CN113563634A - 一种亲水性多孔材料的疏水改性方法 - Google Patents

一种亲水性多孔材料的疏水改性方法 Download PDF

Info

Publication number
CN113563634A
CN113563634A CN202110846957.8A CN202110846957A CN113563634A CN 113563634 A CN113563634 A CN 113563634A CN 202110846957 A CN202110846957 A CN 202110846957A CN 113563634 A CN113563634 A CN 113563634A
Authority
CN
China
Prior art keywords
hydrophobic
porous material
hydrophilic
drying
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110846957.8A
Other languages
English (en)
Inventor
王宇昕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN202110846957.8A priority Critical patent/CN113563634A/zh
Publication of CN113563634A publication Critical patent/CN113563634A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/06Pectin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明提供一种亲水性多孔材料的疏水改性方法,所述方法通过预先制备亲水性多孔材料,再经过溶剂交换和冷冻干燥相结合的工艺对亲水材料进行整体的疏水改性,从而制备疏水性多孔材料。本发明通过引入疏水性官能团,一方面实现了材料表面和孔隙内部均能实现疏水改性,另一方面提高了材料的骨架机械强度。所述方法成本低廉、工艺简单、易于大规模工业化生产,通过此方法制备的多孔疏水材料满足公式:cosθr=f cosθs+f‑1(θr>θs),f=G(θr,p)。

