CN105776331B - 一种以lrh为模版制备稀土钒酸盐的自牺牲模版合成方法 - Google Patents

一种以lrh为模版制备稀土钒酸盐的自牺牲模版合成方法 Download PDF

Info

Publication number
CN105776331B
CN105776331B CN201610062671.XA CN201610062671A CN105776331B CN 105776331 B CN105776331 B CN 105776331B CN 201610062671 A CN201610062671 A CN 201610062671A CN 105776331 B CN105776331 B CN 105776331B
Authority
CN
China
Prior art keywords
masterplate
solution
rare
vanadate
yttrium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610062671.XA
Other languages
English (en)
Other versions
CN105776331A (zh
Inventor
李继光
黄塞
朱琦
孙旭东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201610062671.XA priority Critical patent/CN105776331B/zh
Publication of CN105776331A publication Critical patent/CN105776331A/zh
Application granted granted Critical
Publication of CN105776331B publication Critical patent/CN105776331B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/006Compounds containing, besides vanadium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Abstract

本发明提供一种以LRH为模版制备稀土钒酸盐的自牺牲模版合成方法,工艺步骤为:(1)将钇的硝酸化合物或者钇的硝酸化合物和镧系元素的硝酸化合物”在去离子水中混合均匀,配制成稀土离子溶液;(2)加入浓氨水调节溶液pH值,在密闭条件下反应;(3)将反应混合物冷却至室温,离心分离,干燥,得到(Y1‑x Lnx)2(OH)5NO3·nH2O固体粉末;(4)将(Y1‑xLnx)2(OH)5NO3·nH2O和NH4VO3在去离子水中混合均匀,配制成稀土离子溶液;(5)加入浓氨水调节溶液pH值,在密闭条件下反应;(6)将反应混合物冷却至室温,离心分离,干燥,得到(Y1‑xLnx)VO4固体。

Description

一种以LRH为模版制备稀土钒酸盐的自牺牲模版合成方法
技术领域
本发明属于材料科学领域,特别涉及一种以LRH为模版制备稀土钒酸盐的自牺牲模版合成方法。
背景技术
钒酸盐体系的稀土发光材料因其较好的热稳定性以及较高的荧光量子效率等优点被广泛应用于各行各业。目前制备不同尺寸不同形貌的稀土钒酸盐的方法有很多种,如水热法,溶剂热法,牺牲模版法等等。水热法是利用高温高压的水溶液使那些大气条件下不溶或者难溶的物质溶解,或反应生成该物质的溶解产物,通过控制高压釜内溶液的温差使反应物发生对流以形成过饱和状态而析出生长晶体,该方法需要利用高温高压以激发反应的发生,因而对反应容器的要求较高,此外,钒酸盐的产率低也是该方法无法克服的重要缺陷。溶剂热法是在水热法基础上进一步开发的方法,它与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水,该方法较水热法相对简单而且易于控制,并且在水热反应的前提下用有机溶剂代替水,可以满足一些较高压反应条件的要求,但溶剂热法制备的钒酸盐产量仍然较低,这是主要问题之一,此外,有机溶剂的引入会增大对环境的污染和对操作人员的身体伤害,这一点也值得我们关注。
综上,水热法和溶剂热法均属于一步合成法,利用一步合成方法虽然可以制备得到钒酸盐,但所得钒酸盐在形貌上有很大的局限性,因而其应用也具有较大局限性。两步合成的自牺牲模版法引起了科研人员的兴趣,已有少量文献报道利用该方法制备稀土钒酸盐。自牺牲模版法是通过以事先合成的物相为模版,利用中间相已有的晶体结构,颗粒形貌为模版,控制合成特定形貌和物理化学性质的最终产物的一种合成方法。已有科研人员通过此方法研究出空心球形结构、复合球形结构的钒酸盐,而其他形貌的钒酸盐的制备还有待研究。
之前东北大学开发了一种通式为(Y1-xEux)2(OH)5NO3·nH2O的稀土层状氢氧化合物(申请号为CN2012104169058和CN2012104169024),是一种新型超薄的阴离子型层状化合物,具有超薄且颗粒尺寸大的特点,还具有充当模版合成其他化合物的潜力。
发明内容
针对现有技术存在的问题,并结合新型超薄稀土层状氢氧化合物(LRH)的特性,本发明提供一种以(Y1-x Lnx)2(OH)5NO3·nH2O(Ln表示稀土离子,简称LRH)为模版制备钒酸盐的自牺牲模版合成方法。本发明的技术方案如下:
一种以LRH为模版制备稀土钒酸盐的自牺牲模版合成方法,按照以下工艺步骤进行:
(1)将钇的硝酸化合物或者钇的硝酸化合物和镧系元素的硝酸化合物”在去离子水中混合均匀,配制成稀土离子总浓度为0.02~0.10mol/L的溶液I;
(2)加入浓氨水调节溶液pH至6.0~8.0,在温度为110~130℃的密闭条件下反应12~24h;
(3)将反应混合物冷却至室温,离心分离,于40~60℃干燥12~24h,得到(Y1-xLnx)2(OH)5NO3·nH2O固体粉末,其中n=1.5~1.8,0≤x<1;
(4)将(Y1-x Lnx)2(OH)5NO3·nH2O和NH4VO3在去离子水中混合均匀,配制成稀土离子总浓度为0.02~0.10mol/L的溶液II;
(5)加入浓氨水调节溶液pH至8.0~10.0,在温度为25~120℃的密闭条件下反应3~24h;
(6)将反应混合物冷却至室温,离心分离,于40~60℃干燥12~24h,得到(Y1-xLnx)VO4固体,其中0≤x<1。
上述方法中,NH4VO3的加入量以钒与钇和稀土离子总量的摩尔比为(1~5)∶1为准。
本发明原理为:制备的(Y1-x Lnx)2(OH)5NO3·nH2O(n=1.5~1.8,0≤x<1)粉末在碱性条件下释放稀土离子,与VO4 3-结合重新沉淀,生长得到梭状(Y1-x Lnx)VO4,这是一种溶解再生长的反应机制。
与现有技术相比,本发明的特点和有益效果是:传统制备钒酸盐的方法是在一定条件下使稀土离子和钒酸根离子结合,达到饱和溶度积后析出沉淀,这些方法的反应过程均需要较大能量,因而反应条件较为苛刻,并且反应过程的稳定性较差,所制备的钒酸盐晶型较差。本发明采用自牺牲模版法,通过引入(Y1-x Lnx)2(OH)5NO3·nH2O模版相使合成条件简单且反应过程稳定,其超薄且颗粒尺寸大的特点为稀土钒酸盐的形核及生长提供了有利条件,可以得到晶型较好的钒酸盐[(Y1-xLnx)VO4]。
附图说明
图1是本发明实施例1制备的(Y0.95Eu0.05)VO4白色粉末的XRD图谱;
图2是本发明实施例1制备的(Y0.95Eu0.05)VO4白色粉末的SEM形貌图;
图3是本发明实施例2制备的(Y0.90Tb0.10)VO4白色粉末的XRD图谱;
图4是本发明实施例2制备的(Y0.90Tb0.10)VO4白色粉末的SEM形貌图;
图5是本发明实施例3制备的(Y0.85Sm0.15)VO4白色粉末的XRD图谱;
图6是本发明实施例3制备的(Y0.85Sm0.15)VO4白色粉末的SEM形貌图。
图7是本发明实施例4制备的YVO4白色粉末的XRD图谱;
图8是本发明实施例4制备的YVO4白色粉末的SEM形貌图。
具体实施方式
本发明实施采用的钇的硝酸化合物、镧系元素的硝酸化合物”、氨水、偏钒酸铵(NH4VO3)及其他试剂均为市售分析纯化学试剂。
本发明实施例制备的钒酸盐采用型号为PW3040/60的X’Pert Pro X射线衍射仪(荷兰PANalyticalB.V.)进行XRD物相分析;采用JSM-7001F型JEOL场发射扫描电镜进行形貌观察和分析。
实施例1
一种以(Y0.95Eu0.05)2(OH)5NO3·1.5H2O为模版制备稀土钒酸盐的自牺牲模版合成方法,按照以下工艺步骤进行:
(1)将Y(NO3)3·6H2O和Eu(NO3)3·6H2O按照摩尔比Y/Eu=19∶1在去离子水中混合均匀,配制成稀土离子总浓度为0.028mol/L的溶液I;
(2)加入浓氨水调节溶液pH至6.51,在温度为120℃的密闭条件下反应24h;
(3)将反应混合物冷却至室温,离心分离,于50℃干燥24h,得到(Y0.95Eu0.05)2(OH)5NO3·1.5H2O固体粉末;
(4)将(Y0.95Eu0.05)2(OH)5NO3·1.5H2O和NH4VO3按摩尔比为V/Ln=1.25(Ln=Eu+Y)在去离子水中混合均匀,配制成稀土离子总浓度为0.30mol/L的溶液II;
(5)加入浓氨水调节溶液pH至9.13,在温度为25℃的密闭条件下反应24h;
(6)将反应混合物冷却至室温,离心分离,于50℃干燥24h,得到(Y0.95Eu0.05)VO4固体。
(Y0.95Eu0.05)VO4固体的XRD图谱如图1所示,显示为纯相钒酸盐;SEM形貌图如图2所示,可以看到所得到的(Y0.95Eu0.05)VO4产物呈现梭状结构。
实施例2
一种以(Y0.90Tb0.10)2(OH)5NO3·1.6H2O为模版制备稀土钒酸盐的自牺牲模版合成方法,按照以下工艺步骤进行:
(1)将Y(NO3)3·6H2O和Tb(NO3)3·6H2O按照摩尔比Y/Tb=9∶1在去离子水中混合均匀,配制成稀土离子总浓度为0.04mol/L的溶液I;
(2)加入浓氨水调节溶液pH至7.00,在温度为110℃的密闭条件下反应24h;
(3)将反应混合物冷却至室温,离心分离,于60℃干燥24h,得到(Y0.90Tb0.10)2(OH)5NO3·1.6H2O固体粉末;
(4)将(Y0.90Tb0.10)2(OH)5NO3·1.6H2O和NH4VO3按摩尔比为V/Ln=2(Ln=Tb+Y)在去离子水中混合均匀,配制成稀土离子总浓度为0.03mol/L的溶液II;
(5)加入浓氨水调节溶液pH至9.61,在温度为80℃的密闭条件下反应24h;
(6)将反应混合物冷却至室温,离心分离,于50℃干燥24h,得到(Y0.90Tb0.10)VO4固体。
(Y0.90Tb0.10)VO4固体的XRD图谱如图3所示,显示为纯相钒酸盐;SEM形貌图如图4所示,可以看到所得到的(Y0.90Tb0.10)VO4产物呈现梭状结构。
实施例3
一种以(Y0.85Sm0.15)2(OH)5NO3·1.8H2O为模版制备稀土钒酸盐的自牺牲模版合成方法,按照以下工艺步骤进行:
(1)将Y(NO3)3·6H2O和Sm(NO3)3·6H2O按照摩尔比Y/Sm=17∶3在去离子水中混合均匀,配制成稀土离子总浓度为0.10mol/L的溶液I;
(2)加入浓氨水调节溶液pH至7.78,在温度为130℃的密闭条件下反应18h;
(3)将反应混合物冷却至室温,离心分离,于50℃干燥18h,得到(Y0.85Sm0.15)2(OH)5NO3·1.8H2O固体粉末;
(4)将(Y0.85Sm0.15)2(OH)5NO3·1.8H2O和NH4VO3按摩尔比为V/Ln=2.5(Ln=Sm+Y)在去离子水中混合均匀,配制成稀土离子总浓度为0.028mol/L的溶液II;
(5)加入浓氨水调节溶液pH至8.29,在温度为120℃的密闭条件下反应3h;
(6)将反应混合物冷却至室温,离心分离,于50℃干燥24h,得到(Y0.85Sm0.15)VO4固体。
(Y0.85Sm0.15)VO4固体的XRD图谱如图5所示,显示为纯相钒酸盐;SEM形貌图如图6所示,可以看到所得到的(Y0.85Sm0.15)VO4产物呈现梭状结构。
实施例4
一种以Y2(OH)5NO3·1.5H2O为模版制备稀土钒酸盐的自牺牲模版合成方法,按照以下工艺步骤进行:
(1)将Y(NO3)3·6H2O在去离子水中混合均匀,配制成稀土离子总浓度为0.028mol/L的溶液I;
(2)加入浓氨水调节溶液pH至6.51,在温度为120℃的密闭条件下反应24h;
(3)将反应混合物冷却至室温,离心分离,于50℃干燥24h,得到Y2(OH)5NO3·1.5H2O固体粉末;
(4)将Y2(OH)5NO3·1.5H2O和NH4VO3按摩尔比为V/Y=1.25在去离子水中混合均匀,配制成稀土离子总浓度为0.30mol/L的溶液II;
(5)加入浓氨水调节溶液pH至9.25,在温度为25℃的密闭条件下反应24h;
(6)将反应混合物冷却至室温,离心分离,于50℃干燥24h,得到YVO4固体。
YVO4固体的XRD图谱如图7所示,显示为纯相钒酸盐;SEM形貌图如图8所示,可以看到所得到的(Y0.95Eu0.05)VO4产物呈现梭状结构。

Claims (1)

1.一种以LRH为模版制备稀土钒酸盐的自牺牲模版合成方法,其特征在于按照以下工艺步骤进行:
(1)将钇的硝酸化合物或者钇的硝酸化合物和镧系元素的硝酸化合物在去离子水中混合均匀,配制成稀土离子总浓度为0.02~0.10mol/L的溶液I;
(2)加入浓氨水调节溶液pH值至6.0~8.0,在温度为110~130℃的密闭条件下反应12~24h;
(3)将反应混合物冷却至室温,离心分离,于40~60℃干燥12~24h,得到(Y1-x Lnx)2(OH)5NO3·nH2O固体粉末,其中n=1.5~1.8,0≤x<1;
(4)将(Y1-x Lnx)2(OH)5NO3·nH2O和NH4VO3在去离子水中混合均匀,其中NH4VO3加入量按照钒与钇和稀土离子总量的摩尔比为(1~5)∶1计,配制成稀土离子总浓度为0.02~0.10mol/L的溶液II;
(5)加入浓氨水调节溶液pH值至8.0~10.0,在温度为25~120℃的密闭条件下反应3~24h;
(6)将反应混合物冷却至室温,离心分离,于40~60℃干燥12~24h,得到(Y1-xLnx)VO4固体,其中0≤x<1。
CN201610062671.XA 2016-01-29 2016-01-29 一种以lrh为模版制备稀土钒酸盐的自牺牲模版合成方法 Expired - Fee Related CN105776331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610062671.XA CN105776331B (zh) 2016-01-29 2016-01-29 一种以lrh为模版制备稀土钒酸盐的自牺牲模版合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610062671.XA CN105776331B (zh) 2016-01-29 2016-01-29 一种以lrh为模版制备稀土钒酸盐的自牺牲模版合成方法

Publications (2)

Publication Number Publication Date
CN105776331A CN105776331A (zh) 2016-07-20
CN105776331B true CN105776331B (zh) 2017-06-30

Family

ID=56403392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610062671.XA Expired - Fee Related CN105776331B (zh) 2016-01-29 2016-01-29 一种以lrh为模版制备稀土钒酸盐的自牺牲模版合成方法

Country Status (1)

Country Link
CN (1) CN105776331B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724532B (zh) * 2019-09-10 2022-04-26 桂林理工大学 一种稀土钒酸盐薄膜及其制备方法和应用
CN110552036B (zh) * 2019-09-10 2022-01-04 桂林理工大学 一种利用置换反应制备稀土钒酸盐薄膜的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138703C (zh) * 2000-11-29 2004-02-18 浙江长河光电股份有限公司 稀土钒酸盐晶体材料的原料合成方法
CN101591540B (zh) * 2009-07-06 2012-07-25 浙江理工大学 一种稀土钒酸盐LaVO4:Eu红色荧光粉的制备方法
CN102320658B (zh) * 2011-07-22 2013-07-10 河北联合大学 一种采用水热/溶剂热法合成碱土金属钒酸盐微/纳米材料的方法
CN102344804B (zh) * 2011-07-27 2013-12-25 中国科学院宁波材料技术与工程研究所 一种钒酸盐荧光粉材料及其制备方法
CN103011233B (zh) * 2012-10-29 2014-08-06 东北大学 一种超大尺寸(Y1-xEux)2(OH)5NO3·nH2O稀土层状氢氧化合物颗粒的制备方法
CN103011234B (zh) * 2012-10-29 2014-11-05 东北大学 一种超薄(Y1-xEux)2(OH)5NO3·nH2O稀土层状氢氧化合物纳米片的直接合成方法

