CN105793992B - 用于隧穿场效应晶体管(tfet)的异质袋状件 - Google Patents

用于隧穿场效应晶体管(tfet)的异质袋状件 Download PDF

Info

Publication number
CN105793992B
CN105793992B CN201380081117.0A CN201380081117A CN105793992B CN 105793992 B CN105793992 B CN 105793992B CN 201380081117 A CN201380081117 A CN 201380081117A CN 105793992 B CN105793992 B CN 105793992B
Authority
CN
China
Prior art keywords
tfet
channel region
source area
pocket
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380081117.0A
Other languages
English (en)
Other versions
CN105793992A (zh
Inventor
U·E·阿维奇
R·科特利尔
G·杜威
B·舒-金
I·A·扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel Corp
Original Assignee
Intel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corp filed Critical Intel Corp
Publication of CN105793992A publication Critical patent/CN105793992A/zh
Application granted granted Critical
Publication of CN105793992B publication Critical patent/CN105793992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/06Arrangements for interconnecting storage elements electrically, e.g. by wiring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/15Structures with periodic or quasi periodic potential variation, e.g. multiple quantum wells, superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/7311Tunnel transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7391Gated diode structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7849Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being provided under the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Thin Film Transistor (AREA)

Abstract

本文所描述的本公开内容的实施例包括一种遂穿场效应晶体管(TFET),该TFET具有:漏极区;源极区,所述源极区具有与所述漏极区相反的导电类型;沟道区,所述沟道区被布置在所述源极区与所述漏极区之间;栅极,所述栅极被布置在所述沟道区上方;以及异质袋状件,所述异质袋状件被布置在所述源极区和所述沟道区的结附近。所述异质袋状件包括与所述沟道区不同的半导体材料,并且包括比所述沟道区中的带隙低的遂穿势垒,并且在所述沟道区中形成量子阱,以便当向所述栅极施加的电压高于阈值电压时增加通过所述TFET晶体管的电流。