Description

一种亲水性多孔材料的疏水改性方法
技术领域
本发明涉及材料疏水改性的技术领域,尤其涉及一种亲水性多孔材料的疏水改性方法。
背景技术
发明提到的亲水性多孔材料是一种通过亲水性材料如带亲水基团的聚合物,例如聚乙烯醇、纤维素等制备的多孔材料。这类材料由于亲水,经长期使用,会引起机械性能、阻燃、隔热性能、声学性能的降低。因此,如何提高亲水材料的疏水性是一个值得研究的难题。
目前,常用的疏水改性方法有:1.与疏水性物质共混或共聚:常用的疏水剂包括有机硅、氟化合物、分散剂、表面活性剂、增韧剂、增强剂和流平剂;2.等离子体处理:通过等离子体反应装置可使得气体电离从而产生等离子体,如原子、分子、电子、离子、自由基,他们可与材料表面发生化学或物理反应,实现材料的表面改性。3.化学气相沉积法:通过气相或表面反应将一种物质沉积到另一种材料表面的技术,常用的物质有四氯化硅进行疏水改性。疏水改性的原理是降低亲水性材料的表面能,主要利用有机聚合物等疏水性分子与材料发生化学或物理反应,其中,疏水性分子中除了含有碳以外,还包含大量的具有低表面能的硅、氟等原子基团,这些基团可以有效地降低材料的表面能,增大对水的接触角。其中,有机氟化合物由于表面自由能低,表面摩擦系数小,再加上其优异的耐水性、耐油性及耐磨性,是很好的疏水改性材料。不是所有的含氟化合物都是适合的改性材料,比如聚四氟乙烯(PTFE),虽然其同时具备低表面能和良好的化学稳定性,但由于高粘度和不溶性,改性过程难以操作。因此,针对不同的亲水性材料来说,疏水剂的选择是本领域中不断探索的课题。
专利CN111960424A公开了一种超疏水的球形SiO2气凝胶材料的制备方法。该方法是将水玻璃和去离子水按一定的比例混合得到半透明的溶胶,然后通过球滴法形成球形SiO2湿凝胶,球形湿凝胶用热的去离子水洗涤后再进行老化处理,再加入疏水改性液进行表面改性,然后经溶剂置换和干燥得到球形疏水改性SiO2气凝胶。对于无机材料的表面疏水改性,通常是将表面自由能小的有机分子填充到无机材料之间,这种方法只能对材料表面进行改性,而对无机材料内部的疏水改性效果不明显。
专利CN106945362公开了一种防水透湿气凝胶材料的制备方法,该材料改善了气凝胶的机械性能及防水性能,但需在气凝胶内部添加合成纤维以支撑三维结构,复合材料相对于纯气凝胶热导率有所上升;另外,该材料通过在气凝胶表面附着一层防水透湿膜以实现气凝胶防水透湿功能化,功能耐久性存在一定的限制。
以上这些方法,都仅仅能做到材料的表面的疏水改性,而无法深入孔隙做到孔内的疏水改性,当疏水表层脱落可能导致失去疏水性能。因此,针对多孔的亲水材料,开发一种高疏水性且疏水性能稳定的制备方法,是亟需解决的问题。
发明内容
本发明的目的是解决现有技术中对亲水性多孔材料的疏水改性仅局限于材料表面的缺陷,提供一种用于制备高疏水性且疏水性能稳定的亲水性多孔材料的制备方法,所述方法通过先制备亲水性多孔材料,再经过溶剂交换和冷冻干燥相结合的工艺对亲水材料进行整体的疏水改性,从而制备疏水性多孔材料。本发明通过引入疏水性官能团,一方面实现了材料表面和孔隙内部均能实现疏水改性,另一方面提高了材料的骨架机械强度。所述方法成本低廉、工艺简单、易于大规模工业化生产,通过此方法制备的多孔疏水材料满足公式:cosθr=f cosθs+f-1(θr>θs),f=G(θr,p)。
本发明的技术方案如下:
一种亲水性多孔材料的疏水改性方法,所述方法包括如下步骤:
S1:制备亲水性多孔材料
步骤1:将亲水性有机物分散在水中配制成1-20wt%浓度的溶液,所述亲水性有机物包括聚乙烯醇、聚乙烯醇缩醛、纤维素、壳聚糖、果胶、瓜尔胶、水溶性蛋白质、海藻酸盐中的至少一种;或直接使用水性聚氨酯、水性丙烯酸树脂、水性环氧树脂、水性有机硅树脂、水性氟碳树脂、醋酸乙烯-乙烯聚合物的乳液中的至少一种;
步骤2:将0-20wt%的纳米颗粒分散在水中;
步骤3:将步骤1和步骤2通过混合、冷冻、干燥,制备得到所述亲水性多孔材料;
S2:制备疏水性多孔材料