Also Published As

Publication number Publication date
CN105776331A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
Tian et al. Self-assembled 3D flower-shaped NaY (WO 4) 2: Eu 3+ microarchitectures: microwave-assisted hydrothermal synthesis, growth mechanism and luminescent properties
CN104039693B (zh) 含锰金属磷酸盐及其制备方法
Raju et al. Facile template free synthesis of Gd 2 O (CO 3) 2· H 2 O chrysanthemum-like nanoflowers and luminescence properties of corresponding Gd 2 O 3: RE 3+ spheres
Zhang et al. Preparation, characterization and luminescence of Sm3+ or Eu3+ doped Sr2CeO4 by a modified sol-gel method
CN104031647B (zh) 一种圆饼状铕掺杂钒酸镧红色荧光粉的制备方法
Li et al. Multiform La 2 O 3: Yb 3+/Er 3+/Tm 3+ submicro-/microcrystals derived by hydrothermal process: Morphology control and tunable upconversion luminescence properties
Li et al. Size-tunable synthesis and luminescent properties of Gd (OH) 3: Eu 3+ and Gd 2 O 3: Eu 3+ hexagonal nano-/microprisms
Lian et al. Co-precipitation synthesis of Y2O2SO4: Eu3+ nanophosphor and comparison of photoluminescence properties with Y2O3: Eu3+ and Y2O2S: Eu3+ nanophosphors
CN106558695A (zh) 一种镍钴铝复合氢氧化物、镍钴铝复合氧化物及其制备方法
CN108864158B (zh) 一种四核稀土铽配合物及其制备方法和作为发光材料的应用
CN105481013B (zh) 一种制备片状钒酸盐的自牺牲模版合成方法
Zhou et al. One-step surfactant-free synthesis of Eu 3+-activated NaTb (MoO 4) 2 microcrystals with controllable shape and their multicolor luminescence properties
CN105776331B (zh) 一种以lrh为模版制备稀土钒酸盐的自牺牲模版合成方法
CN108906051A (zh) 一种铜铁矿结构CuFeO2粉末及其制备方法和应用
JP5665051B2 (ja) 層状希土類水酸化物、その製造方法およびその用途
Sletnes et al. Luminescent Eu 3+-doped NaLa (WO 4)(MoO 4) and Ba 2 CaMoO 6 prepared by the modified Pechini method
Gao et al. Uniform Lu 2 O 3 hollow microspheres: template-directed synthesis and bright white up-conversion luminescence properties
CN108893115A (zh) 一种镧掺杂氧化钇铕球状红色荧光粉的制备方法
Wang et al. Hydrothermal synthesis and upconversion photoluminescence properties of lanthanide doped YF 3 sub-microflowers
He et al. Self-assembled light lanthanide oxalate architecture with controlled morphology, characterization, growing mechanism and optical property
Li et al. Synthesis and characterizations of pompon-like Y2O2SO4: Eu3+ phosphors using a UBHP technique based on UAS system
CN103059861A (zh) 一种红色YVO4:Eu3+发光微球及其制备方法
CN110255600A (zh) 一种快速沉淀制备碱式硫酸铜二维纳米片的方法
Wei et al. Luminescent properties and the morphology of SrMoO4: Eu3+ powders synthesized via combining sol-gel and solid-state route
CN109796045A (zh) 一种采用自牺牲模板制备复式钨酸盐的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Huang Sai

Inventor after: Zhu Qi

Inventor after: Sun Xudong

Inventor before: Li Jiguang

Inventor before: Huang Sai

Inventor before: Zhu Qi

Inventor before: Sun Xudong

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170630

Termination date: 20220129