CN105749853A - 一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法 - Google Patents

一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法 Download PDF

Info

Publication number
CN105749853A
CN105749853A CN201610168183.7A CN201610168183A CN105749853A CN 105749853 A CN105749853 A CN 105749853A CN 201610168183 A CN201610168183 A CN 201610168183A CN 105749853 A CN105749853 A CN 105749853A
Authority
CN
China
Prior art keywords
bismuth nitrate
micro
nano structure
basic bismuth
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610168183.7A
Other languages
English (en)
Other versions
CN105749853B (zh
Inventor
徐光青
张旭
吕珺
吴玉程
郑治祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610168183.7A priority Critical patent/CN105749853B/zh
Publication of CN105749853A publication Critical patent/CN105749853A/zh
Application granted granted Critical
Publication of CN105749853B publication Critical patent/CN105749853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0296Nitrates of compounds other than those provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及纳米材料及水体污染物处理技术领域,具体涉及一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法。该微纳结构通过喷雾干燥和水热两步法制得,制备工艺简单易操作。喷雾干燥后得到的非晶态微球形状规则,直径为0.5~2μm,微球表面光滑;水热处理后的微纳结构为晶态碱式硝酸铋纳米片和非晶态的TiO2纳米颗粒的自组装体系。该微纳结构具有更高的比表面积,可广泛应用于有机污染物和重金属离子的吸附。

Description

一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法
技术领域
本发明涉及纳米材料及水体污染物处理技术领域,具体涉及一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法。
背景技术
伴随着科技的进步和工业技术的发展,环境污染问题已经成为全球范围内最为严峻的问题。在这样的一个大的背景之下,治理环境污染问题成为目前人类主要关心的话题之一。吸附法作为一种简单有效的方法可以有效地降解水体中的有机污染物和重金属离子,目前最常用的吸附剂是活性炭,可以有效地降解水体中的有机污染物,但是成本较高。碱式硝酸铋作为一种含铋化合物具有廉价、环保的特点。在使用过程中既要求其具有高的吸附效率,同时要求其具有较好的与液相的分离能力。微纳结构可同时满足以上两个要求,其微米结构保证其容易与液相分离,微米球上的纳米结构使其具有更高的比表面积,从而具有更高的吸附效率。
发明内容
针对上述问题,本发明的目的是:提供一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法。
为了实现上述目的,本发明所采用如下技术方案:
一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构,微纳结构中微米球直径为0.5~2μm,所述的微米球包含生长在表面的碱式硝酸铋纳米片和分布其间非晶TiO2纳米颗粒。
优选地,所述具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的制备方法,其特征在于:由喷雾干燥和水热两步法制得。
优选地,所述的具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的制备方法,具体步骤如下:
(1)前驱体的制备:
将五水硝酸铋和可溶性钛盐按照化学计量比为Bi:Ti=4:4~4:0溶解在溶剂中,配置成Bi3+浓度为0.01~0.1mol/L的溶液;
(2)喷雾干燥处理:将喷雾造粒机的参数设定为压力0.01~0.1MPa,进风口温度100~200℃,出风口温度200~280℃,待其加热温度达到所需温度范围,对步骤(1)所得的溶液进行喷雾造粒;
(3)水热处理:将步骤(2)中得到的粉体在水中进行水热反应,水热反应温度为120~200℃,保温时间为5~20h。
优选地,所述的步骤(1)的具体过程如下:将溶剂加入五水硝酸铋中,20℃超声反应15~25min,然后向溶液中加入可溶性钛盐,搅拌1~2h,配置成Bi3+浓度为0.01~0.1mol/L的溶液。
优选地,所述的可溶性钛盐为钛酸四丁酯、硫酸钛、四氯化钛中的一种,所述的溶剂为硝酸水溶液、甘露醇水溶液、乙二醇、乙二醇甲醚和乙醇中的一种或者几种的混合物。
本发明的有益效果在于:首先,本发明制备而成的碱式硝酸铋/TiO2微纳结构为微纳复合结构,具有良好的分散性和分离特性,提高了其重复利用性;其次,由于碱式硝酸铋是生长在微球表面的自组装纳米片,大大的提高了其比表面积,从而大大提高其吸附作用。
附图说明
图1为喷雾干燥后制得的粉体的扫描电子显微镜图片;
图2为具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的扫描电子显微照片;
图3为具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的X射线衍射图谱。
具体实施方式
以下结合实施例对本发明作进一步的说明,需要说明的是,仅仅是对本发明构思所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的构思或者超越本权利要求书所定义的范围,均应视为落入本发明的保护范围。
实施例1
具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的制备,具体步骤如下:
(1)前驱体的制备:将0.03mol硝酸铋溶于250ml浓度为1mol/L的硝酸乙醇溶液中,在20℃下超声反应20min,向溶液中加入0.0225mol的钛酸四丁酯,将此溶液搅拌1~2h。
(2)喷雾干燥处理:将喷雾造粒机的参数设定为压力0.1MPa,进风口温度120℃,出风口温度200℃,待其加热温度达到所需温度范围,对步骤(1)所得的溶液进行喷雾造粒。
(3)水热处理:将步骤(2)中得到的粉体在水中进行水热反应,水热反应温度为160℃,保温时间为10h。
喷雾干燥后的粉体形貌示如图1,从图1可以看出:粉体为表面光滑的微球,经检测其比表面积为3.85m2/g,基本对甲基橙没有吸附效果。
经过步骤(1)、(2)和(3)制得的碱式硝酸铋/TiO2微纳结构形貌示如图2,从图2可以看出:微纳结构中微米球直径为0.5~2μm,碱式硝酸铋为生长在微球表面的纳米片;
本发明产物的物相结构示如图3,为碱式硝酸铋结构,其中的TiO2为非晶结构,经检测其比表面积为122.04m2/g,30min对甲基橙吸附率为97.82%,对10mg/L的Pb2+离子的吸附率为80%。
实施例2
本实施例的方法同实施例1,不同的是步骤(3)中的水热温度改为180℃。
通过上述工艺制得的碱式硝酸铋/TiO2微纳结构,微米球直径为0.5~2μm,碱式硝酸铋为生长在微球表面的纳米片,比表面积为120.1m2/g,30min对20mg/L甲基橙吸附率为96.66%,对10mg/L的Pb2+离子的吸附率为79.5%。
实施例3
本实施例的方法同实施例1,不同的是步骤(3)中的水热温度改为200℃。
通过该工艺制得的碱式硝酸铋/TiO2微纳结构,微米球直径为0.5~2μm,碱式硝酸铋为生长在微球表面的自组装纳米片,比表面积为118.32m2/g,30min对甲基橙吸附率为95.48%,对10mg/L的Pb2+离子的吸附率为79%。
实施例4
本实施例的方法同实施例3,不同的是步骤(3)中的水热时间改为200℃。
通过该工艺制得的碱式硝酸铋/TiO2微纳结构,微米球直径在0.5~2μm,碱式硝酸铋为生长在微球表面的自组装纳米片,比表面积为102.04m2/g,30min对甲基橙吸附率为86.53%,对10mg/L的Pb2+离子的吸附率为75%。
实施例5
本实施例的方法同实施例1,不同的是步骤(1)中的钛酸四丁酯的加入量改为0。
通过该工艺制得的碱式硝酸铋/TiO2微纳结构,微米球直径在0.5~2μm,碱式硝酸铋为生长在微球表面的自组装纳米片,比表面积为86.33m2/g,30min对甲基橙吸附率为43.13%,对10mg/L的Pb2+离子的吸附率为42.3%。