步骤4:将疏水改性剂溶解于有机溶剂中配制成1mmol/L-1000mmol/L浓度的疏水改性溶液,
所述疏水改性剂包括有机硅烷或含氟聚合物,所述有机溶剂包括乙醇、异丙醇、甲苯中的至少一种;
步骤5:将步骤3制备的所述亲水性多孔材料全部置于步骤5的所述疏水改性溶液中,浸泡0.5h以上,然后将浸泡后的复合材料取出,用所述有机溶剂进行冲洗1-5次;
步骤6:将所述复合材料在常压环境下、置于30-150℃的烘箱中干燥1-12h,得到所述疏水性多孔材料;或者将所述复合材料在常压环境下、置于0-25℃的冻干机中干燥1-12h,得到所述疏水性多孔材料。
进一步地,步骤1中,将所述疏水改性剂在常温下搅拌1-4h,使所述疏水改性剂充分地溶解于水中。
进一步地,步骤2中,所述纳米颗粒包括氧化硅、氧化钠、氧化铝、氧化钛、氧化锆、氧化镁以及含有这些组成的天然以及合成的无机物,比如蒙脱土、高岭土中的至少一种。
进一步地,步骤3中,将混合后的溶液在-20℃至-196℃中进行冷冻,待冷冻完全,立即转移到冻干机中进行冻干。
进一步地,步骤3中,所述冻干的温度为25℃,压力为5-50Pa,时间为24h。
进一步地,步骤4中,所述有机硅烷包括三甲基氯硅烷(TMCS)、六甲基二硅氮烷(HDMS)、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、环氧基硅氧烷、异丁基三乙氧基硅烷、聚苯基甲基硅氧烷、甲基三甲基硅烷(MTOS)、十六烷基三甲基硅烷、十七氟癸基三甲氧基硅烷、聚氟硅烷(FAS)、聚二甲基硅氧烷(PDMS)中的至少一种。
进一步地,步骤5中,将所述亲水性多孔材料浸泡在所述疏水改性溶液中,并置于0-50℃的真空烘箱中浸泡处理1h。
进一步地,步骤5中,所述含氟聚合物包括丙烯酸六氟丁酯、甲基丙烯酸六氟丁酯、全氟己基乙基甲基丙烯酸酯、丙烯酸十三氟辛酯、氟化聚乙烯、氟碳腊中的至少一种。
进一步地,所述步骤4至步骤6可循环重复多次。
作为本发明的一个优选的实施方式,本发明提供一种亲水性多孔材料的疏水改性方法,所述方法包括如下步骤:
S1:制备亲水性多孔材料
步骤1:称取10g聚乙烯醇(分子量3100-50000,醇解度99%)溶解于100g的去离子水中,在90℃恒温搅拌2小时,使聚乙烯醇充分的溶解在水中;
步骤2:称取10g二氧化硅(比表面积400m2/g)混合于已制备好的聚乙烯醇水溶液中,充分搅拌混合均匀;
步骤3:将步骤2制得的混合溶液在液氮中进行冷冻,待其冷冻完全,立即转移到冻干机中进行冻干,在隔板温度25℃、压强10Pa下冻干3天,得到亲水多孔材料;
S2:制备疏水性多孔材料
步骤4:将十七氟癸基三甲氧基硅烷溶解于乙醇溶液中,配制成50mmol/L含氟疏水改性溶液;
步骤5:将步骤3制得的亲水多孔材料完全浸泡在步骤4的疏水改性溶液中,同时在25℃的真空烘箱中浸泡处理1小时,使含氟疏水改性溶液能够完全渗入到亲水多孔材料的孔隙之中,随后将浸泡后的复合材料取出并密封,在25℃的常压烘箱中恒温处理8小时;
步骤6:将烘干后的复合材料在隔板温度25℃、压强10Pa的冻干机中进行常温干燥,得到疏水性多孔材料;
步骤7:将疏水性多孔材料置于60℃的烘箱中进一步干燥处理24小时。
本发明将多孔材料制备技术以及溶剂交换技术相结合,通过上述方法制备的多孔材料孔隙率大于90%,且为开孔结构,一方面有利于疏水改性的有机溶液渗入材料表面以及材料孔隙,另一方面亲水多孔材料在有机溶剂中表现出的不溶,也使得浸泡前后多孔材料的孔结构保持基本不变。
不同于一般的表面疏水性涂层改性,由于有机硅化合物是两性表面活性材料,其具有亲水性官能团和疏水段,其亲水性官能团与亲水性多孔材料的极性基团相互作用,形成Si-O键,从而使有机硅化合物能紧密附着在多孔材料骨架上,而疏水段将亲水性多孔材料包围。此外,通过本发明的溶剂交换疏水改性技术,对亲水性多孔材料的整体以及内部结构均有疏水改善作用,提高稳定性。
本发明还提供一种通过前述方法制备的疏水性多孔材料,所述疏水性多孔材料满足公式:
cosθr=f cosθs+f-1(θr>θs),
f=G(θr,p)
具体地,所述公式为:
cosθr=f cosθs+f-1(θr>θs),
f=1-p*sinθr
其中,p为所述疏水性多孔材料的孔隙率;
θs为光滑表面的接触角;θr为粗糙表面的接触角;
f为液体接触所述疏水性多孔材料固体表面的面积分数。
在上述公式中,θr为本发明的疏水性多孔材料的粗糙表面接触角;θs为本发明的原材料通过其他制备技术和疏水改性技术(疏水改性步骤和本发明相同)得到的疏水实心材料的光滑表面接触角,其中,具有θr的材料和具有θs的材料配方完全一致,仅是制备方法不同分别得到多孔材料和实心材料(例如膜材料)。
原则上,疏水材料的疏水性主要通过接触角来表征,而接触角的实际大小还受材料本身糙度影响。通过将亲水多孔材料制备技术以及溶胶交换的疏水改性技术相结合,制备得到的本发明的疏水多孔材料,其表面和内部都具有微孔结构,一方面增大了材料本身的粗糙度,另一方面也使得液体与材料表面实际接触的面积变大。当材料表面的粗糙度提高,则疏水性提高,接触角也随之增大。
本发明的技术方案具有如下效果:
(1)不同于一般表面疏水性涂层改性,采用本发明的方法,使得制备得到的疏水性多孔材料的表面和内部孔隙结构均具有疏水性能,且水的接触角不小于140度。
(2)通过本发明的方法得到的疏水性多孔材料满足公式:
cosθr=f cosθs+f-1(θr>θs),f=1-p*sinθr。
(3)通过本发明的方法得到的疏水性多孔材料具有高疏水性且耐久性的性能。
附图说明
图1为实施例1的亲水多孔材料扫描电镜图片(左)和改性后的疏水多孔材料的扫描电镜图片(右)。
图2为实施例1的亲水多孔材料的元素扫描图片(上)和改性后的疏水多孔材料的元素扫描照片。
具体实施方式
以下结合实施例对本发明做详细的说明:
制备例
实施例1
S1:制备亲水性多孔材料
步骤1:称取10g聚乙烯醇(分子量3100-50000,醇解度99%)溶解于100g的去离子水中,在90℃恒温搅拌2小时,使聚乙烯醇充分的溶解在水中;
步骤2:称取10g二氧化硅(比表面积400m2/g)混合于已制备好的聚乙烯醇水溶液中,充分搅拌混合均匀;
步骤3:将步骤2制得的混合溶液在液氮中进行冷冻,待其冷冻完全,立即转移到冻干机中进行冻干,在隔板温度25℃、压强10Pa下冻干3天,得到亲水性多孔材料;
S2:制备疏水性多孔材料
步骤4:将十七氟癸基三甲氧基硅烷溶解于乙醇溶液中,配制成50mmol/L含氟疏水改性溶液;
步骤5:将步骤3制得的亲水多孔材料完全浸泡在步骤4的疏水改性溶液中,同时在25℃的真空烘箱中浸泡处理1个小时,使含氟疏水改性溶液能够完全渗入到亲水多孔材料的孔隙之中,随后将浸泡后的复合材料取出并密封,在25℃的常压烘箱中恒温处理8小时;
步骤6:将烘干后的复合材料在隔板温度25℃、压强10Pa的冻干机中进行常温干燥;
步骤7:将疏水性多孔材料置于60℃的烘箱进一步干燥处理24小时。
由图1所示,经过疏水处理,材料的体积有一些收缩,但是多孔结构仍然完整的保留下来。
通过图2的元素扫描图片,可以发现,在改性前后,C、O、Si元素都均匀分布在多孔材料中,且改性后F元素的含量从0上升到1.5%。
实施例1制备得到的疏水性多孔材料,满足以下公式:
cosθr=f cosθs+f-1(θr>θs),
f=1-p*sinθr
其中,θs=118°,θr=141°,f=0.415,孔隙率p=93%。
具体地,θs=118°为疏水实心膜材料的光滑表面的接触角,该疏水实心膜材料采用和实施例1同样原料和配比,区别在于步骤3不采用冻干技术,而是通过刮涂成膜的方法先制备亲水实心膜材料,再通过溶剂交换技术制得制备疏水性实心膜材料,具体方法如下:
步骤1:称取10g聚乙烯醇(分子量3100-50000,醇解度99%)溶解于100g的去离子水中,在90℃恒温搅拌2小时,使聚乙烯醇充分的溶解在水中;
步骤2:称取10g二氧化硅(比表面积400m2/g)混合于已制备好的聚乙烯醇水溶液中,充分搅拌混合均匀;
步骤3:将步骤2制得的混合溶液用500μm的线棒刮涂在离型膜上,经过24h自然风干,得到亲水实心膜材料;
步骤4:将十七氟癸基三甲氧基硅烷溶解于乙醇溶液中,配制成50mmol/L含氟疏水改性溶液;
步骤5:将步骤3制得的亲水实心材料完全浸泡在步骤4的疏水改性溶液中,同时在25℃的真空烘箱中浸泡处理1小时,使含氟疏水改性溶液能够完全渗入到亲水实心膜材料中,随后将浸泡后的复合材料取出并密封,在25℃的常压烘箱中恒温处理8小时;
步骤6:将烘干后的复合材料在隔板温度25℃、压强10Pa的冻干机中进行常温干燥;
步骤7:将疏水性多孔材料置于60℃的烘箱进一步干燥处理12小时。
实施例2
S1:制备亲水性多孔材料
步骤1:称取10g壳聚糖溶解于100g的去离子水中,在60℃恒温搅拌2小时,使壳聚糖充分的溶解在水中;
步骤2:称取10g蒙脱土混合于已制备好的壳聚糖水溶液中,充分搅拌混合均匀;
步骤3:将步骤2制得的混合溶液在-20℃的液氮中进行冷冻,待其冷冻完全,立即转移到冻干机中进行冻干,在隔板温度25℃、压强10Pa下冻干3天,得到亲水多孔材料;
步骤4:将十六烷基三甲基硅烷溶解于异丙醇溶液中,配制成50mmol/L含氟疏水改性溶液;
步骤5:将步骤3制得的亲水多孔材料完全浸泡在步骤4的疏水改性溶液中,在25℃的真空烘箱中浸泡处理1个小时,使含氟疏水改性溶液能够完全渗入到亲水多孔材料的孔隙之中,随后将浸泡后的复合材料取出并密封,在25℃的常压烘箱中恒温处理8小时;
步骤6:将烘干后的复合材料在隔板温度25℃、压强10Pa的冻干机中进行常温干燥,得到疏水性多孔材料;
步骤7:将疏水性多孔材料置于60℃的烘箱进一步干燥处理24小时。
实施例2制备得到的疏水性多孔材料,满足以下公式:
cosθr=f cosθs+f-1(θr>θs),
f=1-p*sinθr
其中,θs=127°,θr=145°,f=0.461,孔隙率p=94%。
具体地,θs=127°为疏水实心膜材料的光滑表面的接触角,该疏水实心膜材料采用和实施例1同样原料和配比,区别在于步骤3不采用冻干技术,而是通过刮涂成膜的方法先制备亲水实心膜材料,再通过溶剂交换技术制得疏水性实心膜材料,具体方法如下:
步骤1:称取10g壳聚糖溶解于100g的去离子水中,在60℃恒温搅拌2小时,使壳聚糖充分的溶解在水中;
步骤2:称取10g蒙脱土混合于已制备好的壳聚糖水溶液中,充分搅拌混合均匀;
步骤3:将步骤2制得的混合溶液用500μm的线棒刮涂在离型膜上,经过24h自然风干,得到亲水实心膜材料;
步骤4:将十六烷基三甲基硅烷溶解于异丙醇溶液中,配制成50mmol/L含氟疏水改性溶液;
将步骤3制得的亲水多孔材料完全浸泡在步骤4的疏水改性溶液中,在25℃的真空烘箱中浸泡处理1个小时,使含氟疏水改性溶液能够完全渗入到亲水多孔材料的孔隙之中,随后将浸泡后的复合材料取出并密封,在25℃的常压烘箱中恒温处理8小时;
步骤6:将烘干后的复合材料在隔板温度25℃、压强10Pa的冻干机中进行常温干燥,得到疏水性多孔材料;
步骤7:将疏水性多孔材料置于60℃的烘箱进一步干燥处理24小时。
测试例
1.疏水多孔材料的水接触角测量
取实施例1的样品(质量1.5g),将该样品施以重物浸泡于水中24hr,再切开观察截面,分别测量不同位置的接触角,发现疏水基团改善了材料的整体亲水性,材料表面的接触角和材料内部的接触角均不小于140度。
表1实施例1的水接触角
Figure BDA0003181015770000081
对比实施例:
使用常规疏水改性方法,喷有机硅防水喷雾至是实施例1的亲水多孔材料上,发现仅仅可以改变材料的表面疏水性能,而不能渗入多孔材料的内部。
表2对比实施例的水接触角
Figure BDA0003181015770000082
2.机械性能测量
表3实施例1的改性前和改性后的材料的机械性能
实施例1样品 密度g/cm<sup>3</sup> 压缩模量MPa
改性前 0.102 1.7±0.5
改性后 0.140 4.5±0.8
通过对实施例1的亲水性多孔材料进行疏水改性,得到的疏水性多孔材料的密度和机械强度都得到了显著提高。

Claims (9)

1.一种亲水性多孔材料的疏水改性方法,其特征在于,所述方法包括如下步骤:
S1:制备亲水性多孔材料
步骤1:将亲水性有机物分散在水中配制成1-20wt%浓度的溶液,所述亲水性有机物包括聚乙烯醇、聚乙烯醇缩醛、纤维素、壳聚糖、果胶、瓜尔胶、水溶性蛋白质、海藻酸盐中的至少一种;或直接使用水性聚氨酯、水性丙烯酸树脂、水性环氧树脂、水性有机硅树脂、水性氟碳树脂、醋酸乙烯-乙烯聚合物的乳液中的至少一种;
步骤2:将0-20wt%的纳米颗粒分散在水中;
步骤3:将步骤1和步骤2通过混合、冷冻、干燥,制备得到所述亲水性多孔材料;
S2:制备疏水性多孔材料
步骤4:将疏水改性剂溶解于有机溶剂中配制成1mmol/L-1000mmol/L浓度的疏水改性溶液,
所述疏水改性剂包括有机硅烷或含氟聚合物,所述有机溶剂包括乙醇、异丙醇、甲苯中的至少一种;
步骤5:将步骤3制备的所述亲水性多孔材料全部置于步骤5的所述疏水改性溶液中,浸泡0.5h以上,然后将浸泡后的复合材料取出,用所述有机溶剂进行冲洗1-5次;
步骤6:将所述复合材料在常压环境下、置于30-150℃的烘箱中干燥1-12h,得到所述疏水性多孔材料;或者将所述复合材料在常压环境下、置于0-25℃的冻干机中干燥1-12h,得到所述疏水性多孔材料。
2.根据权利要求1所述的方法,其特征在于,步骤1中,将所述疏水改性剂在常温下搅拌,使所述疏水改性剂充分地溶解于水中。
3.根据权利要求2所述的方法,其特征在于,步骤2中,所述纳米颗粒包括氧化硅、氧化钠、氧化铝、氧化钛、氧化锆、氧化镁以及含有这些组成的天然以及合成的无机物,例如蒙脱土、高岭土中的至少一种。
4.根据权利要求3所述的方法,其特征在于,步骤3中,将混合后的溶液在-20℃至-196℃中进行冷冻,待冷冻完全,立即转移到冻干机中进行冻干。
5.根据权利要求4所述的方法,其特征在于,步骤3中,所述冻干的温度为25℃,压力为5-50Pa,时间为24h。
6.根据权利要求1-5任一项所述的方法,其特征在于,步骤4中,所述有机硅烷包括三甲基氯硅烷(TMCS)、六甲基二硅氮烷(HDMS)、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、环氧基硅氧烷、异丁基三乙氧基硅烷、聚苯基甲基硅氧烷、甲基三甲基硅烷(MTOS)、十六烷基三甲基硅烷、十七氟癸基三甲氧基硅烷、聚氟硅烷(FAS)、聚二甲基硅氧烷(PDMS)中的至少一种。
7.根据权利要求1-6任一项所述的方法,其特征在于,步骤5中,将所述亲水性多孔材料浸泡在所述疏水改性溶液中,并置于0-50℃的真空烘箱中浸泡处理1h。
8.根据权利要求1-7任一项所述的方法,其特征在于,步骤5中,所述含氟聚合物包括丙烯酸六氟丁酯、甲基丙烯酸六氟丁酯、全氟己基乙基甲基丙烯酸酯、丙烯酸十三氟辛酯、氟化聚乙烯、氟碳腊中的至少一种。
9.一种通过权利要求1-8任一项所述方法制备的疏水性多孔材料,其特征在于,所述疏水性多孔材料满足以下公式:
cosθr=f cosθs+f-1(θr>θs),
f=1-p*sinθr
其中,p为所述疏水性多孔材料的孔隙率;
θs为光滑表面的接触角;θr为粗糙表面的接触角;
f为液体接触所述疏水性多孔材料固体表面的面积分数。
CN202110846957.8A 2021-07-27 2021-07-27 一种亲水性多孔材料的疏水改性方法 Pending CN113563634A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110846957.8A CN113563634A (zh) 2021-07-27 2021-07-27 一种亲水性多孔材料的疏水改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110846957.8A CN113563634A (zh) 2021-07-27 2021-07-27 一种亲水性多孔材料的疏水改性方法

Publications (1)

Publication Number Publication Date
CN113563634A true CN113563634A (zh) 2021-10-29

Family

ID=78167614

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110846957.8A Pending CN113563634A (zh) 2021-07-27 2021-07-27 一种亲水性多孔材料的疏水改性方法

Country Status (1)

Country Link
CN (1) CN113563634A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316487A (zh) * 2021-12-31 2022-04-12 湖北拓盈新材料有限公司 高强度高抗水气凝胶材料的制备方法
CN115058039A (zh) * 2022-05-19 2022-09-16 珠海钛然科技有限公司 一种生物质基透明超疏水复合膜及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106700121A (zh) * 2016-12-06 2017-05-24 暨南大学 一种高效油水分离壳聚糖海绵及其制备方法
CN106732214A (zh) * 2016-12-28 2017-05-31 淮阴工学院 一种疏水性天然高分子/凹凸棒石复合气凝胶及其制备方法
CN107603219A (zh) * 2017-08-13 2018-01-19 王宇昕 一种包含高分子材料和粘土的多孔复合材料、其制备方法及应用
CN108752623A (zh) * 2018-05-04 2018-11-06 广东省生物工程研究所(广州甘蔗糖业研究所) 聚乙烯醇/蔗渣纳米纤维素气凝胶的制备方法
CN110016155A (zh) * 2019-04-18 2019-07-16 北京林业大学 一种氟化聚乙烯醇-二氧化硅单面疏水性薄膜的制备方法
CN110157034A (zh) * 2019-05-22 2019-08-23 桂林理工大学 一种高疏水气凝胶多孔材料的制备方法
CN110575794A (zh) * 2018-06-08 2019-12-17 北方民族大学 一种超疏水棉纤维素气凝胶及其制备方法和应用
WO2021015676A1 (en) * 2019-07-22 2021-01-28 Krosslinker Pte Ltd System and method for manufacturing water-based hydrophobic aerogels and aerogel composites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106700121A (zh) * 2016-12-06 2017-05-24 暨南大学 一种高效油水分离壳聚糖海绵及其制备方法
CN106732214A (zh) * 2016-12-28 2017-05-31 淮阴工学院 一种疏水性天然高分子/凹凸棒石复合气凝胶及其制备方法
CN107603219A (zh) * 2017-08-13 2018-01-19 王宇昕 一种包含高分子材料和粘土的多孔复合材料、其制备方法及应用
CN108752623A (zh) * 2018-05-04 2018-11-06 广东省生物工程研究所(广州甘蔗糖业研究所) 聚乙烯醇/蔗渣纳米纤维素气凝胶的制备方法
CN110575794A (zh) * 2018-06-08 2019-12-17 北方民族大学 一种超疏水棉纤维素气凝胶及其制备方法和应用
CN110016155A (zh) * 2019-04-18 2019-07-16 北京林业大学 一种氟化聚乙烯醇-二氧化硅单面疏水性薄膜的制备方法
CN110157034A (zh) * 2019-05-22 2019-08-23 桂林理工大学 一种高疏水气凝胶多孔材料的制备方法
WO2021015676A1 (en) * 2019-07-22 2021-01-28 Krosslinker Pte Ltd System and method for manufacturing water-based hydrophobic aerogels and aerogel composites

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114316487A (zh) * 2021-12-31 2022-04-12 湖北拓盈新材料有限公司 高强度高抗水气凝胶材料的制备方法
CN114316487B (zh) * 2021-12-31 2024-05-17 湖北拓盈新材料有限公司 高强度高抗水气凝胶材料的制备方法
CN115058039A (zh) * 2022-05-19 2022-09-16 珠海钛然科技有限公司 一种生物质基透明超疏水复合膜及其制备方法
CN115058039B (zh) * 2022-05-19 2023-08-25 珠海钛然科技有限公司 一种生物质基透明超疏水复合膜及其制备方法

Similar Documents

Publication Publication Date Title
CN113563634A (zh) 一种亲水性多孔材料的疏水改性方法
She et al. Superhydrophobic concrete with enhanced mechanical robustness: Nanohybrid composites, strengthen mechanism and durability evaluation
CN103380184B (zh) 涂覆热交换器结构的方法、涂覆的热交换器结构及其应用
Shi et al. Heat insulation performance, mechanics and hydrophobic modification of cellulose–SiO2 composite aerogels
Liu et al. Superhydrophobic coatings prepared by the in situ growth of silicone nanofilaments on alkali-activated geopolymers surface
CN105860831B (zh) 一种哑光砖防污剂及其制备方法
CN108761581B (zh) 一种折射率可调的SiO2减反射膜的制备方法
Zhang et al. Design and fabrication of polydopamine based superhydrophobic fabrics for efficient oil–water separation
Ren et al. Transparent, robust, and machinable hybrid silica aerogel with a “rigid-flexible” combined structure for thermal insulation, oil/water separation, and self-cleaning
CN108192129A (zh) 一种超疏水聚偏氟乙烯气凝胶材料及其制备方法
CN111187444A (zh) 一种本征超疏水纳米纤维素气凝胶及其制备方法
US11713543B2 (en) Fiber comprising thermoplastic elastomer and silica nanoparticle, stretchable hydrophobic fiber article prepared therewith, and method for preparing the same
CN102249593A (zh) 一种有机硅粉末防水剂的制备方法
CN101157767B (zh) 超疏水聚苯乙烯薄膜及其制备方法
Lu et al. Superhydrophobic wood fabricated by epoxy/Cu2 (OH) 3Cl NPs/stearic acid with performance of desirable self-cleaning, anti-mold, dimensional stability, mechanical and chemical durability
TW201915108A (zh) 塗液、塗膜的製造方法及塗膜
Yamamoto et al. Preparation of hydroxyl group containing bridged organosilica membranes for water desalination
JP2023546896A (ja) 金属-有機フレーム材料分離膜及びその製造方法並びに応用
Wang et al. Sandstone protection by using nanocomposite coating of silica
CN108676360B (zh) 一种柔韧性疏水气凝胶复合隔热膜及其制备方法
Ramaswamy et al. Superinsulating composite aerogels from polymethylsilsesquioxane and kapok fibers
Xie et al. Ultralight, Heat‐Insulated, and Tough PVA Hydrogel Hybridized with SiO2@ cellulose Nanoclaws Aerogel via the Synergy of Hydrophilic and Hydrophobic Interfacial Interactions
Song et al. Superior hydrophobicity of nano-SiO2 porous thermal insulating material treated by oil-in-water microemulsion
JP5190905B2 (ja) 表面処理粘土膜
CN101157768A (zh) 一种超疏水高密度聚乙烯薄膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211029

RJ01 Rejection of invention patent application after publication