Description

用于隧穿场效应晶体管(TFET)的异质袋状件
技术领域
本公开内容的实施例属于半导体封装件领域,更具体而言,涉及用于隧穿场效应晶体管(TFET)的异质袋状件(pocket)设计。
背景技术
随着集成电路(IC)中晶体管的尺寸持续减小,针对晶体管的电源电压以及晶体管的电容也有所减小。随着电源电压减小,IC中晶体管的阈值电压必须也减小。
在传统的金属氧化物半导体场效应晶体管(MOSFET)中难以获得较低的阈值电压,这是因为随着阈值电压降低,导通电流与截止电流的比率(Ion/Ioff)也减小。导通电流是指当所施加的栅极电压高于阈值电压时通过MOSFET的电流,而截止电流是指当所施加的栅极电压低于阈值电压时通过MOSFET的电流。
附图说明
参照以下附图描述了本公开内容的非限制性和非详尽的实施例,其中,除非另外指出,否则贯穿各个视图类似的附图标记指代类似部分。
图1是示出了根据本公开内容的实施例的晶体管的电压/漏极电流曲线的图。
图2是根据本公开内容的实施例的具有异质材料的谐振袋状件的隧穿场效应晶体管的图。
图3A是示出了根据本公开内容的实施例的隧穿场效应晶体管的带隙表现的图。
图3B是示出了根据本公开内容的实施例的各个隧穿场效应晶体管的电压/漏极电流曲线的图。
图4是示出了根据本公开内容的实施例的具有异质袋状件的各个隧穿场效应晶体管的电压/漏极电流曲线的图。
图5是用于利用本发明的实施例的计算机系统的图。
具体实施方式
本发明的实施例描述了用于隧穿场效应晶体管(TFET)的异质袋状件设计。在以下描述中,阐述了许多具体细节(例如,封装架构),以便提供对本发明的实施例的透彻理解。对于本领域技术人员而言显而易见的是,可以在没有这些具体细节的情况下实践本发明的实施例。在其它实例中,未详细描述公知的特征(例如,集成电路设计布局),以免不必要地使本发明的实施例难以理解。此外,要理解的是,附图中所示出的各个实施例是说明性的表示,而并不一定按比例绘制。
图1是示出了根据本公开内容的实施例的晶体管的电压/漏极电流曲线的图。在该实施例中,图1包括栅极电压值的x轴和漏极电流值(标准化为沟道宽度)的y轴。曲线102表示金属氧化物半导体场效应晶体管(MOSFET)的电压/电流特性,而曲线104表示TFET的电压/电流特性。
在传统的MOSFET中难以获得较低的阈值电压,这是因为随着阈值电压降低,导通电流与截止电流的比率(Ion/Ioff)也有所减小。如本文提及的,Ion是指当所施加的栅极电压高于阈值电压时通过晶体管的电流,而Ioff是指当所施加的栅极电压低于阈值电压时通过晶体管的电流。
MOSFET的亚阈值斜率(即,电流从Ioff增加到Ion的速率,并且被定义为SS=1e3/[dlog10(I)/dVg])在室温下具有60mV/dec的理论极限,意指在保持高的Ion/Ioff比率时电源电压不能够显著地降低。任何目标Ioff值都是由晶体管的备用功率需求来确定的;例如,具有为零的理论亚阈值斜率的晶体管能够以非常低的所施加的电压进行操作,给出低的备用功率。Ioff值对于低功率备用应用(例如,移动计算设备)是重要参数。
此外,对于低的有功功率应用,由于有功功率对电源电压的强烈依赖性,因此以较低的电源电压进行操作是非常有利的;然而,由于MOSFET的60mv/dec的亚阈值斜率极限,因此当这些晶体管以低的电源电压进行操作时,Ion显著地低,这是因为晶体管可能接近阈值电压而进行操作。在图1中,曲线102被示出为具有相对低的电流上升,其中需要大约0.5伏特以切换到Ion
与MOSFET相比,TFET可以实现更灵敏的导通表现(即,较低的亚阈值斜率)和改善的Ion/Ioff比率。图2是根据本公开内容的实施例的具有异质材料的谐振袋状件的TFET的图。
在该实施例中,TFET 200被示出为被制造在半导体衬底202上;所述半导体衬底可以包括任何适当的半导体材料—例如,硅(Si)、锗(Ge)、硅锗(SiGe)、砷化铟(InAs)、硅锗(Sin)、锗锡(GeSn)、硅锗锡(SiGeSn)、或者任何其它III-V或II-VI化合物半导体。
衬底202可以是掺杂的、未掺杂的,或者在其中包含掺杂区域和未掺杂区域二者。衬底202还可以包括一个或多个掺杂(n-或p-)区域;如果衬底202包括多个掺杂区域,则这些区域可以相同,或者它们可以具有不同的导电性和/或掺杂浓度。这些掺杂区域被称为“阱”,并且可以用于限定各个器件区域。
在该实施例中,TFET 200被示出为包括源极区204、漏极区206、位于源极区与漏极区之间的沟道区208、以及被布置在沟道区上方的栅极堆叠体,其中该栅极堆叠体包括栅极电介质210和栅极导体210。TFET 200可以包括n沟道TFET或者p沟道TFET(例如,在n沟道TFET中,源极区204可以包括被掺杂有p型掺杂剂种类的半导体材料,漏极区206可以包括被掺杂有n型掺杂剂种类的半导体材料)。在所有实施例中,漏极区和源极区都掺杂有相反的载流子。例如,对于nTFET,漏极区可以是n-掺杂区域并且源极区可以是p-掺杂区域,并且对于pTFET,漏极区可以是p-掺杂区域并且源极区可以是n-掺杂区域。为了最佳性能,沟道区208可以被掺杂、轻掺杂或未掺杂。向栅极堆叠体施加的高于阈值电压的栅极电压使得TFET从截止状态切换到导通状态。
当电子穿过源极/沟道结处的势垒(其由所施加的栅极电压来调制)时,发生隧穿。当栅极电压为0时,源极/沟道结处的势垒是宽的并且隧穿被抑制,而给出低的Ioff电流。当栅极电压高时,势垒变窄,并且隧穿电流是高的,而给出Ion电流,以及高的Ion/Ioff比率。这提供了较低的亚阈值斜率,这允许使用较低的工作电压。在该实施例中,对于nTFET,电子在源极/沟道结处从价带隧穿到导带,其中电子容易地传输到漏极区206。在该实施例中,对于pTFET,空穴在源极/沟道结处从导带隧穿到价带,其中空穴容易地传输到漏极区206。对于nTFET(pTFET),势垒取决于源极处的价(导)带与沟道中的导(价)带之间的能量分离。包括异质材料的TFET中的这种带分离(其是隧穿势垒)是该材料的带隙。
因此,TFET在低的电源电压下实现了高于MOSFET的Ion值。返回参照图1,曲线104示出了InAs TFET的电压/电流特性,其被示出为实现了比MOSFET曲线102更灵敏的导通表现(即,较低的亚阈值斜率)。然而,如图1中所示出的,当电压高于0.3伏特时,曲线104变平稳。返回参照图2,该曲线取决于源极204与沟道208之间的带隙。
为了进一步增强TFET 200的隧穿电流,在TFET器件的源极/沟道结处提供异质材料的谐振袋状件250。袋状件250可以包括具有与用于TFET 200的其它部件的半导体材料不同的带隙的任何半导体材料,例如锑化镓(GaSb)或InAs。袋状件250的带隙被选择为使得与同质器件相比隧穿势垒在异质器件中降低。
如下面进一步详细描述的,袋状件250的尺寸被选择为进一步增强TFET 200的结电流(即,增强沟道208中的隧穿电流),以使得晶体管具有低的Ioff和高的Ion值。Ioff由器件的带隙确定—即,带隙越大,Ioff就越低;然而,高的带隙也使Ion减小。因此,在该实施例中,TFET 200的主体被配置为具有高的带隙,而为了低的隧穿势垒袋状件250在源极/沟道结处建立低带隙。
图3A是示出了根据本公开内容的实施例的TFET的带隙表现的图。在该实施例中,图3A示出了InAs袋状件TFET如何降低晶体管的有效隧穿势垒,从而增加驱动电流。在该图中,x轴表示沿着器件的距离(以nm为单位),y轴表示对应的带隙能量(eV)。
在截止(OFF)状态下,TFET的源极与沟道之间存在宽的势垒,并且因此,不会发生隧穿。当栅极电压超过阈值电压时,TFET的源极与沟道之间的势垒变得足够窄,以允许显著的隧穿电流(即,切换到导通(ON)状态)。
如图3A中所示出的,对于InAs袋状件,带隙能量(eV,示出为y轴)在20nm的源极/袋状件位置处降低;在袋状件外,带隙可以与同质TFET中的带隙相同或者甚至更大。袋状件在传送方向上建立用于载流子的量子阱。载流子并非在所有能量下均等地传输通过该量子阱。存在最佳能量,针对该最佳能量,传输可以被增强(或者可以谐振)。因此,在不理解谐振能级效应的情况下在TFET中实现异质材料的袋状件会引起不准确的器件定向(devicetargeting)(即,袋状件材料会呈现与传统的同质结TFET相同或更差的表现)。在本文所描述的实施例中,TFET晶体管主体的限定以及异质材料的袋状件尺寸可以被配置为优化谐振状态的能级,以提供改善的TFET晶体管特性。一旦理解了降级(degradation)背后的物理现象,就可以使用袋状件的谐振和主体限定,将器件设计为提供更佳的晶体管特性。
图3B是示出了根据本公开内容的实施例的各个TFET的电压/漏极电流曲线的图。在该实施例中,曲线351示出了示例性的同质TFET的电压/电流特性,曲线352示出了包括有包含70%的异质材料的袋状件的示例性TFET的电压/电流特性,并且曲线353示出了包括有100%异质材料的袋状件的示例性TFET的电压/电流特性。如该图中所示出的,曲线352比其它曲线更快地达到其峰值电流(即,Ion值),示出了利用具有最多异质材料的袋状件的TFET最多地缩减了带隙。
理论上,具有较小带隙的袋状件区域引起增加的隧穿电流,而不管袋状件尺寸和袋状件能量深度如何;然而,在具有限定的主体尺寸的短栅极长度处这种直接关系打破。随着器件和栅极长度缩减以增加晶体管密度,漏电流增加,并且器件性能下降,这是由于增加的短沟道效应。