Claims (5)

1.一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构,其特征在于:微纳结构中微米球直径为0.5~2μm,所述的微米球包含生长在表面的碱式硝酸铋纳米片和分布其间非晶TiO2纳米颗粒。
2.一种如权利要求1所述具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的制备方法,其特征在于:由喷雾干燥和水热两步法制得。
3.如权利要求2所述的具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的制备方法,其特征在于:具体步骤如下:
(1)前驱体的制备:
将五水硝酸铋和可溶性钛盐按照化学计量比为Bi:Ti=4:4~4:0溶解在溶剂中,配置成Bi3+浓度为0.01~0.1mol/L的溶液;
(2)喷雾干燥处理:将喷雾造粒机的参数设定为压力0.01~0.1MPa,进风口温度100~200℃,出风口温度200~280℃,待其加热温度达到所需温度范围,对步骤(1)所得的溶液进行喷雾造粒;
(3)水热处理:将步骤(2)中得到的粉体在水中进行水热反应,水热反应温度为120~200℃,保温时间为5~20h。
4.如权利要求3所述的具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的制备方法,其特征在于:所述的步骤(1)的具体过程如下:将溶剂加入五水硝酸铋中,20℃超声反应15~25min,然后向溶液中加入可溶性钛盐,搅拌1~2h,配置成Bi3+浓度为0.01~0.1mol/L的溶液。
5.如权利要求3或4所述的具有高效吸附作用的碱式硝酸铋/TiO2微纳结构的制备方法,其特征在于:所述的可溶性钛盐为钛酸四丁酯、硫酸钛、四氯化钛中的一种,所述的溶剂为硝酸水溶液、甘露醇水溶液、乙二醇、乙二醇甲醚和乙醇中的一种或者几种的混合物。
CN201610168183.7A 2016-03-21 2016-03-21 一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法 Active CN105749853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610168183.7A CN105749853B (zh) 2016-03-21 2016-03-21 一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610168183.7A CN105749853B (zh) 2016-03-21 2016-03-21 一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法

Publications (2)

Publication Number Publication Date
CN105749853A true CN105749853A (zh) 2016-07-13
CN105749853B CN105749853B (zh) 2018-08-14

Family

ID=56346265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610168183.7A Active CN105749853B (zh) 2016-03-21 2016-03-21 一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法

Country Status (1)

