductor boost converter
US7227277B2 (en) * 2003-10-29 2007-06-05 The Board Of Trustees Of The University Of Illinois Multiple input DC-DC power converter
US8068355B1 (en) 2005-02-17 2011-11-29 Volterra Semiconductor Corporation Apparatus for isolated switching power supply with coupled output inductors
KR20090036735A (ko) * 2007-10-10 2009-04-15 창쏴이 고주파 전원공급장치
CN101952786B (zh) * 2007-12-04 2014-03-12 加州动力研究公司 Sepic馈入降压转换器
WO2009114873A1 (en) * 2008-03-14 2009-09-17 Volterra Semiconductor Corporation Voltage converter inductor having a nonlinear inductance value
FR2929054B1 (fr) * 2008-03-21 2014-06-20 Commissariat Energie Atomique Alimentation a decoupage dc dc non isolee
US20100067263A1 (en) * 2008-06-16 2010-03-18 Northeastern University Dual interleaved flyback converter for high input voltage
US8040212B2 (en) * 2009-07-22 2011-10-18 Volterra Semiconductor Corporation Low profile inductors for high density circuit boards
US8638187B2 (en) 2009-07-22 2014-01-28 Volterra Semiconductor Corporation Low profile inductors for high density circuit boards
US8299882B2 (en) 2009-07-22 2012-10-30 Volterra Semiconductor Corporation Low profile inductors for high density circuit boards
US9019063B2 (en) 2009-08-10 2015-04-28 Volterra Semiconductor Corporation Coupled inductor with improved leakage inductance control
US8174348B2 (en) 2009-12-21 2012-05-08 Volterra Semiconductor Corporation Two-phase coupled inductors which promote improved printed circuit board layout
US8674802B2 (en) 2009-12-21 2014-03-18 Volterra Semiconductor Corporation Multi-turn inductors
US7994888B2 (en) 2009-12-21 2011-08-09 Volterra Semiconductor Corporation Multi-turn inductors
US9767947B1 (en) 2011-03-02 2017-09-19 Volterra Semiconductor LLC Coupled inductors enabling increased switching stage pitch
US8772967B1 (en) 2011-03-04 2014-07-08 Volterra Semiconductor Corporation Multistage and multiple-output DC-DC converters having coupled inductors
WO2013004453A2 (en) 2011-07-07 2013-01-10 Danmarks Tekniske Universitet An isolated boost flyback power converter
US10128035B2 (en) 2011-11-22 2018-11-13 Volterra Semiconductor LLC Coupled inductor arrays and associated methods
US9373438B1 (en) 2011-11-22 2016-06-21 Volterra Semiconductor LLC Coupled inductor arrays and associated methods
US8975995B1 (en) 2012-08-29 2015-03-10 Volterra Semiconductor Corporation Coupled inductors with leakage plates, and associated systems and methods
US9691538B1 (en) 2012-08-30 2017-06-27 Volterra Semiconductor LLC Magnetic devices for power converters with light load enhancers
CN103078499B (zh) * 2013-01-14 2015-09-02 深圳桑达国际电子器件有限公司 一种太阳能mppt控制器及其n-buck变换器
US9287038B2 (en) 2013-03-13 2016-03-15 Volterra Semiconductor LLC Coupled inductors with non-uniform winding terminal distributions
US9251945B2 (en) 2013-04-09 2016-02-02 Fred O. Barthold Planar core with high magnetic volume utilization
CN103490635B (zh) * 2013-10-09 2015-08-19 江苏集能易新能源技术有限公司 一种改进型h桥升降压直流变换器及其控制方法
CN104682708A (zh) * 2013-11-29 2015-06-03 华为技术有限公司 降压变换器
US9438099B2 (en) 2014-01-09 2016-09-06 Fred O. Barthold Harmonic displacement reduction
US20160247627A1 (en) 2015-02-24 2016-08-25 Maxim Integrated Products, Inc. Low-profile coupled inductors with leakage control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972292A (en) * 1987-09-30 1990-11-20 Spectra Physics, Inc. Inductor with centertap switching transistor for reduced radio frequency emissions
US5088017A (en) * 1989-06-21 1992-02-11 Hitachi, Ltd. DC-DC converter and a computer using the converter
US5262933A (en) * 1992-08-11 1993-11-16 Acer Incorporated Control circuit for dual power supply having different start-up operating voltages

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4972292A (en) * 1987-09-30 1990-11-20 Spectra Physics, Inc. Inductor with centertap switching transistor for reduced radio frequency emissions
US5088017A (en) * 1989-06-21 1992-02-11 Hitachi, Ltd. DC-DC converter and a computer using the converter
US5262933A (en) * 1992-08-11 1993-11-16 Acer Incorporated Control circuit for dual power supply having different start-up operating voltages

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100355194C (zh) * 2004-03-08 2007-12-12 耿宪温 一种开关电源变换器的拓扑结构

Also Published As

Publication number Publication date
CN1140512A (zh) 1997-01-15
ATE241870T1 (de) 2003-06-15
IL112651A0 (en) 1995-05-26
JP3488240B2 (ja) 2004-01-19
KR100334694B1 (ko) 2002-11-30
DE69530941D1 (de) 2003-07-03
JPH09509039A (ja) 1997-09-09
EP0801841A1 (en) 1997-10-22
US5436818A (en) 1995-07-25
EP0801841B1 (en) 2003-05-28
AU1917495A (en) 1995-08-29
WO1995022193A1 (en) 1995-08-17
DE69530941T2 (de) 2003-11-27
KR970701443A (ko) 1997-03-17
MX9603368A (es) 1997-03-29
EP0801841A4 (en) 1998-09-16
IL112651A (en) 1999-04-11

Similar Documents

Publication Publication Date Title
CN1058357C (zh) 具有降压功率变换器特性的全波升隆压功率变换器
Bist et al. A unity power factor bridgeless isolated Cuk converter-fed brushless DC motor drive
Singh et al. A BL-CSC converter-fed BLDC motor drive with power factor correction
TWI493861B (zh) 具有集積再充電之開口三角馬達驅動器
CN100466446C (zh) 直流电压转换成交流电压的方法、电路布置结构和逆变器
US11411502B2 (en) Single-stage isolated DC-DC converters
Wang et al. Analysis of a ripple-free input-current boost converter with discontinuous conduction characteristics
CN210075077U (zh) 一种功率因数校正电路及车载充电机
KR20190115364A (ko) 단상 및 3상 겸용 충전기
Durán et al. An interleaved single-input multiple-output DC–DC converter combination
CN213661257U (zh) 充电装置和车辆
KR20200013398A (ko) 단상 절연형 역률개선용 세픽 컨버터
Torrico-Bascopé et al. Generation of new nonisolated high voltage gain DC-DC converters
CN209134309U (zh) 一种三相交直流升降压变换电路
CN103856068A (zh) 电力变换装置
Torrico-Bascopé et al. A new isolated dc-dc boost converter using three-state switching cell
CN212115161U (zh) 适于宽电压输入范围的dcdc变换器
JPS62100191A (ja) 多重巻線交流電動機の駆動システム
Wang et al. Coupled inductor based zero-voltage-switching buck/boost converter
CN111884511A (zh) 一种双向dc/dc装置及变流系统
CN106899046B (zh) 能量转换系统
Kumar et al. Improved Power Quality Ceiling Fan with BLDCM
JPH0777515B2 (ja) 単相−3相変換回路
Voronin et al. Matching Resonant Switches Operation Using Classical Pulse-Width Modulation Algorithms
Acharya et al. Design and Analysis of Interleaved Current Fed Switched Inverter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20001108

Termination date: 20130213