此外,在异质袋状件变窄的实施例中,异质袋状件形成量子阱。量子阱的导带中的电子被限定于离散的能量状态,这些能量状态由本领域公知的量子力学条件确定。类似地,量子阱的价带中的空穴也被限定于离散能量状态。当TFET的漏极区中的电子的能量与栅极区的该离散能量状态匹配(align)时,电子隧穿该量子阱。这种匹配可以被称为量子阱的“谐振条件”。因此,对于异质袋状件,袋状件的宽度可以被选择为增加使能量状态匹配的概率;然而,如果袋状件太大,则袋状件表现为与晶体管的主体类似并且使Ion水平下降。
图4是示出了根据本公开内容的实施例的各个TFET的电压/漏极电流曲线的图。图4示出了针对各个袋状件宽度的若干条曲线。在该示例中,曲线401-406是增加的袋状件宽度的电压/漏极电流曲线(即,曲线401与具有0.5nm的异质袋状件宽度的TFET相对应,曲线402与1nm的袋状件宽度相对应,曲线403与2nm的袋状件宽度相对应,曲线404与4nm的袋状件宽度相对应,曲线405与6nm的袋状件宽度相对应,并且曲线406与8nm的袋状件宽度相对应)。
如果TFET主体的设计、异质袋状件尺寸以及异质袋状件的材料不是最优的,则袋状件产生非优选的TFET I-V曲线。如该图中所示出的,曲线403在导通区期间具有比曲线401和402更优的器件导电性。较大的异质袋状件(例如,与曲线404-406相对应的这些袋状件)在导通区期间提供了有助于器件导电性的离散能量状态,但是在截止状态期间也不利地影响了器件导电性。因此,对于该示例,可以选择曲线402的袋状件尺寸。该示例并非意在限制本公开内容的实施例中的异质袋状件尺寸,而是意在示出用于除了异质袋状件的材料之外还确定TFET主体的最优设计以及异质袋状件尺寸的示例性过程。
因此,实施例描述了设计一种被布置在TFET的源极区和沟道区的结附近的异质袋状件:该异质袋状件包括与沟道区不同的半导体材料,并且其中,异质袋状件被设计为包括较低的隧穿势垒,并且形成沟道区中的量子阱,以便当向栅极施加的电压高于阈值电压时增加通过TFET晶体管的电流。
图5是用于利用本发明的实施例的计算机系统的图。如所描绘的计算机系统500(也被称为电子系统500)可以包括部件,这些部件包括包含有上面所描述的异质袋状件的TFET中的任何TFET。计算机系统500可以是诸如上网本计算机之类的移动设备。计算机系统500可以是诸如无线智能电话之类的移动设备。计算机系统500可以是台式计算机。计算机系统500可以是手持阅读器。计算机系统500可以是可穿戴计算设备。
在实施例中,系统500是计算机系统,其包括系统总线520,以电耦合电子系统的各个部件。根据各个实施例,系统总线520是单根总线或者总线的任意组合。系统500包括电压源530,其向集成电路510提供功率。在一些实施例中,源530通过系统总线520向集成电路510供应电流。
根据实施例,集成电路510电耦合到系统总线520,并且包括任何电路或者电路的组合。在实施例中,集成电路510包括可以是任何类型的处理器512。如本文所使用的,处理器512可以意指任何类型的电路,例如,但不限于,微处理器、微控制器、图形处理器、数字信号处理器、或者另一种处理器。在实施例中,在处理器的存储器高速缓存中找到SRAM实施例。可以被包括在集成电路510中的其它类型的电路是定制电路或专用集成电路(ASIC),例如用于无线设备(例如,蜂窝电话、智能电话、寻呼机、便携式计算机、双向无线电装置、以及类似的电子系统)中的通信电路514。在实施例中,处理器510包括管芯上存储器516,例如静态随机存取存储器(SRAM)。在实施例中,处理器510包括嵌入式管芯上存储器516,例如嵌入式动态随机存取存储器(eDRAM)。
在实施例中,集成电路510与后续集成电路511互补。有用的实施例包括双处理器513和双通信电路515以及双管芯上存储器517,例如SRAM。在实施例中,双集成电路511包括嵌入式管芯上存储器517,例如eDRAM。
在实施例中,电子系统500还包括外部存储器540,该外部存储器540可以交替地包括适用于特定应用的一个或多个存储器元件(例如,RAM形式的主存储器542)、一个或多个硬盘驱动器544、和/或处理可移动介质546(例如,磁盘、压缩光盘(CD)、数字多功能光盘(DVD)、闪存驱动器、以及本领域公知的其它可移动介质)的一个或多个驱动器。根据实施例,外部存储器540还可以是嵌入式存储器548,例如嵌入式TSV管芯堆叠体中的第一管芯。
在实施例中,电子系统500还包括显示设备550和音频输出560。在实施例中,电子系统500包括诸如控制器之类的输入设备570,其可以是键盘、鼠标、追踪球、游戏控制器、麦克风、语音识别设备、或者将信息输入到电子系统500中的任何其它输入设备。在实施例中,输入设备570是照相机。在实施例中,输入设备570是数字声音记录器。在实施例中,输入设备570是照相机和数字声音记录器。
如本文中所示出的,集成电路510可以在多个不同的实施例中被实施,包括具有包含有TFET(其包括根据若干所公开的实施例及其等效方案中的任何一个的异构袋状件)的晶体管的半导体封装件、电子系统、计算机系统、制造集成电路的一种或多种方法、以及制造包括有半导体封装件(其具有含有晶体管的封装件,该晶体管包含包括有根据如本文在各实施例所阐述的若干所公开的实施例及其公认的等效方案中的任何一个的异构袋状件的TFET)的电子组件的一种或多种方法。元件、材料、几何形状、尺寸以及操作顺序都可以改变,以满足特定的I/O耦合需求,包括用于嵌入在处理器中的微电子管芯的阵列接触数、阵列接触配置,其根据若干所公开的具有晶体管(其包括先前所讨论的包含有异质袋状件的TFET中的任何TFET)的半导体封装件及其等效方案中的任何一个来安装衬底。如图5的虚线所表示的,可以包括基础衬底。如图5中还描绘的,还可以包括无源器件580。
在以上描述中,出于解释的目的,阐述了许多特定的细节,以便提供对实施例的透彻理解。然而,对于本领域技术人员将显而易见的是,可以在没有这些特定细节中的一些细节的情况下实践一个或多个其它实施例。提供所描述的特定实施例并非为了限制本发明,而是对本发明进行说明。本发明的范围不应由上面所提供的特定示例来确定,而是仅由所附权利要求来确定。在其它实例中,以框图形式示出或者没有详细地示出公知的结构、设备和操作,以免使本说明书难以理解。在认为合适的地方,附图标记或附图标记的端部在附图之间重复,以指示对应的或相似的元件,这些元件可以可选地具有类似的特性。
还应当意识到,贯穿本说明书例如对“一个实施例”、“实施例”、“一个或多个实施例”的引用意指特定的特征可以包括在本发明的实践中。类似地,应当意识到,在本描述中,各个特征有时一起组合在单个实施例、附图或其描述中,以便简化本公开内容并且帮助理解各个发明性的方面。然而,本公开内容的该方法不应被解释为反映本发明需要比每项权利要求中明确记载的特征更多的特征的意图。相反,如所附权利要求反映的,发明性的方面可以在于少于单个公开的实施例中的所有特征。因此,随附具体实施方式的权利要求据此被明确地并入该具体实施方式中,其中每项权利要求作为本发明的单独实施例而独立存在。
因此,本发明的实施例描述了一种隧穿场效应晶体管(TFET),包括:漏极区;源极区,所述源极区具有与所述漏极区相反的导电类型;沟道区,所述沟道区被布置在所述源极区与所述漏极区之间;栅极,所述栅极被布置在所述沟道区上方;以及异质袋状件,所述异质袋状件被布置在所述源极区和所述沟道区的结附近。所述异质袋状件包括与所述沟道区不同的半导体材料,并且所述异质袋状件包括比所述沟道区的带隙低的隧穿势垒从而形成量子阱,以便当向所述栅极施加的电压高于阈值电压时增加通过所述TFET晶体管的电流。
在一些实施例中,所述源极区和所述沟道区的所述结包括以下各项中的至少一项:硅(Si)、锗(Ge)、硅锗(SiGe)、砷化铟(InAs)、硅锗(Sin)、硅锡(GeSn)、或者硅锗锡(SiGeSn)。在一些实施例中,所述沟道区包括包含有铟的半导体材料,并且所述异质袋状件包括具有较高百分比的铟的半导体材料。在一些实施例中,所述源极区的价带与所述异质袋状件的离散能级匹配。
在一些实施例中,所述TFET包括纳米线结构,所述纳米线结构包括所述源极区、所述漏极区、所述沟道区、以及所述异质袋状件。在一些实施例中,所述TFET包括双栅极TFET。在一些实施例中,所述TFET包括n-沟道TFET或p-沟道TFET。
本发明的实施例描述了一种系统,包括:处理器;以及存储器,所述存储器通信地耦合到所述处理器。所述处理器或所述存储器中的至少一项包括至少一个隧穿场效应晶体管(TFET),所述TFET包括:漏极区;源极区,所述源极区具有与所述漏极区相反的导电类型;沟道区,所述沟道区被布置在所述源极区与所述漏极区之间;栅极,所述栅极被布置在所述沟道区上方;以及异质袋状件,所述异质袋状件被布置在所述源极区和所述沟道区的结附近。所述异质袋状件包括与所述沟道区不同的半导体材料,并且所述异质袋状件包括比所述沟道区的带隙低的隧穿势垒从而形成量子阱,以便当向所述栅极施加的电压高于阈值电压时增加通过所述TFET晶体管的电流。
在一些实施例中,所述TFET的所述源极区和所述沟道区的所述结包括以下各项中的至少一项:硅(Si)、锗(Ge)、硅锗(SiGe)、砷化铟(InAs)、硅锗(Sin)、硅锡(GeSn)、或者硅锗锡(SiGeSn)。在一些实施例中,所述TFET的所述沟道区包括包含有铟的半导体材料,并且所述异质袋状件包括具有较高百分比的铟的半导体材料。在一些实施例中,所述TFET的所述源极区的价带与所述异质袋状件的离散能级匹配。
在一些实施例中,所述TFET包括纳米线结构,所述纳米线结构包括所述源极区、所述漏极区、所述沟道区、以及所述异质袋状件。在一些实施例中,所述TFET包括双栅极TFET。在一些实施例中,所述TFET包括n-沟道TFET或p-沟道TFET。
在一些实施例中,以上所描述的系统的所述处理器和所述存储器包括分立部件。在其它实施例中,所述系统包括片上系统(SoC)架构,并且所述处理器和所述存储器是SoC部件。

Claims (16)

1.一种隧穿场效应晶体管(TFET),包括:
漏极区;
源极区,所述源极区具有与所述漏极区相反的导电类型;
沟道区,所述沟道区被布置在所述源极区与所述漏极区之间;
栅极,所述栅极被布置在所述沟道区上方;以及
异质袋状件,所述异质袋状件被布置在所述源极区和所述沟道区的结附近,其中,所述异质袋状件包括与所述沟道区不同的半导体材料,并且其中,所述异质袋状件包括比所述沟道区的带隙低的隧穿势垒从而形成量子阱,以便当向所述栅极施加的电压高于阈值电压时增加通过所述TFET的电流,
其中,所述源极区的价带与所述异质袋状件的离散能级匹配。
2.根据权利要求1所述的TFET,其中,所述源极区和所述沟道区的所述结包括以下各项中的至少一项:硅(Si)、锗(Ge)、硅锗(SiGe)、砷化铟(InAs)、锗锡(GeSn)、或者硅锗锡(SiGeSn)。
3.根据权利要求1所述的TFET,其中,所述沟道区包括包含有铟的半导体材料,并且所述异质袋状件包括具有较高百分比的铟的半导体材料。
4.根据权利要求1所述的TFET,其中,所述TFET包括纳米线结构,所述纳米线结构包括所述源极区、所述漏极区、所述沟道区、以及所述异质袋状件。
5.根据权利要求1所述的TFET,其中,所述TFET包括双栅极TFET。
6.根据权利要求1所述的TFET,其中,所述TFET包括n-沟道TFET。
7.根据权利要求1所述的TFET,其中,所述TFET包括p-沟道TFET。
8.一种包括有使用一个或多个隧穿场效应晶体管(TFET)的一个或多个部件的系统,所述系统包括:
处理器;以及
存储器,所述存储器通信地耦合到所述处理器;
其中,所述处理器或所述存储器中的至少一项包括至少TFET,所述TFET包括:
漏极区;
源极区,所述源极区具有与所述漏极区相反的导电类型;
沟道区,所述沟道区被布置在所述源极区与所述漏极区之间;
栅极,所述栅极被布置在所述沟道区上方;以及
异质袋状件,所述异质袋状件被布置在所述源极区和所述沟道区的结附近,其中,所述异质袋状件包括与所述沟道区不同的半导体材料,并且其中,所述异质袋状件包括比所述沟道区的带隙小的隧穿势垒从而在所述沟道中形成量子阱,以便当向所述栅极施加的电压高于阈值电压时增加通过所述TFET的电流,
其中,所述TFET的所述源极区的价带与所述异质袋状件的离散能级匹配。
9.根据权利要求8所述的系统,其中,所述TFET的所述源极区和所述沟道区的所述结包括以下各项中的至少一项:硅(Si)、锗(Ge)、硅锗(SiGe)、砷化铟(InAs)、锗锡(GeSn)、或者硅锗锡(SiGeSn)。
10.根据权利要求8所述的系统,其中,所述TFET的所述沟道区包括包含有铟的半导体材料,并且所述异质袋状件包括具有较高百分比的铟的半导体材料。
11.根据权利要求8所述的系统,其中,所述TFET包括纳米线结构,所述纳米线结构包括所述源极区、所述漏极区、所述沟道区、以及所述异质袋状件。
12.根据权利要求8所述的系统,其中,所述TFET包括双栅极TFET。
13.根据权利要求8所述的系统,其中,所述TFET包括n-沟道TFET。
14.根据权利要求8所述的系统,其中,所述TFET包括p-沟道TFET。
15.根据权利要求8所述的系统,其中,所述处理器和所述存储器包括分立部件。
16.根据权利要求8所述的系统,其中,所述系统包括片上系统(SoC)架构,并且所述处理器和所述存储器是SoC部件。
CN201380081117.0A 2013-12-23 2013-12-23 用于隧穿场效应晶体管(tfet)的异质袋状件 Active CN105793992B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/077604 WO2015099686A1 (en) 2013-12-23 2013-12-23 Heterogeneous pocket for tunneling field effect transistors (tfets)