Country Link
CN (1) CN105749853B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391087A (zh) * 2016-10-19 2017-02-15 常州大学 一种硝酸氧铋复合磷酸钇催化剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587063A (zh) * 2004-07-22 2005-03-02 中国地质大学(武汉) 微乳液法制备纳米碱式硝酸铋的方法
CN101623630A (zh) * 2009-07-24 2010-01-13 中国科学院上海硅酸盐研究所 具有多级异质结构的Bi2WO6/氧化物纤维布、方法及应用
JP4759739B2 (ja) * 2006-02-28 2011-08-31 国立大学法人大阪大学 エチレン分解触媒
CN103272584A (zh) * 2013-06-18 2013-09-04 山东大学 一种全谱光催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587063A (zh) * 2004-07-22 2005-03-02 中国地质大学(武汉) 微乳液法制备纳米碱式硝酸铋的方法
JP4759739B2 (ja) * 2006-02-28 2011-08-31 国立大学法人大阪大学 エチレン分解触媒
CN101623630A (zh) * 2009-07-24 2010-01-13 中国科学院上海硅酸盐研究所 具有多级异质结构的Bi2WO6/氧化物纤维布、方法及应用
CN103272584A (zh) * 2013-06-18 2013-09-04 山东大学 一种全谱光催化剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
E.A.ABDULLAH等: "Bismuth Basic Nitrate as a Novel Adsorbent for Azo Dye Removal", 《E-JOURNAL OF CHEMISTRY》 *
LIYAN XIW等: "Template-free microwave-assisted hydrothermal synthesis and photocatalytic performance of Bi6O6(OH)3(NO3)3·1.5H2O nanosheets", 《MATERIALS CHEMISTRY AND PHYSICS》 *
杨娟等: "Bi2O3/TiO2复合纳米颗粒的可见光光催化性能", 《无机化学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391087A (zh) * 2016-10-19 2017-02-15 常州大学 一种硝酸氧铋复合磷酸钇催化剂的制备方法
CN106391087B (zh) * 2016-10-19 2018-10-16 常州大学 一种硝酸氧铋复合磷酸钇催化剂的制备方法

Also Published As

Publication number Publication date
CN105749853B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
Bedia et al. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification
He et al. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size
Pourrahimi et al. ZnO/ZnO2/Pt Janus micromotors propulsion mode changes with size and interface structure: enhanced nitroaromatic explosives degradation under visible light
Heris et al. Preparation and characterizations of TiO2/ZnO nanohybrid and its application in photocatalytic degradation of tetracycline in wastewater
Sood et al. α-Bi2O3 nanorods: An efficient sunlight active photocatalyst for degradation of Rhodamine B and 2, 4, 6-trichlorophenol
CN102489284B (zh) 可磁性分离回收的石墨烯复合二氧化钛光催化剂及其制备方法
Jing et al. Ultrasound enhanced adsorption and desorption of chromium (VI) on activated carbon and polymeric resin
CN105056929A (zh) 一种具有空心微球状的石墨烯/二氧化钛复合材料及其制备方法
CN105032375A (zh) 一种磁性石墨基重金属吸附材料的制备方法
CN103962094B (zh) 一种有序结构纳米γ-Al2O3化学修饰硅藻土吸附剂的制备方法
CN104587956A (zh) 一种以多层活性炭包覆氧化石墨烯复合粉体为载体的包裹型纳米零价铁的制备方法
CN1387932A (zh) 具有自清洁功能的纳米界面分离网及其制法和用途
CN106752234B (zh) 一种具有自清洁性能的水下超疏油涂层及其制备方法
CN105854787A (zh) 一种用于重金属吸附的季铵盐改性凹凸棒石粘土的制备方法
Xie et al. Colloidal behaviors of two-dimensional titanium carbide in natural surface waters: The role of solution chemistry
Chen et al. Removal of tetracycline hydrochloride using S–g-C3N4/PTFE membrane under visible light irradiation
Schneider et al. Dye adsorption capacity of MoS2 nanoflakes immobilized on poly (lactic acid) fibrous membranes
CN104549400A (zh) 一种可见光响应型TiO2纳米管阵列及其制备方法与应用
He et al. Effects of fulvic acids and electrolytes on colloidal stability and photocatalysis of nano-TiO 2 for atrazine removal
Hir et al. Hybrid polymer-based photocatalytic materials for the removal of selected endocrine disrupting chemicals (EDCs) from aqueous media: A review
CN105749853A (zh) 一种具有高效吸附作用的碱式硝酸铋/TiO2微纳结构及其制备方法
CN104549216B (zh) 一种具有微纳结构的Bi4Ti3O12光催化剂及其制备方法和用途
CN109827954A (zh) 一种纳米金修饰聚多巴胺纳米管、其制备方法及应用
CN106984335B (zh) 一种CdS/GE/Fe2O3复合光催化剂的制备方法
CN106048722B (zh) 一种从含钛废液中回收暴露(001)晶面TiO2的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant