CN105817202A - 一种三维木质素基多级孔活性炭材料的制备方法及其用途 - Google Patents

一种三维木质素基多级孔活性炭材料的制备方法及其用途 Download PDF

Info

Publication number
CN105817202A
CN105817202A CN201610362526.3A CN201610362526A CN105817202A CN 105817202 A CN105817202 A CN 105817202A CN 201610362526 A CN201610362526 A CN 201610362526A CN 105817202 A CN105817202 A CN 105817202A
Authority
CN
China
Prior art keywords
lignin
dimensional
stage porous
activated carbon
absorbent charcoal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610362526.3A
Other languages
English (en)
Inventor
常忠帅
戴江栋
谢阿田
何劲松
田苏君
张瑞龙
邵荣
闫永胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201610362526.3A priority Critical patent/CN105817202A/zh
Publication of CN105817202A publication Critical patent/CN105817202A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • B01J2220/4837Lignin
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明提供了一种三维木质素基多级孔活性炭材料的制备方法及其用途,包括如下步骤:二氧化硅微球的合成;三维木质素基多级孔活性炭材料的合成:将木质素与去离子水混合均匀后加入二氧化硅微球,超声分散均匀后抽真空,离心去除上清液后烘干产物;产物烘干后置于管式炉中,在惰性气体保护下进行碳化煅烧;碳化煅烧完成之后用氢氟酸水溶液洗去产物中的硅球,去离子水洗至中性后烘干,得到碳化后的活性炭;将碳化后的活性炭与KOH混合,研磨均匀,置于管式炉中进行高温煅烧;待冷却后,用盐酸洗涤产物,用去离子水清洗产物直至中性,烘干,制得最终产物三维木质素基多级孔活性炭材料。所制备的三维木质素基多级孔活性炭材料,增大了活性炭的比表面积。

Description

一种三维木质素基多级孔活性炭材料的制备方法及其用途
技术领域
本发明涉及一种三维木质素基多级孔活性炭材料的制备方法及其用途,属环境功能材料制备技术领域。
背景技术
近年来,“速生鸡”“有抗奶”等事件的不断曝光,不仅触动了公众在食品安全领域的敏感神经,同时抗生素抗性基因等新型环境污染物也逐步引起了广泛关注。磺胺二甲基嘧啶(SMZ)是畜牧业和水产养殖业中广泛使用的抗菌药物,具有高水溶性、低螯合能力和低结合常数等特点,施用于动物后大部分会以原药或代谢物的形式经动物粪便和尿液排出并最终进入环境。它们在环境中的残留和长期存在,将胁迫微生物产生耐药性,并可能通过基因水平转移方式传递到其他菌群,进一步通过食物链传递到人体,威胁人类生命安全。长期以来,由于对抗生素的环境危害认识不足,我国对兽药抗生素一直缺乏有效的环境管理。因此,建立和发展有效和经济适用处理手段来选择性移除环境中磺胺类抗生素残留是极为迫切的。近年来,越来越多的科研工作者致力于将活性炭应用于抗生素污染物的治理。其中,吸附法是处理环境污染物最有效的方法之一。而活性炭由于其具有高比表面积,物理/化学稳定性,材料易得,吸附效率高的优点。常被用作吸附剂用于环境中污染物的吸附分离。
活性炭由已石墨化的微晶炭和未石墨化的非晶碳相互连接构筑成发达的多级孔隙结构和表面化学结构。由于其内部发达的空隙结构、巨的大比表面积和超强的吸附能力等特点,被广泛应用于吸附分离、食品、医药、催化、电子、储能等几乎所有国民经济领域。活性炭的制备方法分多分为一步法和两步法。一步法是指将原料与活化剂混合后,800℃左右高温下直接活化制备活性炭;两步法是指先500℃下将原料碳化成炭骨架,再与活化剂混合,800℃左右高温下活化制备活性炭。随着科学技术的进一步发展,现代科学、工业、工程技术更需要孔径分布集中有序的炭材料,为此,实施准确调控活性炭多孔结构技术已成为活性炭制备技术的核心。开展活性炭孔径分布定向调控、应用及机理研究,不仅有助于活性炭制造理论体系的丰富和完善,而且有助于进一步拓展活性炭的专业应用途径。
木质素是一种广泛存在于植物中的无定型的分子结构中含有氧代苯丙醇或其衍生物结构单元的芳香性高聚物,植物的木质部含有大量木质素。硅球的微观结构呈六方堆积状,将木质素与硅球混合均匀,使木质素充满硅球堆积的缝隙中,碳化后刻蚀硅球,可以得到三维连续孔状结构。并且可以通过使用不同直径的硅球可以可控制备孔径不同的三维连续孔状结构。
本发明以木质素(SLS)为炭前驱体,与单分散二氧化硅通过离心堆积组装形成三维有序复合物,通过限域碳化、刻蚀模板和KOH原位活化制备出三维连续多级孔碳材(3DLHPC)。系列表征研究其形貌、组成、多级孔结构、结晶性以及稳定性等理化性质。结果发现极大的增加了活性炭的比表面,同时也增加了对磺胺二甲嘧啶的吸附量。
发明内容
本发明的目的是提供一种三维木质素基多级孔炭材料的制备方法,用该方法制备的三维木质素基多级孔炭材料对水环境中磺胺二甲嘧啶进行选择性识别和快速分离。
本发明三维木质素基多级孔炭材料的可控制备方法。以木质素为原料,硅球为模板,KOH为活化剂。通过限域碳化、刻蚀模板和KOH原位活化制备出三维连续多级孔碳材料3DLHPC,并应用于水环境中磺胺二甲基嘧啶的吸附分离。通过多种表征手段,揭示了三维木质素基多级孔炭材料的物理化学特性。利用所得三维木质素基多级孔炭材料对水环境中磺胺二甲基嘧啶的吸附分离。
本发明是通过如下技术方案实现的:
一种三维木质素基多级孔活性炭材料的制备方法,包括如下步骤:
步骤1、二氧化硅微球的合成
步骤2、三维木质素基多级孔活性炭材料(3DLHPC)的合成
将木质素与去离子水混合均匀后加入步骤1得到的二氧化硅微球,得到混合液A,超声分散均匀后抽真空,离心去除上清液后烘干产物;产物烘干后置于管式炉中,在惰性气体保护下进行碳化煅烧;碳化煅烧完成之后用氢氟酸水溶液洗去产物中的硅球,去离子水洗至中性后烘干,得到碳化后的活性炭3DLC;
将碳化后的活性炭3DLC与KOH混合,研磨均匀,混合物转移至镍坩埚中并盖上镍盖,置于管式炉中进行高温煅烧;待冷却后,用盐酸洗涤产物,用去离子水清洗产物直至中性,烘干,制得最终产物三维木质素基多级孔活性炭材料3DLHPC。
步骤1中,二氧化硅微球的合成方法为:量取25mL去离子水,70~80mL乙醇,2.0mL浓度为12mol/L的氨水置于烧杯中,25℃恒温水浴锅中剧烈搅拌15min;向溶液中逐滴滴加6.0mL正硅酸四乙酯(TEOS),298K水浴中搅拌反应2.0h;9000r/min下离心,离心3次,第一次离心后用去离子水洗涤,后两次用乙醇洗涤;离心结束后置于烘箱中60℃下烘干,得到二氧化硅微球。
步骤2中,制备混合液A时,所用的木质素、二氧化硅微球与水的质量比为5:8:16.67。
步骤2中,所述的惰性气体为氮气。
步骤2中,所述碳化煅烧的方法为:以3.0~10℃/min速率升温至450~550℃,并在450~550℃维持1.0~3.0h。
步骤2中,所用的氢氟酸的质量分数为10%。
步骤2中,所使用的碳化后的活性炭与KOH的质量比为1:3~4。
步骤2中,所述的高温煅烧的方法为:以3.0~10℃/min速率升温至800~900℃,并在450~550℃维持1.0~2.0h。
步骤2中,所使用的盐酸的浓度为2mol/L。
所制备的三维木质素基多级孔活性炭材料用于吸附磺胺二甲基嘧啶(SMZ)。
有益效果:
本发明通过限域碳化、刻蚀模板、KOH原位活化的方法制备了具有三维连续大孔结构的三维木质素基多级孔活性炭材料,该材料极大的增加了活性炭的比表面积以及对SMZ的吸附量。
附图说明
图1为实施例1中碳化后的活性炭和三维木质素基多级孔活性炭材料的SEM图,其中(a),(b)是碳化后的活性炭的SEM图,(c),(d)是三维木质素基多级孔活性炭材料的SEM图;
图2为实施例1中碳化后的活性炭和三维木质素基多级孔活性炭材料的TEM图,其中(a),(b)是碳化后的活性炭的TEM图,(c),(d)是三维木质素基多级孔活性炭材料的TEM图;
图3为实施例1中三种等温模型的非线性拟合曲线;
图4为实施例1中三维木质素基多级孔活性炭材料的吸附动力学图;
图5为实施例1中再生后的三维木质素基多级孔活性炭材料的SEM图;
图6为实施例1中三维木质素基多级孔活性炭材料吸附磺胺二甲基嘧啶的循环再生实验结果。
具体实施方式
下面结合具体实施例对本发明作进一步描述:
实施例1
(1)二氧化硅微球的合成,通过现有方法得到。
根据法制备单分散性SiO2微球,具体如下:量取25mL去离子水,75mL乙醇,2.0mL浓氨水置于烧杯中,25℃恒温水浴锅中剧烈搅拌15min。向溶液中逐滴滴加6.0mLTEOS,298K水浴中缓慢搅拌反应2.0h。9000r/min下离心,离心3次,第一次离心后用去离子水洗涤,后两次用乙醇洗涤。离心结束后置于烘箱中60℃下烘干。
(2)三维连续大孔活性碳(3DLHPC)的合成
5g木质素和16.67g去离子水混合均匀后加入8g二氧化硅微球,超声分散均匀后抽真空,离心去上清液后烘干。烘干后取置于管式炉中。在氮气保护下,以5.0℃/min速率程序升温至500℃,维持2.0h。碳化完成之后用质量分数为10%的氢氟酸水溶液洗去产物中的硅球,用去离子水洗至中性后与烘箱中60℃下烘干,得到碳化后的活性炭3DLC。
将KOH和3DLC-1按照1:4的质量比例混合,研磨均匀,混合物转移至镍坩埚中并盖上镍盖,置于管式炉中,在氮气保护下高温处理,控制升温速度为5.0℃/min,从室温升至850℃,并维持1h。待冷却后,用2mol/L的稀盐酸洗涤产物去除产生的无机杂质如K2CO3等,用去离子水清洗产物直至中性,置烘箱60℃下干燥,制得最终产物三维木质素基多级孔碳3DLHPC。
利用静态吸附实验完成。将10mL不同浓度的SMZ溶液加入到离心管中,分别向其中加入2.0mg吸附剂,恒温水浴中静置,考察了溶液pH值、吸附剂用量、接触时间、温度对SMZ吸附的影响。吸附达到饱和后,去上层清液,用紫外可见光光度计测得试液中未被吸附的SMZ分子浓度,计算得到吸附容量(Qe)。
Q e = ( C o - C e ) V m
其中Co(μmol/L)和Ce(μmol/L)分别是初始和平衡浓度,m(mg)为吸附剂用量,V(mL)为溶液体积。
取10mL初始浓度分别为50~250mg/L的SMZ溶液加入到离心管中,分别加入2.0mg吸附剂,把测试液放在25℃水浴中静置12h后,取上层清液,未被吸附的SMZ分子浓度用紫外可见分光光度计测定,固定波长为272nm。并根据结果计算出吸附容量。实验结果表明:随着浓度的升高,吸附量逐渐增大,最终达到吸附平衡。
取10mL初始浓度为分别为50~100mg/L的SMZ溶液加入到离心管中,分别加入2.0mg吸附剂,把测试液放在25℃的水浴中分别静置1~150min。静置完成后,利用过膜器分离得到清液,未被吸附的SMZ分子浓度用紫外可见分光光度计测定,并根据结果计算出吸附容量。实验结果表明:该吸附剂对SMZ有较好的吸附动力学性能。
图1为碳化后的活性炭和三维木质素基多级孔活性炭材料的SEM图,其中(a),(b)是碳化后的活性炭的SEM图,(c),(d)是三维木质素基多级孔活性炭材料的SEM图;从图(a),(b)中可以看出,碳化后的活性炭呈现三维蜂窝状结构,平均孔径在200nm左右。这与SiO2模板的尺寸相吻合,表明模板SiO2被完全刻蚀,并留下孔结构。值得注意的是,大孔结构呈现三维连续结构,这是由于SiO2模板呈六方堆积,木质素填充在模板的空隙中,经高温度烧结后,保持较好的完整性,去除SiO2模板后留下三维连续大孔结构。从图(c),(d)中可以看出三维木质素基多级孔活性炭材料经活化后依旧呈现三维大孔连续结构,且碳壁变薄,表明KOH活化未破坏三维连续结构。
图2为碳化后的活性炭和三维木质素基多级孔活性炭材料的TEM图,其中(a),(b)是碳化后的活性炭的TEM图,(c),(d)是三维木质素基多级孔活性炭材料的TEM图;从图中可以清晰地看到两者都具有良好的三维大孔连续结构,这与SEM分析结果相符合。其中(a),(b)是碳化后的活性炭的TEM图,从(a),(b)中可以看出,其表面较为光滑,质地密实。从(c),(d)可以看出,三维木质素基多级孔活性炭材料的表面却比较粗糙,出现大量的纳米级孔结构,表明KOH活化成功致孔。
图3为三种等温模型的非线性拟合曲线;从图中可以看出,随着接触温度的升高吸附量逐渐增大,表明该吸附过程是吸热反应。此外,可以清晰地看到Langmuir拟合线和实验值接近,表明Langmuir等温线可以较好地描述吸附过程,说明吸附主要为单分子层吸附。在温度为308K时,吸附量可达到869.6mgg-1
图4为三维木质素基多级孔活性炭材料的吸附动力学图;从图中可以看出在反应刚开始时吸附速率很快,当反应进行15min以后吸附趋于平缓,30min后基本达到吸附平衡,说明三维木质素基多级孔活性炭材料对磺胺二甲基嘧啶具有较高的吸附效率。
图5为再生后的三维木质素基多级孔活性炭材料的SEM图;从图中可以看出,多次使用后的三维木质素基多级孔活性炭材料形貌几乎没有发生变化,仍然保持完整的三维连续大孔结构再生后的活性炭形貌虽然发生了变化,但总体还是呈三维多孔状结构。
图6为三维木质素基多级孔活性炭材料吸附磺胺二甲基嘧啶的循环再生实验结果。从图中可以看出在循环3次后,三维木质素基多级孔活性炭材料对磺胺二甲基嘧啶仍然保持较高的吸附能力,说明制备的三维木质素基多级孔活性炭材料拥有良好的再生性能。这表明三维木质素基多级孔活性炭材料不仅具有良好的再生性而且拥有优异的结构稳定性。
实施例2
(1)二氧化硅微球的合成,通过现有方法得到。
根据法制备单分散性SiO2微球,具体如下:量取25mL去离子水,80mL乙醇,2.0mL浓氨水置于烧杯中,25℃恒温水浴锅中剧烈搅拌15min。向溶液中逐滴滴加6.0mLTEOS,25℃水浴中缓慢搅拌反应2.0h。9000r/min下离心,离心3次,第一次离心后用去离子水洗涤,后两次用乙醇洗涤。离心结束后置于烘箱中60℃下烘干。
(2)三维连续大孔活性碳(3DLHPC)的合成
5g木质素和16.67g去离子水混合均匀后加入8g二氧化硅微球,超声分散均匀后抽真空,离心去上清液后烘干。烘干后取一定量置于管式炉中。在氮气保护下,以10.0℃/min速率程序升温至550℃,维持3.0h。碳化完成之后用质量分数为10%的氢氟酸水溶液洗去产物中的硅球,用去离子水洗至中性后烘干,得到碳化后的活性炭3DLC。
将KOH和3DLC-2按照1:4的质量比例混合,研磨均匀,混合物转移至镍坩埚中并盖上镍盖,置于管式炉中,在氮气保护下高温处理,控制升温速度为3.0℃/min,从室温升至800℃,并维持1h。待冷却后,用2mol/L稀盐酸洗涤产物去除产生的无机杂质如K2CO3等,用去离子水清洗产物直至中性,60℃烘箱干燥,制得最终产物三维木质素基多级孔碳3DLHPC。
取10mL初始浓度分别为50~250mg/L的SMZ溶液加入到离心管中,分别加入2.0mg吸附剂,把测试液放在25℃水浴中静置12h后,取上层清液,未被吸附的SMZ分子浓度用紫外可见分光光度计测定,并根据结果计算出吸附容量。实验结果表明随着浓度的升高,吸附量逐渐增大,最终达到吸附平衡。
取10mL初始浓度为分别为50~100mg/L的SMZ溶液加入到离心管中,分别加入2.0mg吸附剂,把测试液放在25℃的水浴中分别静置1~150min。静置完成后,利用过膜器分离得到清液,未被吸附的SMZ分子浓度用紫外可见分光光度计测定,固定波长为272nm。并根据结果计算出吸附容量。实验结果表明该吸附剂对SMZ有较好的吸附动力学性能。
实施例3
(1)二氧化硅微球的合成,通过现有方法得到。
根据法制备单分散性SiO2微球,具体如下:量取25mL去离子水,70mL乙醇,2.0mL浓氨水置于烧杯中,25℃恒温水浴锅中剧烈搅拌15min。向溶液中逐滴滴加6.0mLTEOS,25℃水浴中缓慢搅拌反应2.0h。9000r/min下离心,离心3次,第一次离心后用去离子水洗涤,后两次用乙醇洗涤。离心结束后置于烘箱中60℃下烘干。
(2)三维连续大孔活性碳(3DLHPC)的合成
5g木质素和16.67g去离子水混合均匀后加入8g二氧化硅微球,超声分散均匀后抽真空,离心去上清液后烘干。烘干后取一定量置于管式炉中。在氮气保护下,以3.0℃/min速率程序升温至450℃,维持1.0h。碳化完成之后用氢氟酸洗去产物中的硅球,用去离子水洗至中性后烘干,得到碳化后的活性炭3DLC。
将KOH和3DLC按照1:3的质量比例混合,研磨均匀,混合物转移至镍坩埚中并盖上镍盖,置于管式炉中,在氮气保护下高温处理,控制升温速度为10℃/min,从室温升至900℃,并维持2h。待冷却后,稀盐酸洗涤产物去除产生的无机杂质如K2CO3等,用去离子水清洗产物直至中性,60℃烘箱干燥,制得最终产物三维木质素基多级孔碳3DLHPC。
取10mL初始浓度分别为50~250mg/L的SMZ溶液加入到离心管中,分别加入2.0mg吸附剂,把测试液放在25℃水浴中静置12h后,取上层清液,未被吸附的SMZ分子浓度用紫外可见分光光度计测定,并根据结果计算出吸附容量。实验结果表明随着浓度的升高,吸附量逐渐增大,最终达到吸附平衡。
取10mL初始浓度为分别为50~100mg/L的SMZ溶液加入到离心管中,分别加入2.0mg吸附剂,把测试液放在25℃的水浴中分别静置1~150min。静置完成后,利用过膜器分离得到清液,未被吸附的SMZ分子浓度用紫外可见分光光度计测定,并根据结果计算出吸附容量。实验结果表明该吸附剂对SMZ有较好的吸附动力学性能。

Claims (10)

1.一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,包括如下步骤:
步骤1、二氧化硅微球的合成
步骤2、三维木质素基多级孔活性炭材料的合成
将木质素与去离子水混合均匀后加入步骤1得到的二氧化硅微球,得到混合液A,超声分散均匀后抽真空,离心去除上清液后烘干产物;产物烘干后置于管式炉中,在惰性气体保护下进行碳化煅烧;碳化煅烧完成之后用氢氟酸水溶液洗去产物中的硅球,去离子水洗至中性后烘干,得到碳化后的活性炭3DLC;
将碳化后的活性炭3DLC与KOH混合,研磨均匀,混合物转移至镍坩埚中并盖上镍盖,置于管式炉中进行高温煅烧;待冷却后,用盐酸洗涤产物,用去离子水清洗产物直至中性,烘干,制得最终产物三维木质素基多级孔活性炭材料3DLHPC。
2.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤1中,二氧化硅微球的合成方法为:量取25mL去离子水,70~80mL乙醇,2.0mL浓度为12mol/L的氨水置于烧杯中,25℃恒温水浴锅中剧烈搅拌15min;向溶液中逐滴滴加6.0mL正硅酸四乙酯(TEOS),298K水浴中搅拌反应2.0h;9000r/min下离心,离心3次,第一次离心后用去离子水洗涤,后两次用乙醇洗涤;离心结束后置于烘箱中60℃下烘干,得到二氧化硅微球。
3.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤2中,制备混合液A时,所用的木质素、二氧化硅微球与水的质量比为5:8:16.67。
4.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤2中,所述的惰性气体为氮气。
5.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤2中,所述碳化煅烧的方法为:以3.0~10℃/min速率升温至450~550℃,并在450~550℃维持1.0~3.0h。
6.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤2中,所用的氢氟酸的质量分数为10%。
7.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤2中,所使用的碳化后的活性炭与KOH的质量比为1:3~4。
8.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤2中,所述的高温煅烧的方法为:以3.0~10℃/min速率升温至800~900℃,并在450~550℃维持1.0~2.0h。
9.根据权利要求1所述的一种三维木质素基多级孔活性炭材料的制备方法,其特征在于,步骤2中,所使用的盐酸的浓度为2mol/L。
10.权利要求1~9任意一项所述的方法制备的三维木质素基多级孔活性炭材料的用途,其特征在于,所述三维木质素基多级孔活性炭材料用于吸附磺胺二甲基嘧啶。
CN201610362526.3A 2016-05-26 2016-05-26 一种三维木质素基多级孔活性炭材料的制备方法及其用途 Pending CN105817202A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610362526.3A CN105817202A (zh) 2016-05-26 2016-05-26 一种三维木质素基多级孔活性炭材料的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610362526.3A CN105817202A (zh) 2016-05-26 2016-05-26 一种三维木质素基多级孔活性炭材料的制备方法及其用途

Publications (1)

Publication Number Publication Date
CN105817202A true CN105817202A (zh) 2016-08-03

Family

ID=56531504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610362526.3A Pending CN105817202A (zh) 2016-05-26 2016-05-26 一种三维木质素基多级孔活性炭材料的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN105817202A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129440A (zh) * 2016-08-26 2016-11-16 东莞理工学院 一种基于三维筛管碳结构作为阳极的高性能微生物燃料电池
CN108751160A (zh) * 2018-06-15 2018-11-06 华南理工大学 一种孔道均匀的木质素多孔碳及其制备方法和在锂离子电池负极材料中的应用
CN110252247A (zh) * 2019-07-01 2019-09-20 河南城建学院 一种球形微珠状核桃壳基多孔碳吸附材料及其制备方法和应用
CN111017902A (zh) * 2019-12-17 2020-04-17 陕西师范大学 一种三维连续多孔碳材料的制备方法
CN112225216A (zh) * 2020-09-03 2021-01-15 华南理工大学 一种中-微孔木质素基活性炭及其制备方法
CN112591734A (zh) * 2020-12-29 2021-04-02 陕西科技大学 一种基于纳米木质素原位生长的纳米碳球及其制备方法
CN117427615A (zh) * 2023-12-01 2024-01-23 浙江大学 一种胺负载介孔炭及其制备方法和应用
US11952278B2 (en) 2018-11-19 2024-04-09 South China University Of Technology Lignin porous carbon nanosheet, preparation method therefor, and application thereof in supercapacitor electrode materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993068A (zh) * 2010-10-27 2011-03-30 北京化工大学 一种多级孔结构活性碳的制备方法
CN103219526A (zh) * 2013-04-02 2013-07-24 复旦大学 具多级孔道结构的蜂窝形貌的锂空气电池正极及其制备方法
CN103253651A (zh) * 2013-05-23 2013-08-21 广西大学 一种木质素基多孔碳材料及其制备方法
CN103855413A (zh) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 一种锂-空气电池正极用多孔碳材料
CN105271171A (zh) * 2015-11-05 2016-01-27 江苏大学 一种以虾壳为碳源的n掺杂多级孔碳材料的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993068A (zh) * 2010-10-27 2011-03-30 北京化工大学 一种多级孔结构活性碳的制备方法
CN103855413A (zh) * 2012-11-28 2014-06-11 中国科学院大连化学物理研究所 一种锂-空气电池正极用多孔碳材料
CN103219526A (zh) * 2013-04-02 2013-07-24 复旦大学 具多级孔道结构的蜂窝形貌的锂空气电池正极及其制备方法
CN103253651A (zh) * 2013-05-23 2013-08-21 广西大学 一种木质素基多孔碳材料及其制备方法
CN105271171A (zh) * 2015-11-05 2016-01-27 江苏大学 一种以虾壳为碳源的n掺杂多级孔碳材料的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ZUOCHENG ZHOU,ET.AL.: "Replicating novel carbon nanostructures with 3D macroporous silica template", 《J. MATER. CHEM.,》 *
刘玉荣: "《碳材料在超级电容器中的应用》", 31 January 2013, 国防工业出版社 *
张晓阳 等: "《纤维素生物质水解与应用》", 31 December 2012, 郑州大学出版社 *
朱国才 等: "《生物质还原氧化锰矿工艺与技术》", 30 April 2014, 冶金工业出版社 *
李石: "三维有序大孔材料的制备、表征与应用性研究", 《中国博士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129440A (zh) * 2016-08-26 2016-11-16 东莞理工学院 一种基于三维筛管碳结构作为阳极的高性能微生物燃料电池
CN108751160A (zh) * 2018-06-15 2018-11-06 华南理工大学 一种孔道均匀的木质素多孔碳及其制备方法和在锂离子电池负极材料中的应用
CN108751160B (zh) * 2018-06-15 2020-11-24 华南理工大学 一种孔道均匀的木质素多孔碳及其制备方法和在锂离子电池负极材料中的应用
US11952278B2 (en) 2018-11-19 2024-04-09 South China University Of Technology Lignin porous carbon nanosheet, preparation method therefor, and application thereof in supercapacitor electrode materials
CN110252247A (zh) * 2019-07-01 2019-09-20 河南城建学院 一种球形微珠状核桃壳基多孔碳吸附材料及其制备方法和应用
CN111017902A (zh) * 2019-12-17 2020-04-17 陕西师范大学 一种三维连续多孔碳材料的制备方法
CN112225216A (zh) * 2020-09-03 2021-01-15 华南理工大学 一种中-微孔木质素基活性炭及其制备方法
CN112591734A (zh) * 2020-12-29 2021-04-02 陕西科技大学 一种基于纳米木质素原位生长的纳米碳球及其制备方法
CN117427615A (zh) * 2023-12-01 2024-01-23 浙江大学 一种胺负载介孔炭及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN105817202A (zh) 一种三维木质素基多级孔活性炭材料的制备方法及其用途
CN106629655B (zh) 一种生物质基氮掺杂多孔碳的制备方法及应用
Teo et al. Efficient biodiesel production from Jatropha curcus using CaSO4/Fe2O3-SiO2 core-shell magnetic nanoparticles
CN103553094B (zh) 一种球形氧化铝的制丸成型方法
Guo et al. Adsorption of Cr (VI) on micro-and mesoporous rice husk-based active carbon
CN105271171A (zh) 一种以虾壳为碳源的n掺杂多级孔碳材料的制备方法
CN103803643A (zh) 一种单分散介孔空心纳米球状二氧化钛及其制备方法
CN105936503B (zh) 一种富有连续介孔结构的三维石墨化碳材料及其制备方法
CN103157448B (zh) 一种用于卷烟减害的氨基修饰的多级孔吸附剂材料的制备方法
CN101704536A (zh) 一种新型普鲁士蓝介晶及其制备方法
CN104248990A (zh) 球形凹凸棒石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN106082211A (zh) 一种木质素基多级孔碳材料的制备方法及其用途
CN105458295B (zh) 一种多孔微米铜球及其制备方法
CN111115631B (zh) 一种高机械强度的咖啡渣基成型多孔炭材料及其制备方法
Zhang et al. Effective removal of methyl blue by fine-structured strontium and barium phosphate nanorods
CN103771470A (zh) 一种氧化铝纳米空心球中球的合成方法
CN104248986A (zh) 球形凹凸棒石介孔复合载体和负载型催化剂及其制备方法和应用以及乙酸乙酯的制备方法
CN104003448A (zh) 一种α相三氧化二铁多孔核壳微球及其可控合成制备方法
CN108773844A (zh) 一种微量钙添加催化活化制备煤基多孔碳材料的方法
CN105399150A (zh) 一种钴酸镍纳米材料及其制备方法和应用
CN108295805A (zh) 活性复合金属氧化物负载银修饰铁系金属氧化物除砷微纳米吸附剂及其制备方法
CN105399151A (zh) 一种钴酸镍纳米材料的制备方法
CN106185921A (zh) 一种以NaCl为硬模板制备多孔碳材料的方法及用途
Wei et al. Template-free preparation of yeast-derived three-dimensional hierarchical porous carbon for highly efficient sulfamethazine adsorption from water
CN103387256A (zh) 一种制备二氧化铈介孔空心球的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160803