Publications (2)

Publication Number Publication Date
CN105793992A CN105793992A (zh) 2016-07-20
CN105793992B true CN105793992B (zh) 2019-10-18

Family

ID=53275312

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380081117.0A Active CN105793992B (zh) 2013-12-23 2013-12-23 用于隧穿场效应晶体管(tfet)的异质袋状件

Country Status (7)

Country Link
US (1) US9871106B2 (zh)
EP (1) EP3087610A4 (zh)
KR (1) KR102154038B1 (zh)
CN (1) CN105793992B (zh)
DE (1) DE102014017288B4 (zh)
TW (2) TWI550854B (zh)
WO (1) WO2015099686A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106062967B (zh) * 2014-03-27 2019-12-31 英特尔公司 具有袋状部的p隧穿场效应晶体管器件
CN108028271B (zh) * 2016-08-17 2020-08-14 华为技术有限公司 存储装置及其制作方法、数据读写方法
CN108321197A (zh) * 2018-02-24 2018-07-24 中国科学院微电子研究所 一种遂穿场效应晶体管及其制造方法
KR102575554B1 (ko) * 2018-04-10 2023-09-08 삼성디스플레이 주식회사 화소 및 이를 포함한 표시 장치
TWI720645B (zh) * 2018-10-09 2021-03-01 美商美光科技公司 包含異構通道之電晶體及相關裝置、電子系統及方法
KR102535796B1 (ko) * 2018-11-02 2023-05-25 삼성디스플레이 주식회사 화소, 이를 포함한 표시 장치, 및 표시 장치의 제조 방법
US10943915B1 (en) * 2019-08-27 2021-03-09 Micron Technology, Inc. Integrated memory having the body region comprising a different semiconductor composition than the source/drain region

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101740621A (zh) * 2008-11-18 2010-06-16 台湾积体电路制造股份有限公司 具有金属源极的隧道场效应晶体管
US8384122B1 (en) * 2008-04-17 2013-02-26 The Regents Of The University Of California Tunneling transistor suitable for low voltage operation

