CN105772373B - 一种双层复合自组装润滑膜的制备方法 - Google Patents

一种双层复合自组装润滑膜的制备方法 Download PDF

Info

Publication number
CN105772373B
CN105772373B CN201610331294.5A CN201610331294A CN105772373B CN 105772373 B CN105772373 B CN 105772373B CN 201610331294 A CN201610331294 A CN 201610331294A CN 105772373 B CN105772373 B CN 105772373B
Authority
CN
China
Prior art keywords
self
preparation
bis
ethane
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610331294.5A
Other languages
English (en)
Other versions
CN105772373A (zh
Inventor
王鹏
滕淑华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201610331294.5A priority Critical patent/CN105772373B/zh
Publication of CN105772373A publication Critical patent/CN105772373A/zh
Application granted granted Critical
Publication of CN105772373B publication Critical patent/CN105772373B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/51One specific pretreatment, e.g. phosphatation, chromatation, in combination with one specific coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/50Multilayers
    • B05D7/52Two layers
    • B05D7/54No clear coat specified
    • B05D7/544No clear coat specified the first layer is let to dry at least partially before applying the second layer
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M139/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00
    • C10M139/04Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing atoms of elements not provided for in groups C10M127/00 - C10M137/00 having a silicon-to-carbon bond, e.g. silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/12Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic compound containing atoms of elements not provided for in groups C10M141/02 - C10M141/10
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2203/00Other substrates
    • B05D2203/30Other inorganic substrates, e.g. ceramics, silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/10Compounds containing silicon
    • C10M2201/105Silica
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/04Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions having a silicon-to-carbon bond, e.g. organo-silanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Lubricants (AREA)
  • Laminated Bodies (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Abstract

一种双层复合自组装润滑膜的制备方法,是一种由1,2‑双(三乙氧基硅基)乙烷和低表面能硅烷偶联剂两种成分构建的新型双层自组装膜的制备方法。方法包括:将单晶硅片进行切割、清洗和氧化处理;处理后的硅片浸入1,2‑双(三乙氧基硅基)乙烷水解液中制备第一层膜;所得薄膜经过清洗、干燥后,再浸入低表面能硅烷偶联剂溶液中,利用第一层膜表面的活性基团进行第二层膜的沉积。本发明的制备方法中涉及到的仪器设备简单,过程易操作,且所得双层膜具有稳定、有序的结构。与低表面能硅烷偶联剂的单层膜相比,双层膜既可保持低摩擦系数,又可有效提高其抗粘着性和耐磨性。该双层膜有望成为解决微机电系统中器件表面润滑和保护问题的有效手段。

Description

一种双层复合自组装润滑膜的制备方法
技术领域
本发明涉及一种固体润滑材料的制备方法,尤其是一种在单晶硅表面制备1,2-双(三乙氧基硅基)乙烷/低表面能硅烷偶联剂双层复合自组装润滑膜的制备方法。
背景技术
硅是当今微电子领域中最重要的基础材料。在近几十年里兴起的微电子机械系统(MEMS)中,大部分构件都是在硅的表面成型。硅材料具有硬度高、成本低廉、表面粗糙度小,以及可实现集成制造和器件微小型化等特点。然而,未经表面处理的硅材料脆性较高,表面裂纹在较低张应力作用下能迅速扩展,易发生剥层磨损和脆性断裂,难以满足使用要求。
自组装单分子膜(Self-assembled monlayers,简称SAMs)是目前提高硅材料表面的微机械性能,并改善其微观摩擦磨损性能的有效手段之一。它是近年来发展起来的一种新型的有机超薄膜,具有制备方法简单、与基底结合强度高、热稳定性好、成膜不受样品几何形状的限制等优点。
尽管自组装单分子膜可以有效降低硅表面的摩擦系数,但是目前制备的大多数有机单层膜还存在承载能力低、耐磨性差的缺点,在反复滑动的条件下不能保持长久。当一些分子由于机械摩擦从表面除去后,薄膜就会失效,这势必会极大地限制其在MEMS领域中的实际应用。因此,如何在保持自组装单层膜优良的润滑性能的同时,来有效提高其承载能力和耐磨性,就成为目前亟待解决的问题。
如果自组装单层膜表面含有活性基团,或者通过化学方法对单层自组装膜表面进行活化,就可以把一些具有低表面能的硅烷分子通过自组装技术继续在单层膜表面进行沉积,从而获得双层或多层自组装膜。双层和多层膜既能够保持自组装单层膜优良的润滑性能,同时又能有效提高其承载能力和耐磨性,因而有望表现出比单层膜更优异的摩擦磨损性能。
发明内容
技术问题:本发明的目的是克服现有技术中的不足之处,提供一种在单晶硅表面制备1,2-双(三乙氧基硅基)乙烷/低表面能硅烷偶联剂双层复合自组装润滑膜的制备方法,以期解决MEMS器件表面的润滑和保护问题。
技术方案:本发明的双层自组装润滑膜的制备方法,以1,2-双(三乙氧基硅基)乙烷和低表面能硅烷偶联剂为原料,通过常规的自组装技术制成具有稳定、均匀且有序的微观结构的双层膜表面;制备方法包括如下步骤:
(1)将单晶硅片切割成规则尺寸后,依次用有机溶剂和水超声洗涤;
(2)在温度90℃下采用由体积比为7:3的98%浓H2SO4和30%H2O2组成的Piranha溶液,对单晶硅表面进行氧化处理30min,使其表面羟基化,最后用去离子水充分清洗并小心吹干;
(3)将1,2-双(三乙氧基硅基)乙烷在甲醇/水混合溶剂中充分水解;
(4)将处理后的单晶硅浸入1,2-双(三乙氧基硅基)乙烷的水解液中,利用分子自组装技术制备第一层膜;
(5)沉积了第一层膜的单晶硅片经过充分洗涤、干燥后,再浸入到低表面能硅烷偶联剂的稀溶液中进行原位水解、自组装,从而获得具有双层结构的自组装润滑膜。
所述的1,2-双(三乙氧基硅基)乙烷水解液中甲醇/水混合溶剂的体积比为9/1~30/1。
所述1,2-双(三乙氧基硅基)乙烷在甲醇/水混合溶剂中充分水解的浓度为1~10%;水解过程中的pH值控制在4~5之间;水解温度为常温;水解时间为1~3天。
所述的单晶硅片浸入1,2-双(三乙氧基硅基)乙烷水解液中的时间控制在0.5~5min。
所述用低表面能硅烷偶联剂为氯基、甲氧基或乙氧基硅烷偶联剂。
有益效果:由于采用了上述方案,本发明与低表面能硅烷偶联剂的单层自组装膜相比,双层膜在保持了较低的摩擦系数的同时,表现出更优异的抗粘着能力和耐磨性,具有如下优点:
(1)整个制备过程中所涉及到的仪器设备简单,工艺过程易操作,能耗和成本低,易于实施和推广;
(2)1,2-双(三乙氧基硅基)乙烷是一种新型的双硅烷,即在同一分子结构中有6个烷氧基,是普通硅烷偶联剂的双倍。一方面,1,2-双(三乙氧基硅基)乙烷分子水解后,一端的三个羟基可以与单晶硅表面的羟基通过脱水反应形成牢固的键合,从而形成稳定且致密有序的1,2-双(三乙氧基硅基)乙烷自组装膜。另一方面,1,2-双(三乙氧基硅基)乙烷分子另一端的三个羟基仍具有类似的反应活性,从而为一些低表面能硅烷偶联剂分子在其表面继续形成第二层自组装膜提供了可能性;
(3)当与对偶材料发生摩擦时,由于外层的自组装膜具有低的表面能,因此可保持其较低的摩擦系数。同时,内层的1,2-双(三乙氧基硅基)乙烷自组装膜则可发挥“应力缓冲层”的作用,以减轻外层膜所受到的冲击,并进而提高其承载能力和耐磨性。因此,与传统低表面能硅烷偶联剂的单层自组装膜相比,双层膜既具有良好的润滑性能,又具有较高的抗粘着性和耐磨性。该双层膜体系有望成为解决微机电系统(MEMS)中器件表面的润滑和保护问题的有效手段。
本发明可以用来制备以1,2-双(三乙氧基硅基)乙烷自组装膜为基底层的多种双层膜,且所得双层膜与基底结合牢固,表面结构均匀、有序。另外,如果所选用的低表面能硅烷偶联剂末端仍含有活性基团,则可继续形成多层自组装膜。
附图说明
图1为本发明实施例1制备的双层膜表面的AFM照片。
图2本发明实施例1制备的单层和双层自组装膜在载荷为0.2N条件下的摩擦系数曲线。
具体实施方式
下面结合附图对本发明的实施例作进一步的描述:
本发明的双层自组装润滑膜的制备方法,以1,2-双(三乙氧基硅基)乙烷和低表面能硅烷偶联剂为原料,通过常规的自组装技术制成具有稳定、均匀且有序的微观结构的双层膜表面;制备方法包括如下步骤:
(1)将单晶硅片切割成规则尺寸后,依次用有机溶剂和水超声洗涤;
(2)在温度90℃下采用采用由体积比为7:3的98%浓H2SO4和30%H2O2组成的Piranha溶液,对单晶硅表面进行氧化处理30min,使其表面羟基化,最后用去离子水充分清洗并小心吹干;
(3)将1,2-双(三乙氧基硅基)乙烷在甲醇/水混合溶剂中充分水解;所述1,2-双(三乙氧基硅基)乙烷在甲醇/水混合溶剂中充分水解的浓度为1~10%;水解过程中的pH值控制在4~5之间;水解温度为常温;水解时间为1~3天。
(4)将处理后的单晶硅浸入1,2-双(三乙氧基硅基)乙烷的水解液中,利用分子自组装技术制备第一层膜;所述的1,2-双(三乙氧基硅基)乙烷水解液中甲醇/水混合溶剂的体积比为9/1~30/1。所述的单晶硅片浸入1,2-双(三乙氧基硅基)乙烷水解液中的时间控制在0.5~5min。
(5)沉积了第一层膜的单晶硅片经过充分洗涤、干燥后,再浸入到低表面能硅烷偶联剂的稀溶液中进行原位水解、自组装,从而获得具有双层结构的自组装润滑膜。所述用低表面能硅烷偶联剂为氯基、甲氧基或乙氧基硅烷偶联剂。
实施例1:将单晶硅片切割成1cm×1cm尺寸的小片,然后依次浸入丙酮、氯仿、异丙醇中超声清洗10min,再用去离子水充分清洗后,取出并小心吹干;将清洗后的单晶硅片浸入到90℃的Piranha溶液中进行氧化处理,使其表面羟基化。所述Piranha溶液为98%浓H2SO4和30%H2O2的混合溶液,体积比7:3;单晶硅片经30min处理后取出,用去离子水充分清洗并小心吹干。取一定量的1,2-双(三乙氧基硅基)乙烷加入到甲醇/水混合溶剂(体积比为16/1)中,控制体系的pH为4.5,使其在常温下水解2天;将氧化处理后的单晶硅片浸入到1,2-双(三乙氧基硅基)乙烷的水解液中2min;取出对样品进行清洗、干燥处理后,再浸入到1mM的十八烷基三氯硅烷的甲苯溶液中,氮气保护环境下自组装24h;将硅片取出进行洗涤并干燥,获得具有双层结构的自组装润滑膜,如图1所示。
将氧化处理后的单晶硅片直接浸入到1mM的十八烷基三氯硅烷的甲苯溶液中,氮气保护环境下自组装24h后取出进行洗涤并干燥,获得十八烷基三氯硅烷的单层自组装润滑膜。用于与上述制备的1,2-双(三乙氧基硅基)乙烷/十八烷基三氯硅烷双层膜的对比。
实施例2:将单晶硅片按照实施例1的步骤进行切割、清洗和氧化处理后,用去离子水充分清洗并小心吹干;取一定量的1,2-双(三乙氧基硅基)乙烷加入到甲醇/水混合溶剂中,甲醇/水混合溶剂的体积比为9/1,控制体系的pH为5.0,使其在常温下水解3天;将氧化处理后的单晶硅片浸入到1,2-双(三乙氧基硅基)乙烷的水解液中1min;取出对样品进行清洗、干燥处理后,再浸入到1mM的3-氨基丙基三乙氧基硅烷的甲苯溶液中,氮气保护环境下自组装0.5h;将硅片取出进行洗涤并干燥,获得具有双层结构的自组装润滑膜。
将氧化处理后的单晶硅片直接浸入到1mM的3-氨基丙基三乙氧基硅烷的甲苯溶液中,氮气保护环境下自组装0.5h后取出进行洗涤并干燥,获得3-氨基丙基三乙氧基硅烷的单层自组装润滑膜。用于与上述制备的1,2-双(三乙氧基硅基)乙烷/3-氨基丙基三乙氧基硅烷双层膜的对比。
在UMT-2MT型摩擦磨损试验机上对实施例1中的单层膜和双层膜的摩擦性能进行测试。测试时所采用的摩擦方式为往复式滑动(单向距离5mm),摩擦偶件为Si3N4陶瓷球(Φ4mm),载荷为0.2N,滑移速率为2mm/s。当摩擦系数突然增大时,认为薄膜开始被破坏,摩擦系数达于0.5左右时,认为薄膜已失效。
从实施例1的测试结果(图2)可以看出,十八烷基三氯硅烷单层膜的初始摩擦系数约为0.05,经过1500s左右的往复滑动摩擦后,自组装膜开始失效。相比较而言,双层膜也具有~0.05的摩擦系数,但与对偶材料摩擦1h之后,仍保持了其稳定性和良好的润滑性。

Claims (5)

1.一种双层自组装润滑膜的制备方法,其特征在于:以1,2-双(三乙氧基硅基)乙烷和低表面能硅烷偶联剂为原料,通过常规的自组装技术制成具有稳定、均匀且有序的微观结构的双层膜表面;制备方法包括如下步骤:
(1)将单晶硅片切割成规则尺寸后,依次用有机溶剂和水超声洗涤;
(2)在温度90°C下采用由体积比为7:3的98%浓H2SO4和30%H2O2组成的Piranha溶液,对单晶硅表面进行氧化处理30 min,使其表面羟基化,最后用去离子水充分清洗并小心吹干;
(3)将1,2-双(三乙氧基硅基)乙烷在甲醇/水混合溶剂中充分水解;
(4)将处理后的单晶硅浸入1,2-双(三乙氧基硅基)乙烷的水解液中,利用分子自组装技术制备第一层膜;
(5)沉积了第一层膜的单晶硅片经过充分洗涤、干燥后,再浸入到低表面能硅烷偶联剂的稀溶液中进行原位水解、自组装,从而获得具有双层结构的自组装润滑膜。
2.根据权利要求1所述的双层自组装润滑膜的制备方法,其特征在于:所述的1,2-双(三乙氧基硅基)乙烷水解液中甲醇/水混合溶剂的体积比为9/1~30/1。
3.根据权利要求1所述的双层自组装润滑膜的制备方法,其特征在于:所述1,2-双(三乙氧基硅基)乙烷在甲醇/水混合溶剂中充分水解的浓度为1~10%;水解过程中的pH值控制在4~5之间;水解温度为常温;水解时间为1~3天。
4.根据权利要求1所述的双层自组装润滑膜的制备方法,其特征在于:所述的单晶硅片浸入1,2-双(三乙氧基硅基)乙烷水解液中的时间控制在0.5~5 min。
5.根据权利要求1所述的双层自组装润滑膜的制备方法,其特征在于:所述的低表面能硅烷偶联剂为氯基、甲氧基或乙氧基硅烷偶联剂。
CN201610331294.5A 2016-05-17 2016-05-17 一种双层复合自组装润滑膜的制备方法 Expired - Fee Related CN105772373B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610331294.5A CN105772373B (zh) 2016-05-17 2016-05-17 一种双层复合自组装润滑膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610331294.5A CN105772373B (zh) 2016-05-17 2016-05-17 一种双层复合自组装润滑膜的制备方法

Publications (2)

Publication Number Publication Date
CN105772373A CN105772373A (zh) 2016-07-20
CN105772373B true CN105772373B (zh) 2018-06-15

Family

ID=56378963

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610331294.5A Expired - Fee Related CN105772373B (zh) 2016-05-17 2016-05-17 一种双层复合自组装润滑膜的制备方法

Country Status (1)

Country Link
CN (1) CN105772373B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400234A (zh) * 2001-08-04 2003-03-05 中国科学院兰州化学物理研究所 超薄硅油膜的制备方法
CN102584331A (zh) * 2012-01-18 2012-07-18 广西大学 纳米颗粒阵列为模版的双组分双层纳米润滑薄膜的制备方法
CN102677052A (zh) * 2012-06-05 2012-09-19 南昌航空大学 石墨烯基自组装多层纳米润滑薄膜的制备方法
CN104480471A (zh) * 2014-11-27 2015-04-01 广州中国科学院工业技术研究院 硅烷偶联剂水解液及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI457431B (zh) * 2008-01-30 2014-10-21 Chemetall Gmbh 將金屬表面施以一種潤滑劑組成物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400234A (zh) * 2001-08-04 2003-03-05 中国科学院兰州化学物理研究所 超薄硅油膜的制备方法
CN102584331A (zh) * 2012-01-18 2012-07-18 广西大学 纳米颗粒阵列为模版的双组分双层纳米润滑薄膜的制备方法
CN102677052A (zh) * 2012-06-05 2012-09-19 南昌航空大学 石墨烯基自组装多层纳米润滑薄膜的制备方法
CN104480471A (zh) * 2014-11-27 2015-04-01 广州中国科学院工业技术研究院 硅烷偶联剂水解液及其制备方法和应用

Also Published As

Publication number Publication date
CN105772373A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105670348B (zh) 一种全面疏液的仿生防污自清洁涂层及其制备方法
Atanacio et al. Mechanical properties and adhesion characteristics of hybrid sol–gel thin films
Xue et al. Lasting and self-healing superhydrophobic surfaces by coating of polystyrene/SiO 2 nanoparticles and polydimethylsiloxane
Gao et al. Ceramic membrane with protein-resistant surface via dopamine/diglycolamine co-deposition
TW200938030A (en) Surface coating
CN106245011B (zh) 一种疏液超滑界面及其制备方法
CN100479931C (zh) 单晶硅片表面磷酸基硅烷-碳纳米管复合薄膜的制备方法
Liu et al. Facile fabrication of robust ice‐phobic polyurethane sponges
Patrone et al. Single and binary self-assembled monolayers of phenyl-and pentafluorophenyl-based silane species, and their phase separation with octadecyltrichlorosilane
CN101012109A (zh) 玻璃基片表面磷酸基硅烷-碳纳米管复合薄膜的制备方法
CN105772373B (zh) 一种双层复合自组装润滑膜的制备方法
CN101602279B (zh) 原位银纳米粒子/聚合物复合分子薄膜及其制备方法
CN100476035C (zh) 在单晶硅片表面制备碳纳米管复合薄膜的方法
CN113563634A (zh) 一种亲水性多孔材料的疏水改性方法
CN116218367B (zh) 具有润滑性和机械化学稳定性的生物引发的排斥液体的涂层
CN101555629A (zh) 单晶硅基片表面自组装磺酸基硅烷-二氧化钛复合膜的制备方法
CN100475686C (zh) 单晶硅片表面自组装聚电解质-稀土纳米薄膜的制备方法
CN100383280C (zh) 单晶硅片表面制备磺酸基硅烷-稀土纳米复合薄膜的方法
Yang et al. Investigation of the relationship between adhesion force and mechanical behavior of vertically aligned carbon nanotube arrays
CN101671849A (zh) 单晶硅片表面磷酸基硅烷-CdSe复合薄膜的制备方法
CN100364911C (zh) 单晶硅片表面氨基硅烷-稀土纳米薄膜的制备方法
KR102183146B1 (ko) 우수한 내마모성 및 전기절연성을 가지는 코팅층 형성용 유/무기 하이브리드 세라믹 코팅제 제조방법
CN105217967B (zh) 一种玻璃防雾涂层的形成方法
Wang et al. Fabrication and tribological properties of a self-assembled silane bilayer on silicon
CN1209494C (zh) 单晶硅基片表面自组装稀土纳米膜的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180615

Termination date: 20200517

CF01 Termination of patent right due to non-payment of annual fee