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05235057A (ja) * 1992-02-19 1993-09-10 Sanyo Electric Co Ltd 半導体装置
KR20080006268A (ko) 2006-07-12 2008-01-16 삼성전자주식회사 터널링 전계 효과 트랜지스터의 제조 방법
US7816727B2 (en) 2007-08-27 2010-10-19 Macronix International Co., Ltd. High-κ capped blocking dielectric bandgap engineered SONOS and MONOS
US7834345B2 (en) * 2008-09-05 2010-11-16 Taiwan Semiconductor Manufacturing Company, Ltd. Tunnel field-effect transistors with superlattice channels
US8053785B2 (en) 2009-05-19 2011-11-08 Globalfoundries Inc. Tunneling field effect transistor switch device
US9159565B2 (en) * 2009-08-20 2015-10-13 Globalfoundries Singapore Pte. Ltd. Integrated circuit system with band to band tunneling and method of manufacture thereof
US9209285B2 (en) * 2009-09-17 2015-12-08 The Ohio State University Silicon-based tunneling field effect transistors and transistor circuitry employing same
US8368127B2 (en) * 2009-10-08 2013-02-05 Globalfoundries Singapore Pte., Ltd. Method of fabricating a silicon tunneling field effect transistor (TFET) with high drive current
US8436422B2 (en) * 2010-03-08 2013-05-07 Sematech, Inc. Tunneling field-effect transistor with direct tunneling for enhanced tunneling current
US8309989B2 (en) * 2010-08-18 2012-11-13 Purdue Research Foundation Tunneling field-effect transistor with low leakage current
US8890118B2 (en) * 2010-12-17 2014-11-18 Intel Corporation Tunnel field effect transistor
US9029227B2 (en) 2011-03-01 2015-05-12 Globalfoundries Singapore Pte. Ltd. P-channel flash with enhanced band-to-band tunneling hot electron injection
TWI527228B (zh) * 2012-02-24 2016-03-21 聯華電子股份有限公司 多閘極電晶體元件
CN102664192B (zh) 2012-05-08 2015-03-11 北京大学 一种自适应复合机制隧穿场效应晶体管及其制备方法
US9064888B2 (en) * 2013-06-28 2015-06-23 Globalfoundries Inc. Forming tunneling field-effect transistor with stacking fault and resulting device
US9054191B2 (en) * 2013-10-17 2015-06-09 Globalfoundries Singapore Pte. Ltd. High ion and low sub-threshold swing tunneling transistor
CN106062967B (zh) * 2014-03-27 2019-12-31 英特尔公司 具有袋状部的p隧穿场效应晶体管器件

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384122B1 (en) * 2008-04-17 2013-02-26 The Regents Of The University Of California Tunneling transistor suitable for low voltage operation
CN101740621A (zh) * 2008-11-18 2010-06-16 台湾积体电路制造股份有限公司 具有金属源极的隧道场效应晶体管

Also Published As

Publication number Publication date
KR102154038B1 (ko) 2020-09-09
EP3087610A4 (en) 2017-08-02
EP3087610A1 (en) 2016-11-02
DE102014017288B4 (de) 2019-04-11
DE102014017288A1 (de) 2015-06-25
KR20160100927A (ko) 2016-08-24
CN105793992A (zh) 2016-07-20
TWI619251B (zh) 2018-03-21
TW201535726A (zh) 2015-09-16
TWI550854B (zh) 2016-09-21
TW201705479A (zh) 2017-02-01
WO2015099686A1 (en) 2015-07-02
US20160276440A1 (en) 2016-09-22
US9871106B2 (en) 2018-01-16

Similar Documents

Publication Publication Date Title
CN105793992B (zh) 用于隧穿场效应晶体管(tfet)的异质袋状件
US10177150B2 (en) Semiconductor device and method of fabricating the same
US9911835B2 (en) Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs
US9825034B2 (en) Semiconductor device and method of fabricating the same
KR102138063B1 (ko) 도핑되지 않은 드레인 언더랩 랩-어라운드 영역들을 갖는 터널링 전계 효과 트랜지스터들(tfet들)
KR101979637B1 (ko) 반도체 소자
US10115822B2 (en) Methods of forming low band gap source and drain structures in microelectronic devices
Narula et al. A Comprehensive Review on FinFET, Gate All Around, Tunnel FET: Concept, Performance and Challenges
US10236345B2 (en) Field effect transistor having a Fermi filter between a source and source contact thereof
Barman et al. Silicon and germanium vertical super-thin body (VSTB) FET: a comparative performance overview including architectural stress-strain impact
Go et al. Design optimization of heterojunction 1T DRAM cell with SiGe body/drain for high performance
Singh et al. Device Structure Modifications in Conventional Tunnel Field Effect Transistor (TFET) for Low-power Applications
Bisht et al. Nanosheet Transistor with Inter-bridge Channels for Superior Delay Performance: A Comparative Study

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant