CN105705517A - 用于治疗凝血障碍的新方法和抗体 - Google Patents

用于治疗凝血障碍的新方法和抗体 Download PDF

Info

Publication number
CN105705517A
CN105705517A CN201480060652.2A CN201480060652A CN105705517A CN 105705517 A CN105705517 A CN 105705517A CN 201480060652 A CN201480060652 A CN 201480060652A CN 105705517 A CN105705517 A CN 105705517A
Authority
CN
China
Prior art keywords
antibody
antigen
seq
protein
residues
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201480060652.2A
Other languages
English (en)
Inventor
H.海布罗奇佩特森
M.B.赫米特
H.L.霍姆伯格
B.O.克罗格
K.克贾尔加亚尔德
M.D.安德森
R.萨博
E.瓦特斯
L.M.安德森
K.W.巴尔林格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Novo Nordisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk AS filed Critical Novo Nordisk AS
Publication of CN105705517A publication Critical patent/CN105705517A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/36Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • C07K2317/522CH1 domain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Diabetes (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明涉及促凝血的人蛋白S抑制剂,例如可皮下施用作为血友病患者的预防性治疗的抗体或其抗原结合片段,其作用与抑制物状态无关且不干扰蛋白S的非凝血功能。

Description

用于治疗凝血障碍的新方法和抗体
序列表的援引并入
标题为“序列表”的序列表于2014年11月6日创建并通过引用并入本文。
技术领域
本发明涉及特异性结合蛋白S的抑制剂,如抗体。
背景技术
在具有凝血障碍(coagulopathy)的受试者中,诸如在具有A型和B型血友病的人类中,由于例如凝血因子不存在或存在不足,凝血级联的多个步骤出现功能障碍。凝血级联的一部分的这种功能障碍导致不充分的血液凝固和可能威及生命的出血,或对内部器官如关节的损伤。具有A型和B型血友病的受试者如人类可以接受凝血因子替代疗法,分别诸如外源性因子VIII(FVIII)或因子IX(FIX)。但是,这样的患者处于形成对这类外源性因子的“抑制物”(抗体)的危险中,使得以前有效的疗法失效。此外,外源性凝血因子仅可以静脉内施用,这对患者而言相当不便和不适。例如,婴儿和幼儿可能必须具有通过手术插入胸静脉内的静脉内导管,以便保证静脉进入。这使得他们处于发生细菌感染的高风险下。具有凝血障碍的受试者可能只有在开始出血以后才接受治疗,而不是作为预防性措施,这常常会影响他们的一般生活质量。
凝血系统的活化依赖于复杂的生物反应级联。当血管壁受损时,组织因子(TF)暴露于循环血液的内容物,TF在表达TF的细胞的表面上与因子VII/活化的因子VII(FVII/FVIIa)形成复合物。这导致因子X(FX)活化为Fxa,该Fxa与Fva一起生成有限量的凝血酶(FIIa)。小量凝血酶会活化血小板,这导致磷脂的表面暴露,该表面暴露会支持由活化的FVIII:FIX(FVIIIa/FIXa)组成的tenase复合物的结合。
tenase复合物产生大量的Fxa,该Fxa随后促进全面的凝血酶爆发(burst)。机械上强健的纤维蛋白结构的形成和止血栓子的稳定化需要全面的凝血酶爆发。FVIII或FIX分别在A型和B型血友病患者中缺失或以低水平存在,并且由于导致的tenase活性缺失,生成Fxa的能力较低,且不足以支持凝固的放大期(propagationphase)。相反,TF介导的启动期不依赖于tenase复合物的形成。但是,在最初的FXa生成后不久,TF途径被血浆抑制物阻断。
尽管位于在血友病中缺乏的Tenase复合物的下游,但在敲除模型中的若干体内研究已证明了FVa水平提高的显著改善效果。致力于提高FVa水平的方法包括外源性FVa的直接补充或通过活化的蛋白C(APC)干扰FVa失活。
凝血酶生成受到严格调节,并且下调的其中一个关键因素是FVa和FVIIIa的失活。这些分子被APC通过蛋白水解裂解而灭活。作为APC的辅因子的蛋白S提高了FVa和FVIIIa两者的失活率。已经证明,APC/蛋白S复合物缩短了FVa/FXa凝血酶原酶和FVIIIa-FIXatenase复合物两者的寿命。
对蛋白S与APC的结合的阻断下调了正常血浆中的APC的抗凝潜力(Dahlback等人.JBC(1990)265,8127-35;He等人.Eur.J.Biochem(1995)227,433-40;Giri等人.Thromb.Haemost(1998)80,798-804;Stenberg等人.Eur.J.Biochem(1998)251,558-64;Hackeng等人.BiochemJ.(2000)349,757-64;T.K.Giri,2002,ISBN:91-628-4164-5;Mille-Baker等人.Blood(2003)101,1416-8;Baroni等人.Thromb.Res.(2010)125,e33-9;Andersson等人.Blood(2010)115,4878-85)。
然而,已在具有蛋白S纯合缺乏的个体中观察到严重的血栓栓塞性疾病,并且已经证明杂合蛋白S缺乏在具有其它方面正常的凝血系统的人中导致高血栓发生率(Marlar和Neumann,SeminThrombHemost.(1990)16:299-309;Schwarz等人,Blood(1984)64:1297-1300)。已在鼠模型中得到了相似的观察结果(Burstyn-Cohen等人,JClinInvest.(2009)119:2942–2953)。
蛋白S包含五种不同的结构域:N-末端γ-羧化(Gla)结构域和芳族堆积(aromaticstack)、所谓的“凝血酶敏感区”(TSR)、四个表皮生长因子(EGF)样结构域(EGF1-4)以及被称为性激素结合球蛋白(SHBG)样结构域的大的C-末端区。
等人(1990)公开了这样的实验,在该实验中针对蛋白S得到了若干种未公开序列的Ca2+-依赖性单克隆抗体,假定这些抗体结合在蛋白S的Gla结构域、凝血酶敏感区和EGF1或EGF2结构域中。使用这些抗体(在序列方面未确定)研究了正常(即非血友病的)血浆中的蛋白S的APC辅因子活性。
据报道,SHBG样结构域对于APC催化的FVa和FVIIIa失活中的完全辅因子活性的表达是必不可少的(等人,ThrombHaemost(2000)84:271-277;Nyberg等人,FEBSLett(1998)433:28-32)。
用于非药用体外目的的抗蛋白S单克隆抗体是可商购获得的(关于其实例,参见表3)。
在最近的摘要中,Bologna等人声称已经提供了第一份证据,其通过在剪尾试验中以及在急性关节积血模型中的出血表型的体内改善证明阻断蛋白S能够改善A型血友病(Bologna等人.Abstract,Blood;2013年11月15日;122(21))。
本文公开了具有新特性和用途的抗体形式的新型抗蛋白S抑制剂。这些抗体适用于药物的开发。这类抗体可对罹患某种形式的凝血障碍如血友病的个体的生活质量产生实质的影响。
发明内容
本发明涉及调节蛋白S活性的抑制剂及其治疗用途。
具体而言,本发明涉及与蛋白S特异性结合的单克隆抗体或其抗原结合片段及其治疗用途,并涉及衍生自这些抗体或具有与这些抗体相似的结合性质的其它相关抗体。
本发明还提供了编码本发明抗体的多核苷酸,诸如编码本发明的抗体轻链和/或抗体重链的多核苷酸。本发明还包括携带这类多核苷酸的细胞。
本发明还提供了药物组合物,其包含本发明的抗体或多核苷酸和药学上可接受的载体。
还提供了本发明的抗体、多核苷酸和组合物,其用于:(a)治疗或预防凝血障碍(出血性疾病),或(b)刺激血液凝固。也就是说,本发明提供了(a)治疗或预防凝血障碍(出血性疾病)的方法,或(b)刺激血液凝固的方法,该方法包括向有需要的患者施用治疗或预防有效量的本发明的抗体、多核苷酸或组合物。
本发明的抗体、多核苷酸和组合物在具有或没有抑制物的A和B型血友病的治疗中可能是特别有用的。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基W36、E39和K40,以及C41、E42和F43中的一个或多个的表位。
在某些实施方案中,本发明的抗体或其抗原结合片段可在轻链内具有一个或多个以下CDR序列:RASSSVSYMY(SEQIDNO:49的CDR1残基24-33)、ATSNLAS(SEQIDNO:49的CDR2残基49-55)和QQWSSIPPT(SEQIDNO:49的CDR3残基88-96)。
在某些实施方案中,本发明的抗体或其抗原结合片段可在重链内具有一个或多个以下CDR序列:SYWIN(SEQIDNO:50的CDR1残基31-35)、RIDPYDSETHYAQKFQG(SEQIDNO:50的CDR2残基50-66)和WGGSGYAMDY(SEQIDNO:50的CDR3残基99-108)。
在某些实施方案中,本发明的抗体或其抗原结合片段可包含轻链可变区SEQIDNO:49,
其中氨基酸残基L45被P替换,并且任选地
L46被W替换。
以及
包含SEQIDNO:50的重链可变区,所述重链可变区任选地进一步包含一个或多个选自M70L、R72V、T74K和V79A的替换。
附图说明
图1:在来自患有严重A型血友病的人的血浆中的抗蛋白S浓度依赖性促凝血效果
多克隆抗蛋白S抗体以浓度依赖性的方式缩短了FVIII缺乏的人血浆中在APC存在下的凝血时间。
图2:在先天性人A型血友病血浆中最大促凝血效果的体外展示
在先天性人A型血友病血浆中采用DAKO抗蛋白S获得的最大促凝血效果与采用5-10%FVIII获得的效果相当。
柱1:HA血浆,柱2:1%FVIII,柱3:5%FVIII,柱4:10%FVIII,柱5:NHP,柱6:1mg/ml抗蛋白S抗体,柱7:蛋白S缺乏的血浆+抗-FVIII。
数据为平均值±SD,n=3次实验。HA:A型血友病,NHP:正常人血浆,ProS:蛋白S。ULOD:检测上限。
图3:针对全长和Gla-结构域缺失的小鼠蛋白S的多克隆抗体的体内效果
在剪尾(4mm)前5分钟,分别用针对全长和desGla-结构域小鼠蛋白S的兔多克隆抗体(49mg/kg,静脉内(IV))治疗A型血友病小鼠。
图4:单克隆抗体在A型血友病患者血浆中的体外效果
在2nM活化的蛋白C(APC)的存在下,逐渐增加的抗体浓度对严重A型血友病患者的血小板贫乏的血浆中的凝血酶生成参数峰值凝血酶的影响(虚线)。在4μM磷脂的存在下用5pM组织因子触发凝血酶生成,并且根据由FluCa试剂(Thrombinoscope,#TS50.00)的凝血酶转化生成的荧光的连续读数来估计所生成的凝血酶的量。
图5:单克隆抗体对正常和A型血友病患者血浆中的凝血酶生成的体外效果
(A)血小板贫乏的正常人血浆(实心圆)或添加缓冲液(空心圆)、63nM单克隆抗体(mAb)0910(空心三角形)、160nMmAb0910(实心三角形)、63nMmAb0914(空心正方形)或160nMmAb0914(实心正方形)的严重A型血友病患者血浆中的凝血酶生成。(B)在不存在(实心圆)或存在5nM活化的蛋白C(APC)与缓冲液(空心圆)、63nMmAb0910(空心三角形)、160nMmAb0910(实心三角形)、63nMmAb0914(空心正方形)或160nMmAb0914(实心正方形)的情况下,在血小板贫乏的严重A型血友病患者血浆中的凝血酶生成。(C-D)在(C)不存在活化的蛋白C(APC)的情况下,或在(D)存在5nMAPC(D)的情况下,提高mAb0910(三角形)和mAb0914(正方形)的浓度对严重A型血友病患者血浆中的凝血酶生成参数峰值凝血酶的影响。在所有图中,在4μM磷脂的存在下用5pM组织因子触发凝血酶生成。
图6:单克隆抗体对兔和食蟹猴血浆中的凝血酶生成的体外效果
在血栓调节蛋白(50nM)和递增浓度(0nM-1000nM)的0322-0000-0114(mAb0114)(A)和0322-0000-0914(mAb0914)(B;n=3)的存在下,在兔和食蟹猴的血小板贫乏的血浆(1:3稀释)中的凝血酶生成。0322-0000-0910(mAb0910)(C)的剂量响应仅在食蟹猴血浆(1:3稀释)中进行。在4μM磷脂的存在下用5pM组织因子触发凝血酶生成。虚线表示各个实验在没有添加TM时的峰值凝血酶浓度。
图7:SPR结合传感图
单克隆抗体0322-0000-0114(mAb0114)(实线)和0322-0000-0203(mAb0203)(虚线)与被捕获在含磷脂酰丝氨酸的脂质囊泡上的蛋白S结合的SPR传感图。
图8:SPR结合传感图
游离的蛋白S(100nM)或与单克隆抗体(500nM)一起温育的蛋白S(100nM)与含磷脂酰丝氨酸的脂质囊泡结合的SPR传感图。
图9和图10:CDR注释
序列表(下文描述)的SEQIDNO:4-45的CDR注释(CDR1以加粗表示,CDR2以深灰色/绿色表示,CDR3以浅灰色/蓝绿色表示)。
图11:抗蛋白SmAb0914在诱发A型血友病的兔角质层出血模型中的效果
相对于同种型对照抗体,抗蛋白SmAb0914显著减少了出血(p=0.013)。
图12:FXa单独或在蛋白S和mAb的存在下的活性
通过测量小的显色底物S-2765的水解,随时间推移跟踪了FXa单独或在蛋白S和mAb的存在下的活性。FXa单独(黑色实线)、与TFPI一起(黑色短划线)、与TFPI/蛋白S一起(灰色实线);与TFPI/蛋白S/-1069一起(灰色短划线)、与TFPI/蛋白S/-1139一起(灰色点划线)。
图13:与mAb复合的游离蛋白S与人TFPI的结合
游离蛋白质(黑色实线)或与0322-0000-1069(黑色点划线)、0322-0000-1139(黑色短划线)或0322-0000-0023(灰色实线)复合的蛋白S与人TFPI的结合。
图14:0322-0000-0914轻链可变区(VL)的人源化模型
由实施例22描述的人源化方案产生的潜在回复突变以灰色突出显示。由Kabat定义的CDR1、2和3以加粗并加下划线的形式示出。
图15:0322-0000-0914重链可变区(VH)的人源化模型
由实施例22描述的人源化方案产生的潜在回复突变以灰色突出显示。由Kabat定义的CDR1、2和3以加粗并加下划线的形式示出。
序列表简述
SEQIDNO:1给出了desGla人蛋白S的氨基酸序列。截短蛋白质的N-末端对应于EGF1区的N-末端起始。在列出的序列中的残基564-578代表克隆间隔区(ALA),其后为HPC4纯化标签(EDQVDPRLIDGK)。
SEQIDNO:2给出了人蛋白S的EGF1-4结构域的氨基酸序列。在列出的序列中的残基174-188代表克隆间隔区(ALA),其后为HPC4纯化标签(EDQVDPRLIDGK)。
SEQIDNO:3给出了食蟹猴(Macacafascicularis)蛋白S的氨基酸序列。在列出的序列中的残基636-647代表HPC4纯化标签(EDQVDPRLIDGK)。
SEQIDNO:4和5分别给出了M-hProtS-2F188A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:6和7分别给出了M-hProtS-2F380A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:8和9分别给出了M-hProtS-2F382A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:10和11分别给出了M-hProtS-2F4A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:12和13分别给出了M-hProtS-2F82A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:14和15分别给出了M-hProtS-3F2A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:16和17分别给出了M-hProtS-3F38A2单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:18和19分别给出了M-hProtS-3F62A5单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:20和21分别给出了M-hProtS-6F101A3单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:22和23分别给出了M-hProtS-6F120A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:24和25分别给出了M-hProtS-6F128A2单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:26和27分别给出了M-hProtS-6F138A3单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:28和29分别给出了M-hProtS-6F145A11单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:30和31分别给出了M-hProtS-6F151A2单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:32和33分别给出了M-hProtS-6F153A2单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:34和35分别给出了M-hProtS-6F159A11单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:36和37分别给出了M-hProtS-6F170A2单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:38和39分别给出了M-hProtS-6F206A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:40和41分别给出了M-hProtS-6F216A3(mAb0914)单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:42和43分别给出了M-hProtS-6F230A10单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:44和45分别给出了M-hProtS-6F265A1单克隆抗体的轻链可变区(VL)和重链可变区(VH)的氨基酸序列。
SEQIDNO:46给出了人蛋白S(包括信号肽)的氨基酸序列。
SEQIDNO:47给出了用于HC(VH域)扩增的反向引物序列。
SEQIDNO:48给出了用于LC扩增的反向引物序列。
SEQIDNO:49给出了人源化单克隆抗体0322-0000-1152的轻链可变区(VL)的氨基酸序列。
SEQIDNO:50给出了人源化单克隆抗体0322-0000-1152、0322-0000-1166和0322-0000-1223的重链可变区(VH)的氨基酸序列。
SEQIDNO:51给出了人源化单克隆抗体0322-0000-1166、0322-0000-1201、0322-0000-1238和0322-0000-1239的轻链可变区(VL)的氨基酸序列。
SEQIDNO:52给出了人源化单克隆抗体0322-0000-1201和0322-0000-1246的重链可变区(VH)的氨基酸序列。
SEQIDNO:53给出了人源化单克隆抗体0322-0000-1223、0322-0000-1246、0322-0000-1248和0322-0000-1249的轻链可变区(VL)的氨基酸序列。
SEQIDNO:54给出了人源化单克隆抗体0322-0000-1238和0322-0000-1248的重链可变区(VH)的氨基酸序列。
SEQIDNO:55给出了人源化单克隆抗体0322-0000-1239和0322-0000-1249的重链可变区(VH)的氨基酸序列。
SEQIDNO:56给出了人源化单克隆抗体0322-0000-1152的轻链(LC)的氨基酸序列。
SEQIDNO:57给出了人源化单克隆抗体0322-0000-1152、0322-0000-1166和0322-0000-1223的重链(HC)的氨基酸序列。
SEQIDNO:58给出了人源化单克隆抗体0322-0000-1166、0322-0000-1201、0322-0000-1238和0322-0000-1239的轻链(LC)的氨基酸序列。
SEQIDNO:59给出了人源化单克隆抗体0322-0000-1201和0322-0000-1246的重链(HC)的氨基酸序列。
SEQIDNO:60给出了人源化单克隆抗体0322-0000-1223、0322-0000-1246、0322-0000-1248和0322-0000-1249的轻链(LC)的氨基酸序列。
SEQIDNO:61给出了人源化单克隆抗体0322-0000-1238和0322-0000-1248的重链(HC)的氨基酸序列。
SEQIDNO:62给出了人源化单克隆抗体0322-0000-1239和0322-0000-1249的重链(HC)的氨基酸序列。
实施例25中包括一张将杂交瘤、重组表达的小鼠IgG1抗体和重组表达的鼠-人嵌合抗体的名称和ID与SEQIDNO联系起来的表格(表15)。
具体实施方式
本发明涉及调节蛋白S活性的促凝血抑制剂。本发明还涉及这类抑制剂的用途,如治疗用途和制药用途。本发明还涉及任选地掺入到编码所述抑制剂的载体中的多核苷酸。
在一些实施方案中,所述抑制剂为罹患凝血障碍的患者提供了按需或预防性治疗的选择。
在一些实施方案中,所述抑制剂为具有或没有抑制物的血友病患者提供了按需或预防性治疗的选择。
在一些实施方案中,所述抑制剂是调节蛋白S活性的单克隆抗体或其抗原结合片段。
在一些实施方案中,所述抑制剂是能够抑制蛋白S的抗凝血作用的抗体或其抗原结合片段。
在一些实施方案中,本文所述的抗体或其抗原结合片段为罹患凝血障碍的患者提供了按需或预防性治疗的选择。
本发明还提供了以不依赖于FVIII和FIX的方式治疗血友病患者的方法。因此,在一些实施方案中,本文所述的抗体为具有或没有抑制物的A和B型血友病患者提供了按需或预防性处理选择。
在一个实施方案中,针对人蛋白S产生的多克隆抗体在血友病血浆中的活化部分凝血活酶时间(APTT)试验中显著改善了凝血时间。
在一个实施方案中,针对鼠蛋白S产生的多克隆抗蛋白S抗体在血友病小鼠的尾部出血模型中显著减少了失血量。
在一个实施方案中,已经表明单克隆抗蛋白S抗体在兔血友病模型中在体内显著减少了失血量。
在一个实施方案中,已发现单克隆抗蛋白S抗体能够增加人A型血友病(HA)(FVIII缺乏的)血浆中的凝血酶生成。
抗体可皮下施用,因此与目前市场上的治疗选择相比,显著降低了治疗的负担。
因此,本发明的抗体、其它分子和组合物具有很多种体外和体内治疗用途,包括凝血相关病症的治疗和预防。例如,这些抗体和组合物可施用于人类受试者以预防或治疗多种病症。
具体地,本发明提供了用于治疗出血性疾病或用于促进血液凝固的方法,所述方法包括向有需要的患者施用有效量的本发明的抗体或其它分子或组合物。例如,这样的方法可以用于治疗凝血因子缺乏,如A型血友病、B型血友病、因子XI缺乏、因子VII缺乏、血小板减少症或冯威勒布兰德氏病(vonWillebrand'sdisease)。这样的方法可以用于治疗伴有存在凝血因子抑制物的病况。这样的方法可以用于治疗过量出血。本发明的抗体和组合物可以用于在手术或抗凝治疗之前、期间或之后或在创伤之后治疗患者。本文所述的抗体和组合物可以在任一种这样的治疗中使用,或可以在用于任一种这样的治疗的药物的制备中使用。
在一些治疗应用中,将抗体或组合物以足以治愈、减轻或部分阻止病况或其一种或多种症状的量施用于已经罹患如上所述的病症或病况的受试者。这样的治疗性处理可导致疾病症状的严重性降低,或无症状期的频率或持续时间增加。将足以实现该效果的量定义为“治疗有效量”。例如,当治疗是针对不期望的出血时,可将治疗定义为出血量减少或适当的凝血以阻止出血。
在预防或预防性应用中,将抗体或组合物以足以预防或减少病况或其一种或多种症状的后续影响的量施用于处于如上所述的病症或病况风险下的受试者。将足以实现该效果的量定义为“预防有效量”。例如,当治疗的目的在于预防不期望的出血时,可将预防性效果定义为对出血的预防,或出血的时间或量与不存在该调节剂时所见的出血时间或量相比减少。
针对每个目的的有效量将取决于疾病或损伤的严重性,以及受试者的体重和总体状态。
凝血障碍/血友病
在患有凝血障碍的受试者中,如在患有A型和B型血友病的人类中,由于例如凝血因子不存在或存在不足,凝血级联的多个步骤出现功能障碍。凝血级联的一部分的这种功能障碍导致不充分的血液凝固和可能危及生命的出血或对内部器官如关节的损伤。患有A型和B型血友病的个体可接受凝血因子替代疗法,如分别用外源性FVIII或FIX。然而,这类患者处于形成针对这类外源性因子的中和抗体(所谓的“抑制物”)的风险中,使得先前有效的治疗失效。
此外,外源性凝血因子仅可静脉内施用,这对患者而言相当不便和不适。例如,婴儿和幼儿可能必须具有通过手术插入胸部静脉内的静脉内导管,以便保证静脉进入。这使得他们处于发生细菌感染的高风险下。患有凝血障碍的受试者只有在已经开始出血后才可能接受治疗,而不是作为防范性措施,这常常会影响他们的一般生活质量。
目前,血友病治疗的金标准是预防性的替代疗法,其中治疗必须每周静脉内施用2-3次,或者采用改进的变体施用,对于FIX和FVIII变体,治疗必须分别每7-10天或每第4天静脉内施用,这对患者造成很大的负担。此外,约30%的用例如FVIII治疗的患者生成抑制物,该抑制物降低有效预防性治疗的可能性。
如本文所用的,术语“受试者”包括任何人类患者,或非人类脊椎动物。
如本文所用的,术语“凝血障碍”是指增加的出血倾向,这可能由正常凝血级联的任意促凝血组分的任何定性或定量缺乏或纤维蛋白溶解的任何上调引起。这类凝血障碍可能是先天性的和/或获得性的和/或医源性的,由本领域技术人员确定。
先天性低凝血障碍(hypocoagulopathies)的非限制性实例为A型血友病、B型血友病、因子VII缺乏、因子X缺乏、因子XI缺乏、冯威勒布兰德氏病和血小板减少症如Glanzmann氏血小板机能不全(thombasthenia)和贝-索(Bernard-Soulier)综合征。所述A型或B型血友病可能是重度的、中度的或轻度的。血友病的临床严重性根据血液中的FIX/FVIII功能单位的浓度来确定,并被分类为轻度的、中度的或重度的。重度血友病被定义为凝血因子水平<0.01U/ml,对应于小于正常水平的1%,而中度和轻度的患者分别具有1-5%和>5%的水平。
具有“抑制物”(即抗因子VIII的同种抗体)的A型血友病和具有“抑制物”(即抗因子IX的同种抗体)的B型血友病是部分先天性和部分获得性的凝血障碍的非限制性实例。
获得性凝血障碍的非限制性实例是由维生素K缺乏引起的丝氨酸蛋白酶缺乏;这样的维生素K缺乏可能由维生素K拮抗剂如华法林的施用而引起。获得性凝血障碍也可能在大面积创伤后发生。在这种情况下也称为“血性恶性循环”,其特征为血液稀释(稀释性血小板减少症和凝血因子的稀释)、低体温、凝血因子的消耗和代谢紊乱(酸中毒)。补液疗法和增加的纤维蛋白溶解可加剧这种情况。所述出血可能来自身体的任何部分。
医源性凝血障碍的非限制性实例是可能为了治疗血栓栓塞性疾病而开出的抗凝血药物如肝素、阿司匹林、华法林及其它血小板聚集抑制剂的过高剂量。医源性凝血障碍的第二个非限制性实例是由过度的和/或不当的液体疗法诱发的凝血障碍,诸如可能由输血诱发的凝血障碍。
在本发明的一个实施方案中,出血与A型或B型血友病有关。在另一个实施方案中,出血与具有获得性抑制物的A型或B型血友病有关。在另一个实施方案中,出血与血小板减少症有关。在另一个实施方案中,出血与冯威勒布兰德氏病有关。在另一个实施方案中,出血与严重组织损伤有关。在另一个实施方案中,出血与严重创伤有关。在另一个实施方案中,出血与手术有关。在另一个实施方案中,出血与出血性胃炎和/或肠炎有关。在另一个实施方案中,出血是血崩,诸如在胎盘早剥中。在另一个实施方案中,出血发生在机械性止血可能性受限的器官中,诸如颅内地、耳内地或眼内地。在另一个实施方案中,出血与抗凝治疗有关。
如本文所用的,术语“治疗”是指对任何有需要的人类或其它动物受试者的药物治疗。所述受试者可能已经经历了由执业医师进行的体格检查,该执业医师已经给出了初步或明确的诊断,该诊断表明所述特定治疗的使用对所述人类或其它动物受试者的健康是有益的。根据受试者健康的现状,所述治疗的时间安排和目的可随个体的不同而不同。
因此,所述治疗可以是预防性的、姑息性的和/或对症的。就本发明而言,预防性的、姑息性的和对症的可代表本发明的单独的方面。
蛋白S
蛋白S是主要在肝脏内合成的、分子量约为70kDa的、维生素K依赖性血浆糖蛋白。然而,也有显著的量在内皮细胞中合成。成熟的蛋白S包括五种不同的结构域,包括N-末端γ-羧化(Gla)结构域(残基1-37)和芳族堆积(残基38-45)、所谓的“凝血酶敏感区”(TSR;残基46-74)、4个EGF样结构域[EGF1(残基75-115)、EGF2(残基116-159)、EGF3(残基160-201)和EGF4(残基202-242)]以及被称为性激素结合球蛋白(SHBG)样结构域的393个氨基酸的大的C-末端区(残基243-635),其结构代表两个层粘连蛋白G型结构域。
蛋白S的血浆浓度为约350nM,且大约60%与补体4结合蛋白(C4b-BP)结合,而剩余部分作为“游离的”蛋白S循环。相比于游离的蛋白S的抗凝血活性,复合物结合的蛋白S具有约40%的抗凝血活性。在血浆中的半衰期为48-60小时。
蛋白S的定点突变已用于确定针对APC的相互作用位点。研究表明,APC结合位点位于蛋白S的Gla结构域、TSR以及EGF1和EGF2结构域中。然而,研究还提示,可能涉及EGF3-4结构域,但一个结合位点是否可能是针对APC的主要相互作用位点仍然是未知的。
据报道,SHBG样结构域对于APC催化的FVa和FVIIIa失活中的完全辅因子活性的表达是必不可少的(等人,ThrombHaemost(2000)84:271-277;Nyberg等人,FEBSLett(1998)433:28-32)。
除了抗凝血功能外,蛋白S还在其它过程中起作用。因此,蛋白S已被描述为介导凋亡细胞的清除,在小鼠中为神经保护性的,并且是血管生成的内源性抑制物。
调节凝血酶的一个关键是由APC及其辅因子蛋白S引起因子Va的失活。
凝血酶爆发的产生是血管壁受损后生成稳定的凝块的核心。产生凝血酶的关键是因子Xa及其辅因子Va。该复合物既在凝血过程的初始阶段中生成血小板第一次活化所需的初始少量凝血酶,又在凝血放大阶段中在活化的血小板上产生凝血酶爆发,其中因子VIIIa:因子IXa复合物生成了大量的FXa。
在A型或B型血友病患者中,放大阶段无法发生,因此没有足够的凝血酶形成凝块。
一种替代治疗可以是仅仅增加凝血酶在初始凝血阶段中的生成。凝血酶生成受到严格调节,并且下调的一个关键是因子Va的失活。因子Va被APC通过在Arg506和Arg306处的蛋白水解裂解而灭活。在体外,Arg506的裂解是动力学有利的并且产生具有约40%的因子Xa辅因子活性的因子Va,而Arg306的裂解导致因子Va几乎完全失活。作为APC的辅因子的蛋白S提高了因子Va的失活率。因此,在Arg506处的裂解增加了5倍,而在Arg306处的裂解增加了约20倍。
然而,已在具有蛋白S的纯合缺乏的个体中观察到严重的血栓栓塞性疾病,并且已经证明杂合蛋白S缺乏在具有其它方面正常的凝血系统的人中导致高血栓形成发生率(Marlar和Neumann,SeminThrombHemost.(1990)16:299-309;Schwarz等人,Blood(1984)64:1297-1300)。已在鼠模型中得到了相似的观察结果(Burstyn-Cohen等人,JClinInvest.(2009)119:2942–2953)。
凝血因子
因子V
因子V(FV)由肝脏合成,并且所分泌的FV作为330-kDa的单链多肽在血浆中循环,其为无活性的促凝血剂。FV由2196个氨基酸组成,包括由28个氨基酸组成的信号肽。它由六个结构域A1(Aa30-329)、A2(Aa348-684)、B(Aa692-1573)、A3(Aa1578-1907)、C1(Aa1907-2061)和C2(Aa2066-2221)构成。两种蛋白质的A和C结构域与FVIII的对应结构域约40%同源,但B结构域不是保守的。与FVIII的情况一样,FV活性通过位点特异性蛋白水解严格调节。凝血酶,以及在较小程度上,因子Xa(FXa),主要负责经由位置Arg709-Ser710、Arg1018-Thr1019和Arg1545-Ser1546处的蛋白水解裂解的FV失活。这些裂解释放B结构域,并产生由含有A1和A2结构域的105-kDa重链和含有A3、C1和C2结构域的71-至74-kDa轻链构成的二聚分子。这两条链通过残基Asp139和Asp140处的钙以及疏水相互作用保持在一起。重链为FXa和凝血酶原两者提供了接触,而轻链中的两个C结构域是FVa与磷脂表面的相互作用所需要的。
因此,FV作为凝血酶复合物的FXa的辅因子是活性的,并且活化的FXa酶需要钙和FVa来在细胞表面膜上将凝血酶原转化成凝血酶。轻链中的A3结构域参与FXa和磷脂两者的相互作用。总之,两条FVa链将FXa连接至在受损部位处由血小板栓子形成的磷脂表面,并使得FXa能够有效地结合且切割凝血酶原以生成凝血酶。FV能够与活化的血小板结合。尽管FV主要作为血浆中的可溶性组分被发现,但一部分FV也存在于血小板的α-颗粒中,如通过血小板特异性FV缺乏所证明的,这对正常的止血至关重要。
因子VIII
因子VIII(FVIII)是一种主要由肝细胞产生的大的复合糖蛋白。FVIII由2351个氨基酸组成,包括信号肽,并且含有根据同源性定义的几个不同的结构域。存在三个A-结构域、一个独特的B-结构域以及两个C-结构域。结构域顺序可以列为NH2-A1-A2-B-A3-C1-C2-COOH。FVIII作为两条链在血浆中循环,该两条链在B-A3边界处隔开。这些链通过二价金属离子结合相连接。A1-A2-B链被称为重链(HC)而A3-C1-C2被称为轻链(LC)。A1(a1区域)和A2(a2区域)C-末端的小的酸性区域和A3结构域(a3区域)的N-末端在它与其它凝血蛋白质的相互作用中发挥重要作用,该其它凝血蛋白质包括凝血酶和冯威勒布兰德(vonWillebrand)因子(vWF或VWF)——FVIII的载体蛋白。
内源性FVIII分子作为具有不同大小的B结构域的一组分子在体内循环,最短的在位置740处,即在A2-a2的C-末端处具有C-末端。这些具有不同长度的B结构域的FVIII分子均具有完全的促凝血活性。在用凝血酶激活时,FVIII在位置372处的A1-a1的C-末端、位置740处的A2-a2的C-末端和在a3与A3之间的位置1689处裂开,后一切割释放a3区域并伴随着对VWF的亲和力的损失。活化的FVIII分子被称为FVIIIa。该活化允许FVIIIa像活化的血小板和活化的因子IX(FIXa)一样与磷脂表面相互作用,即形成tenase复合物,从而允许因子X(FX)的有效活化。
B结构域在若干个不同的位点处裂开,从而就循环血浆FVIII分子而言生成较大的异质性。高度糖基化的B结构域的确切功能是未知的。
因子IX
FIX是一种维生素K依赖性凝血因子,与因子VII、凝血酶原、因子X和蛋白C具有结构相似性。循环的酶原形式由415个氨基酸组成,这些氨基酸被分成四个不同的结构域,包括一个N-末端富γ-羧基谷氨酸(Gla)结构域、两个EGF结构域和一个C-末端胰蛋白酶样丝氨酸蛋白酶结构域。
FIX的活化通过在Arg145-Ala146和Arg180-Val181处的限制性蛋白水解而发生,释放35-aa片段,即所谓的活化肽。该活化肽是高度糖基化的,其含有两个N-连接的且可达四个O-连接的聚糖。活化的因子IX被称为因子IX(a)或FIX(a)。FIX(a)是一种胰蛋白酶样丝氨酸蛋白酶,其作为tenase复合物的一部分,通过在凝血过程中生成支持适当的凝血酶形成所需的大部分因子Xa而在止血中发挥关键作用。
除非另有说明,否则FIX结构域包括下列氨基酸残基:作为从残基Tyr1到残基Lys43的区域的Gla结构域;作为从残基Gln44到残基Leu84的区域的EGF1;作为从残基Asp85到残基Arg145的区域的EGF2;作为从残基Ala146到残基Arg180的区域的活化肽;以及作为从残基Val181到Thr414的区域的蛋白酶结构域。轻链指包括Gla结构域、EGF1和EGF2的区域,而重链指蛋白酶结构域。
因子X
凝血因子X(FX)是一种维生素K依赖性凝血因子,与因子VII、凝血酶原、因子IX(FIX)和蛋白C具有结构相似性。其被合成为具有40个残基的前原序列(pre-pro-sequence),该序列含有靶向用于分泌的蛋白质的疏水性信号序列(Aa1-31)。该原肽对于引导γ-羧化得到因子X的轻链至关重要。循环的人FX酶原由445个氨基酸组成,这些氨基酸被分成四个不同的结构域,包括一个N-末端富γ-羧基谷氨酸(Gla)结构域、两个EGF结构域和一个C-末端胰蛋白酶样丝氨酸蛋白酶结构域。FX的成熟的双链形式由通过二硫键(Cys172-Cys342)及通过Arg-Lys-Arg(RKR)三肽保持在一起的轻链(Aa41-179)和重链(Aa183-488)组成。该轻链包含11个Gla残基,它们对FX与带负电荷的磷脂膜的Ca2+依赖性结合至关重要。野生型人凝血因子X在活化肽中具有两个N-糖基化位点(Asn221和Asn231)和两个O-糖基化位点(Thr199和Thr211)。β-羟基化在第一EGF结构域的Asp103处发生,从而产生β-羟基天冬氨酸(Hya)。FX的活化通过在Arg234-Ile235处的限制性蛋白水解释放52个氨基酸的活化肽(Aa183-234)而发生。在外源性途径中,这在内皮下细胞的膜上的组织因子(TF)暴露于血浆和随后FVIIa活化时发生。经由内源性途径的活化伴随FIXa、FVIIIa、钙和酸性磷脂表面的相互作用而发生。凝血酶原是FXa的最重要的底物,但该活化需要FXa的辅因子FVa、钙和酸性磷脂表面。FX缺乏是一种在一般人群中的发生率为1:1,000,000的罕见的常染色体隐性出血性疾病。尽管其产生可变的出血倾向,但具有严重FX缺乏的患者往往是具有罕见凝血缺陷的患者中受影响最严重的。杂合FX缺乏的发生率约为1:500,但通常在临床上无症状。
抗体
本文中的术语“抗体”是指衍生自种系免疫球蛋白序列的蛋白质,其能够与抗原或其一部分特异性结合。术语抗体包括任何类别(或同种型)的全长抗体,即IgA、IgD、IgE、IgG、IgM和/或IgY。与抗原或其一部分特异性结合的抗体可仅与该抗原或其部分结合,或者其可以与有限数目的同源性抗原或其部分结合。
天然的全长抗体通常包含至少四条多肽链:通过二硫键连接的两条重(H)链和两条轻(L)链。在一些情况下,天然抗体包含少于四条链,如在骆驼科动物中发现的仅含重链的抗体(VHH片段)和在软骨鱼类(Chondrichthyes)中发现的IgNAR的情况。药学上特别感兴趣的一类免疫球蛋白是IgG。在人类中,根据其重链恒定区的序列,IgG类别可被细分为四个亚类IgG1、IgG2、IgG3和IgG4。根据其序列组成的差异,轻链可被分为两种类型,κ和λ链。IgG分子由两条通过两个或更多个二硫键相互连接的重链和两条各自通过二硫键连接至重链的轻链组成。IgG重链可包含一个重链可变区(VH)和可达三个重链恒定(CH)区:CH1、CH2和CH3。轻链可包含轻链可变区(VL)和轻链恒定区(CL)。VH和VL区可进一步细分为被称为互补决定区(CDR)或高变区(HvR)的高变性区域,其中散布有被称为框架区(FR)的更加保守的区域。VH和VL区通常由三个CDR和四个FR组成,它们从氨基末端到羧基末端以如下顺序排列:FR1、CDR1、FR2、CDR2、FR3、CDR3、FR4。具有重链和轻链的高变区的可变区构成能够与抗原相互作用的结构域,而抗体的恒定区可以介导免疫球蛋白与宿主组织或因子的结合,该宿主组织或因子包括但不限于免疫系统的各种细胞(效应细胞)、Fc受体和经典补体系统的C1复合物的第一组分(C1q)。
本发明的抗体可以是单克隆抗体,从这种意义上讲,它们代表由单个B细胞或由B细胞的克隆群表达的一组独特的重链和轻链可变区序列。本发明的抗体可采用本领域技术人员已知的各种方法来生产和纯化。例如,抗体可由杂交瘤细胞产生。抗体可通过B细胞扩增来产生。抗体或其片段可以在哺乳动物或微生物表达系统中或通过体外翻译重组表达。
抗体或其片段还可通过例如噬菌体展示、细菌展示、酵母展示、哺乳动物细胞展示或核糖体或mRNA展示重组表达为细胞表面结合分子。
可分离本发明的抗体。术语“分离的抗体”是指已经从其产生环境中的其它组分中分离和/或回收的抗体,和/或已经从在其产生环境中存在的组分的混合物中纯化的抗体。
抗体的某些抗原结合片段在本发明的情况下可能是合适的,因为已经证明,抗体的抗原结合功能可由全长抗体的片段来行使。
术语抗体的“抗原结合片段”是指一个或多个保留特异性结合或识别抗原,如本文所述的蛋白S的EGF1-4区,的能力的抗体片段。抗原结合片段的例子包括Fab、Fab'、F(ab)2、F(ab')2、F(ab)S、Fv(一般为抗体单臂的VL和VH域)、单链Fv(scFv;参见例如Bird等人,Science(1988)242:423-426;和Huston等人PNAS(1988)85:5879-5883)、dsFv、Fd(一般为VH和CHI域)和dAb(一般为VH域)片段;VH、VL、VhH和V-NAR域;包含单条VH和单条VL链的单价分子;微体(minibodies)、双链抗体(diabodies)、三链抗体(triabodies)、四链抗体(tetrabodies)和κ体(kappabodies)(参见例如Ill等人ProteinEng(1997)10:949-57);骆驼IgG;IgNAR;以及一个或多个分离的CDR或功能性抗体决定簇(paratope),其中分离的CDR或抗原结合残基或多肽可以缔合或连接在一起,以形成功能抗体片段。多个类型的抗体片段已在例如Holliger和Hudson,NatBiotechnol(2005)23:1126-1136、WO2005040219以及公开的美国专利申请20050238646和20020161201中描述或综述。这些抗体片段可采用本领域技术人员已知的常规技术获得,并且可以以与完整抗体相同的方式针对应用性筛选这些片段。
抗体的“Fab片段”,包括“Fab”和“F(ab’)2”片段,通过切割连接抗体重链的铰链半胱氨酸残基的N-末端或C-末端侧上的铰链区中的重链而由所述抗体得到。Fab片段包括轻链的可变区和恒定区以及重链的可变区和第一个恒定区(CH1)。“F(ab')2”片段包含一对通常通过其铰链半胱氨酸共价连接的“Fab”片段。Fab'通过切割连接F(ab')2中的重链的铰链二硫键而在形式上衍生自F(ab')2片段。除了抗体片段的二硫键连接以外的其它化学偶联也是本领域已知的。Fab片段保留了亲本抗体与其抗原结合的能力,潜在地具有更低的亲和力。F(ab')2片段能够二价结合,而Fab和Fab’片段可以单价结合。
通常,Fab片段缺乏恒定CH2和CH3域,即将发生与Fc受体的相互作用的Fc部分。因此,Fab片段通常缺乏效应物功能。Fab片段可以通过本领域已知的方法通过抗体的酶切而产生,例如使用木瓜蛋白酶以获得Fab或使用胃蛋白酶以获得F(ab')2,包括Fab、Fab'、F(ab')2在内的Fab片段可以使用本领域技术人员公知的技术重组产生。
“Fv”片段是含有完全抗原识别和结合位点的抗体片段,且一般包含缔合(其在性质上可以是共价的)的一个重链和一个轻链可变区的二聚体,例如在单链可变区片段(scFv)中。以这种构型,每个可变区的三个高变区相互作用,以在VH-VL二聚体表面上限定抗原结合位点。六个高变区或其亚组共同地为抗体赋予抗原结合特异性。然而,即使仅包含三个抗原特异性的高变区的单个可变区也可保留识别并结合抗原的能力,尽管其亲和力通常低于完整的结合位点(Cai和Garen,Proc.Natl.Acad.Sci.USA(1996)93:6280-6285)。例如,仅具有重链可变区(VHH)的天然存在的骆驼科抗体可以结合抗原(Desmyter等人,J.Biol.Chem.,(2002)277:23645-23650;Bond等人,J.Mol.Biol.(2003)332:643-655)。
“单链Fv”或“scFv”抗体片段包含抗体的VH和VL域,其中这些结构域存在于单条多肽链中。通常,Fv多肽进一步包含在VH和VL域之间的多肽接头,该接头使得scFv能够形成用于抗原结合的所需结构。关于scFv的综述,参见Plückthun,1994,In:ThePharmacologyofMonoclonalAntibodies,Vol.113,RosenburgandMooreeds.Springer-Verlag,NewYork,pp.269-315。
术语“双链抗体(diabodies)”是指具有两个抗原结合位点的小抗体片段,其中片段在同一多肽链(VH和VL)中包含与轻链可变区(VL)连接的重链可变区(VH)。通过使用由于过短而不能允许在同一条链上的两个可变区之间配对的接头,使得这些可变区与另一条链的互补结构域配对,从而产生两个抗原结合位点。双抗体在例如EP0404097、WO93/11161以及Hollinger等人.Proc.Natl.Acad.Sci.USA(1993)90:6444-6448中更全面地描述。
术语“线性抗体”是指如在Zapata等人.ProteinEng.(1995)8(10):1057-1062中描述的抗体。简而言之,这些抗体含有一对串联的Fd区段(VH-CH1-VH-CH1),该区段与互补的轻链多肽一起形成一对抗原结合区。线性抗体可以是双特异性的或单特异性的。
如本文所用的术语“单抗体(monobody)”是指具有重链可变区而没有轻链可变区的抗原结合分子。单抗体可在不存在轻链的情况下与抗原结合,并且一般具有三个高变区,例如被命名为CDRH1、CDRH2和CDRH3的CDR。重链IgG单抗体具有通过二硫键连接的两个重链抗原结合分子。该重链可变区包括一个或多个高变区,优选CDRH3或HVL-H3区。
可采用常规的重组或蛋白质工程化技术获得抗体片段,并且可以以与完整抗体相同的方式针对与蛋白S的结合或另一种功能筛选这些片段。
本发明的抗体片段可通过截短,例如通过从多肽的N-末端和/或C-末端去除一个或多个氨基酸来制备。片段也可以由一个或多个内部缺失来生成。
本发明的抗体可以是或者可包含抗蛋白S抗体或其变体的片段。
本发明的抗体可以是或可包含这些抗体或其变体之一的抗原结合部分。例如,本发明的抗体可以是这些抗体或其变体之一的Fab片段,或者其可以是衍生自这些抗体或其变体之一的单链抗体。
变体抗体可以包含1、2、3、4、5、可达10、可达20、可达30个或更多个来自以上讨论的特定序列和片段的氨基酸替换和/或缺失和/或插入。“缺失”变体可以包含单个氨基酸的缺失、小组氨基酸如2、3、4或5个氨基酸的缺失或更大氨基酸区域的缺失,诸如特定氨基酸结构域或其它特征的缺失。“插入”变体可以包含单个氨基酸的插入、小组氨基酸如2、3、4或5个氨基酸的插入或更大氨基酸区域的插入,诸如特定氨基酸结构域或其它特征的插入。“替换”变体优选地涉及用相同数目的氨基酸替换一个或多个氨基酸,以及进行保守氨基酸替换。例如,可以将氨基酸替换为具有类似性质的替代氨基酸,例如,另一个碱性氨基酸、另一个酸性氨基酸、另一个中性氨基酸、另一个带电荷的氨基酸、另一个亲水氨基酸、另一个疏水氨基酸、另一个极性氨基酸、另一个芳族氨基酸或另一个脂族氨基酸。可以用于选择合适的替换氨基酸的20种主要氨基酸的某些性质如下:
优选的“衍生物”或“变体”包括这样的“衍生物”或“变体”,其中出现在序列中的氨基酸不是天然存在的氨基酸,而是它们的结构类似物。序列中使用的氨基酸也可以是衍生化或修饰例如标记的,只要抗体的功能不会显著地受到不利影响即可。
替换可以是但不限于保守替换。
在抗体合成过程中,或通过生产后修饰,或当抗体为重组形式时,使用定点突变、随机突变或核酸的酶切和/或连接的已知技术,可以制备如上所述的衍生物和变体。
如本文所用的,术语“人抗体”旨在包括具有可变区的抗体,在该可变区中,至少一部分框架区和/或至少一部分CDR区来源于人种系免疫球蛋白序列。例如,人抗体可具有其中框架区和CDR区均来源于人种系免疫球蛋白序列的可变区。此外,如果抗体含有恒定区,则该恒定区也来源于人种系免疫球蛋白序列。本发明的人抗体可包括不是由人种系免疫球蛋白序列编码的氨基酸残基(例如,通过体外随机或位点特异性突变或通过体内体细胞突变引入的突变)。
这样的人抗体可以是人单克隆抗体。这样的人单克隆抗体可以由杂交瘤产生,该杂交瘤包括与无限增殖化细胞融合的B细胞,该B细胞从转基因非人类动物例如转基因小鼠获得,具有包含全部人免疫球蛋白重链和轻链基因区段的基因组。
人抗体可以从基于人种系序列的选择而建立的、用天然和合成序列多样性进一步多样化的序列文库中分离。人抗体可通过人淋巴细胞的体外免疫及随后用EB病毒转化该淋巴细胞来制备。
术语“人抗体衍生物”是指人抗体的任何修饰形式,如抗体与另一种物质或抗体的缀合物。
如本文所用的,术语“人源化抗体”是指含有来源于非人免疫球蛋白的序列(CDR区或其一部分)的人/非人嵌合抗体。因此,人源化抗体是这样的人免疫球蛋白(受体抗体),其中至少来自该受体的高变区的残基被来自非人类物种如小鼠、大鼠、兔或非人灵长类动物的抗体(供体抗体)的高变区的残基所替代,该人免疫球蛋白具有期望的特异性、亲和力、序列组成和功能性。在一些情况下,人免疫球蛋白的FR残基被相应的非人类残基所替代。这种修饰的一个实例是一个或多个所谓的回复突变的引入,该回复突变一般是来源于供体抗体的氨基酸残基。抗体的人源化可采用本领域技术人员已知的重组技术进行(参见,例如,AntibodyEngineering,MethodsinMolecularBiology,vol.248,由BennyK.Lo编著)。对轻链和重链可变区均适合的人类受体框架可通过例如序列或结构同源性来鉴定。或者,例如,可基于对结构、生物物理学和生物化学性质的了解,使用固定的受体框架。该受体框架可以是种系衍生的或衍生自成熟的抗体序列。来自供体抗体的CDR区可以通过CDR移植(grafting)进行转移。
可通过确定关键框架位置来进一步在例如亲和力、功能性和生物物理学性质方面优化CDR移植的人源化抗体,在该关键框架位置处再次引入(回复突变)来自供体抗体的氨基酸残基对人源化抗体的性质具有有利影响。除了来源于供体抗体的回复突变外,还可通过在CDR或框架区中引入种系残基、消除免疫原性表位、定点突变、亲和力成熟等对人源化抗体进行工程化。
此外,人源化抗体可包含在受体抗体或供体抗体中未发现的残基。进行这些修饰以进一步改善抗体性能。通常,人源化抗体将包含至少一个—一般两个—可变区,其中全部或基本上全部的CDR区对应于非人免疫球蛋白的CDR区,并且其中全部或基本上全部的FR残基是人免疫球蛋白序列的FR残基。这些人源化抗体也可任选地包含免疫球蛋白恒定区的至少一部分(Fc),一般是人免疫球蛋白的相应部分。
术语“人源化抗体衍生物”是指人源化抗体的任何修饰形式,如抗体与另一种物质或抗体的缀合物。
如本文所用的,术语“嵌合抗体”是指这样的抗体,其轻链和重链基因从起源于不同物种的免疫球蛋白可变区和恒定区基因构建,一般是通过遗传工程构建。例如,来自小鼠单克隆抗体的基因的可变区段可连接到人恒定区。
抗体的片段可结晶区(“Fc区”/“Fc域”)是包含恒定CH2和CH3域的抗体N-末端区。Fc域可与被称为Fc受体的细胞表面受体以及补体系统的一些蛋白质相互作用。Fc区使得抗体能够与免疫系统相互作用。在本发明的一个方面,可对抗体进行工程化以在Fc区内包含修饰,一般用于改变其一种或多种功能性质,如血清半衰期、补体固定、Fc受体结合、蛋白质稳定性和/或抗原依赖性细胞毒性,或这些性质的缺乏,等等。此外,可对本发明的抗体进行化学修饰(例如,可将一个或多个化学部分连接至该抗体)或进行修饰以改变其糖基化,从而再次改变该抗体的一种或多种功能性质。IgG1抗体可携带修饰的Fc域,该Fc域包含以下突变中的一个或多个以及可能全部,这些突变将分别导致对某些Fc受体的亲和力降低(L234A、L235E和G237A)以及C1q介导的补体固定减少(A330S和P331S)(残基根据EU索引编号)。
本发明抗体的同种型可以是IgG,如IgG1,如IgG2,如IgG4。如果需要,抗体的类别可通过已知技术进行“转换”。例如,最初作为IgM分子产生的抗体可类别转换为IgG抗体。类别转换技术还可用来将一个IgG亚类转换成另一个亚类,例如:从IgG1转换成IgG2或IgG4;从IgG2转换成IgG1或IgG4;或从IgG4转换成IgG1或IgG2。还可以通过来自不同IgG亚类的区域的组合而进行生成恒定区嵌合分子的抗体工程化。
在一个实施方案中,对CH1的铰链区进行修饰,使得该铰链区中的半胱氨酸残基的数目改变,例如增加或减少。该方法在例如Bodmer等人的美国专利号5,677,425中进一步描述。
可对恒定区进行修饰以使抗体稳定化,例如,降低二价抗体分离成两个单价VH-VL片段的风险。例如,在lgG4恒定区中,残基S228(根据EU索引编号索引,根据Kabat为S241)可突变成脯氨酸(P)残基,以稳定化在铰链处的重链间二硫键形成(参见,例如,Angal等人.MolImmunol.(1993)30:105-8)。
抗体或其片段可按照其互补决定区(CDR)来定义。术语“互补决定区”或“高变区”在本文中使用时是指参与抗原结合的氨基酸残基位于其中的抗体区域。高变区或CDR可被鉴定为在抗体可变区的氨基酸比对中具有最高可变性的区域。数据库如Kabat数据库可用于CDR鉴定,例如,CDR被定义为包含轻链可变区的氨基酸残基24-34(L1)、50-56(L2)和89-97(L3)以及重链可变区的31-35(H1)、50-65(H2)和95-102(H3);(Kabat等人(1991)SequencesofProteinsofImmunologicalInterest,第五版,U.S.DepartmentofHealthandHumanServices,NIHPublicationNo.91-3242)。或者,CDR可被定义为来自“高变环”的那些残基(轻链可变区中的残基26-33(L1)、50-52(L2)和91-96(L3)以及重链可变区中的26-32(H1)、53-55(H2)和96-101(H3);Chothia和Lesk,J.Mol.Biol(1987)196:901-917)。通常,该区域中氨基酸残基的编号通过在Kabat等人(同上)中描述的方法进行。本文中的短语如“Kabat位置”、“Kabat残基”和“根据Kabat”是指用于重链可变区或轻链可变区的这一编号体系。通过使用Kabat编号体系,肽的实际线性氨基酸序列可含有较少的或额外的氨基酸,这对应于可变区的框架(FR)或CDR的缩短或向其中的插入。例如,重链可变区可包含在CDRH2的残基52后的氨基酸插入(根据Kabat的残基52a、52b和52c)以及在重链FR残基82后插入的残基(例如,根据Kabat的残基82a、82b和82c等)。可通过将抗体序列的同源性区域与“标准的”Kabat编号的序列进行比对,来确定给定抗体的残基的Kabat编号。
术语“框架区”或“FR”残基是指如本文定义的不在CDR内的那些VH或VL氨基酸残基。
本发明的抗体可包含来自本文公开的一种或多种特异性抗体的CDR区。
如本文所用的术语“表位”在“抗原结合多肽”(Ab)与其相应的“抗原”(Ag)之间的分子相互作用的背景下定义。
如本文所用的,术语“Ab”包括但不限于与相应Ag特异性结合的抗体、Fab、F(ab’)2或Fv片段。术语“Ag”是指用于对免疫活性脊椎动物进行免疫以产生识别Ag的Ab的分子实体。在此,Ag被更宽泛地定义,且通常意在包括被Ab特异性识别的分子,因此包括在用于产生Ab的免疫过程中使用的分子的片段或模拟物。
通常,“表位”是指在Ag上的、与Ab特异性结合的区或区域,即与Ab物理接触的区或区域。物理接触可采用针对Ab和Ag分子中的原子的各种标准(例如,为的距离截止值,如,如,如;或溶剂可及性)来定义。蛋白质表位可包含在Ag中的、直接参与与Ab结合的氨基酸残基(也称为表位的免疫显性组分)以及其它不直接参与结合的氨基酸残基,如被Ab有效阻断的Ag的氨基酸残基,即在Ab的“溶剂排除表面(solvent-excludedsurface)”和/或“足迹(footprint)”内的氨基酸残基。
在其最详细的水平上,针对Ag与Ab之间的相互作用的表位可通过定义存在于Ag-Ab相互作用中的原子接触的空间坐标,以及关于其对结合热力学的相对贡献的信息来描述。
在详细度较低的水平上,表位可通过定义Ag与Ab之间的原子接触的空间坐标来表征。
在详细度更低的水平上,表位可通过其包含的氨基酸残基来表征,该氨基酸残基根据特定的标准,如在Ab:Ag复合物中的原子之间的距离或原子的溶剂可及性来定义。
在详细度进一步更低的水平上,表位可通过功能,例如通过与其它Ab的竞争结合来表征。表位也可以更泛泛地定义为包含这样的氨基酸残基,另一种氨基酸对该氨基酸残基的替换将会改变Ab与Ag之间的相互作用特征。
可采用多种实验和计算表位作图(epitopemapping)方法在不同的详细度水平上定义和表征给定Ab/Ag对的表位。该实验方法包括突变、X射线晶体学、核磁共振(NMR)谱法、氢氘交换质谱法(HX-MS)以及各种竞争结合方法。由于每一种方法均依赖于独特的原理,因此对表位的描述与确定表位的方法紧密相关。因此,给定Ab/Ag对的表位将根据所采用的表位作图方法而被不同地定义。
根据所使用的表位作图方法,在不同的详细度水平上获得对表位的描述和定义,基于这一事实,可以在不同的详细度水平上类似地进行在相同Ag上针对不同Ab的表位比较。
在氨基酸水平上描述的,例如由X射线结构确定的表位如果含有相同的一组氨基酸残基,则这些表位被称为是相同的。如果表位共享至少一个氨基酸,则这些表位被称为是重叠的。如果表位没有共享氨基酸残基,则这些表位被称为是不同的(独特的)。
如果与相应Ab的结合是相互排斥的,即与一种Ab的结合排斥与另一Ab的同时结合,则通过竞争结合表征的表位被称为是重叠的。如果Ag能够同时容纳与两种相应Ab的结合,则表位被称为是不同的(独特的)。
通常,术语“抗体决定簇(paratope)”是指在Ab上的、与Ag特异性结合的区或区域。
除非另有说明(例如,在一些情况下,本发明涉及直接与特定氨基酸残基结合的抗体),本文中的术语表位包括蛋白S的任意特定区域中与抗蛋白S抗体或与另一种根据本发明的蛋白S特异性物质特异性结合的两种类型的结合位点。蛋白S可包含许多不同的表位,该表位可包括但不限于,(1)线性肽抗原决定簇,(2)构象抗原决定簇,其由在成熟蛋白S构象中彼此位置靠近的一个或多个非连续氨基酸组成;以及(3)翻译后抗原决定簇,其全部或部分地由与蛋白S共价连接的分子结构如碳水化合物基团组成。
术语“抗体决定簇”的定义来源于通过反向视角的“表位”的上述定义。因此,术语“抗体决定簇”是指在Ab上的、与Ag特异性结合的区或区域,即与Ag物理接触的区或区域。
给定抗体/抗原对的表位和抗体决定簇可通过常规方法来鉴定。例如,表位的一般位置可通过评估抗体与不同蛋白S片段结合的能力来确定。在蛋白S内的、与抗体接触的特定氨基酸(表位)和在抗体中的、与蛋白S接触的特定氨基酸(抗体决定簇)也可使用常规方法来确定,例如,抗体和靶分子可以组合,并且可以使Ab:Ag复合物结晶。可以确定该复合物的晶体结构,并用其鉴定抗体与其靶标之间相互作用的特异性位点。
与相同抗原结合的抗体可就其同时与其共同抗原结合的能力进行表征,并且可以经历“竞争结合”/“分箱(binning)”。在该语境下,术语“分箱”是指对与相同抗原结合的抗体进行分组的方法。抗体的“分箱”可以基于在以标准技术为基础的试验中两种抗体与其共同抗原的竞争结合,该标准技术例如是表面等离子体共振(SPR)、生物膜层干涉测量法(BiolayerInterferometry)、ELISA或流式细胞术。
抗体的“箱元(bin)”可采用单一参考抗体或可替代地采用一组参考抗体来定义。给定抗体的“箱元”鉴定的分辨率将随着所用参考抗体的数目的增加而增加。当使用单一参考抗体时,如果第二抗体不能与参考抗体同时与抗原结合,则称第二抗体与参考抗体属于同一“箱元”。在这种情况下,参考抗体和第二抗体竞争性地结合至抗原的相同部分,因此被划归为“竞争抗体”。如果第二抗体能够与参考抗体同时与抗原结合,则称第二抗体属于不同的“箱元”。在这种情况下,参考抗体和第二抗体不会竞争性地结合至抗原的相同部分,因此被划归为“非竞争抗体”。当使用一组参考抗体进行“箱元”鉴定时,该组参考抗体可包括一组已知的或新型的抗体,其可用于通过交叉竞争分析来定义单个抗体“箱元”,在该分析中测定该组内的每种抗体与该组的每个成员的抗原结合竞争。当抗体A和抗体B在交叉竞争分析中表现出相同的结合模式时,抗体A被称为与抗体B属于同一“箱元”。当抗体A和抗体B针对参考组中的一种或多种单个抗体表现出不同的竞争结合谱时,抗体A被称为与抗体B属于不同的“箱元”。该竞争结合谱是汇编的数据集,其中测定了组内的每种抗体与该组的另一成员同时结合抗原的能力。例如,抗体A相对于抗体1、2和3的参考组的抗原结合谱如下:A+1=不被A结合;A+2=被A结合;A+3=被A结合。如果:B+1=被B结合;B+2=被B结合;B+3=被B结合,则抗体B与抗体A相比具有不同的竞争结合谱,并且称这两种抗体属于不同的“箱元”。如果:C+1=不被C结合;C+2=被C结合;C+3=被C结合,则抗体C与抗体A相比具有相似的结合谱,并且称这两种抗体属于同一“箱元”。如上所述,给定抗体的“箱元”鉴定的分辨率将随着所用参考抗体数目的增加而增加。竞争结合试验不提供关于结合亲和力的信息,并且该试验必须以某种方式设计,使得受测抗体能够单独地结合抗原,这种结合充分到足以起到结合竞争者的作用。
抗体“分箱”不提供关于表位的直接信息。竞争抗体,即属于同一“箱元”的抗体,可具有相同的表位、重叠的表位或甚至不同的表位。如果与其在抗原上的表位结合的参考抗体占据了第二抗体与其在抗原上的表位接触所需的空间(“空间位阻”),则是后一种情况。非竞争抗体通常具有不同的表位。
术语“结合亲和力”在本文中用作两种分子(例如抗体或其片段和抗原)之间的非共价相互作用的强度的度量。术语“结合亲和力”用于描述单价相互作用(内在活性)。
通过测定平衡解离常数(KD),可以定量两种分子(例如抗体或其片段和抗原)之间通过单价相互作用的结合亲和力。反过来,通过测量复合物形成和解离的动力学,例如通过SPR方法,可以测定KD。与单价复合物的结合和解离相对应的速率常数分别被称为结合速率常数ka(或kon)和解离速率常数kd(或koff)。通过方程KD=kd/ka,将KD与ka和kd相关联。
按照上面的定义,通过比较单个抗体/抗原复合物的KD值,可以比较与不同的分子相互作用有关的结合亲和力,例如比较不同抗体对给定抗原的结合亲和力。
根据本发明的抗体可以能够与另一种分子如天然存在的配体或受体或另一种抗体竞争结合蛋白S。因此,与另一种同样能够结合蛋白S的分子相比,根据本发明的抗体可以能够以更高的亲和力结合蛋白S。
抗体与天然配体/受体竞争结合抗原的能力可通过测定感兴趣的相互作用如抗体与抗原之间的特异性相互作用的KD值并将其与不感兴趣的相互作用的KD值进行比较来评估。通常,抗体相对于靶标的KD为相对于其它非靶分子如无关物质或该环境中的伴随物质的KD的至少少于1/5,更优选少于1/10。更优选地,所述KD为至少少于1/50,如少于1/100或少于1/200;甚至更优选地至少少于1/500,如少于1/1000或少于1/10,000。
通过众所周知的方法,可以直接地测定该解离常数的值。用于评价诸如抗体等配体与靶标的结合能力的标准试验是本领域已知的,并且包括,例如,ELISA、Western印迹法、RIA和流式细胞术分析。通过本领域已知的标准试验,如SPR,也可以评估抗体的结合动力学和结合亲和力。
可以进行竞争结合试验,其中将抗体与靶标的结合和该靶标的另一种配体如另一种抗体对该靶标的结合进行比较。
多核苷酸
术语“核酸分子”和“多核苷酸”在本文中可互换使用,并且指代任意长度的核苷酸的聚合形式,该核苷酸是脱氧核糖核苷酸或核糖核苷酸,或它们的类似物。多核苷酸的非限制性实例包括基因、基因片段、信使RNA(mRNA)、cDNA、重组多核苷酸、质粒、载体、任意序列的分离的DNA、任意序列的分离的RNA、核酸探针和引物。本发明的多核苷酸可以以分离的或纯化的形式提供。
“编码”所选择的多肽的核酸序列是这样的核酸分子,当置于适当调节序列的控制下时,其在体内被转录(在DNA的情况下)和翻译(在mRNA的情况下)成多肽。
编码序列的边界由在5'(氨基)末端的起始密码子和在3'(羧基)末端的翻译终止密码子决定。对于本发明而言,这样的核酸序列可以包括但不限于来自病毒、原核或真核mRNA的cDNA,来自病毒或原核DNA或RNA的基因组序列,以及甚至合成的DNA序列。转录终止序列可以位于编码序列的3'。
在一个实施方案中,本发明的多核苷酸包含编码如上所述的VH或VL氨基酸序列的序列。例如,本发明的多核苷酸可以编码包含SEQIDNO:49-55的序列或其如上所述的变体或片段的多肽。或者,合适的多核苷酸序列可以是这些具体多核苷酸序列之一的变体。例如,变体可以是任一上述核酸序列的替换、缺失或添加变体。变体多核苷酸可以包含相对于在序列表中给出的序列的1、2、3、4、5、可达10、可达20、可达30、可达40、可达50、可达75个或更多个核酸替换和/或缺失。
因此,本发明的抗体可以从编码且能够表达该抗体的多核苷酸产生或以这种多核苷酸的形式递送。在抗体包含2条或更多条链的情况下,本发明的多核苷酸可以编码一条或多条抗体链。例如,本发明的多核苷酸可以编码抗体轻链、抗体重链或二者。可以提供两种多核苷酸,其中一种编码抗体轻链,而另一种编码对应的抗体重链。这样的多核苷酸或多核苷酸对可以一起表达,从而生成本发明的抗体。
根据本领域公知的方法,例如在Sambrook等人(1989,MolecularCloning-alaboratorymanual;ColdSpringHarborPress)中所描述的,可以合成本发明的多核苷酸。
本发明的核酸分子可以以表达盒的形式提供,该表达盒包含与插入序列可操作地连接的控制序列、信号肽序列,因而允许本发明的抗体的体内表达。这些表达盒又通常在载体(例如,质粒或重组病毒载体)内提供。这样的表达盒可直接施用给宿主受试者。
或者,可以将包含本发明的多核苷酸的载体施用给宿主受试者。优选地,使用遗传载体制备和/或施用多核苷酸。合适的载体可以是能够携带足量的遗传信息并允许表达本发明多肽的任意载体。
因此,本发明包括包含这样的多核苷酸序列的表达载体。在分子生物学领域中常规地构建这样的表达载体,并且该表达载体可以例如包括使用质粒DNA和适当的起始子、启动子、增强子、信号肽序列和其它元件,例如多腺苷酸化信号,它们可能是必要的,并且以正确的方向放置,以允许表达本发明的肽。其它合适的载体对本领域技术人员来说是显而易见的。作为这方面的其它实例,参见Sambrook等人。
本发明也包括已经修饰以表达本发明抗体的细胞。这样的细胞包括瞬时的或优选稳定的高等真核细胞系(如哺乳动物细胞或昆虫细胞)、低等真核细胞(如酵母)或原核细胞(如细菌细胞)。可以通过插入编码本发明抗体的载体或表达盒而修饰的细胞的特定实例包括哺乳动物HEK293、CHO、BHK、NSO和人视网膜细胞。优选地,所选择的细胞系是不仅稳定而且允许多肽的成熟糖基化和细胞表面表达的细胞系。
可以使用常规方法培养本发明的这类细胞系以产生本发明的抗体,或者可以治疗性地或预防性地用于向受试者递送本发明的抗体。或者,本发明的多核苷酸、表达盒或载体可以离体地施用至来自受试者的细胞,然后使细胞返回该受试者体内。
药物组合物
在另一个方面,本发明提供了组合物和制剂,其包含本发明的分子,如本文所述的抗体、多核苷酸、载体和细胞。例如,本发明提供了包含与药学上可接受的载体一起配制的一种或多种本发明抗体的药物组合物。
相应地,本发明的一个目的在于提供一种药物组合物,其包含以0.25mg/ml至250mg/ml的浓度存在的这样的抗体,并且其中所述组合物具有2.0至10.0的pH。该组合物可以进一步包含缓冲体系、防腐剂、张度剂、螯合剂、稳定剂或表面活性剂及其各种组合中的一种或多种。在一些实施方案中,本文所述的药物组合物中可包含防腐剂、等渗剂、螯合剂、稳定剂和表面活性剂中的至少一种。可参考Remington:TheScienceandPracticeofPharmacy,第19版,1995。
在一个实施方案中,所述药物组合物是水性制剂。这样的制剂一般是溶液或悬浮液,但也可以包括胶体、分散体、乳液和多相物质。术语“水性制剂”被定义为包含至少50%w/w水的制剂。类似地,术语“水性溶液”被定义为包含至少50%w/w水的溶液,而术语“水性悬浮液”被定义为包含至少50%w/w水的悬浮液。在另一个实施方案中,所述药物组合物是冷冻干燥的制剂,在使用前医师或患者向其中添加溶剂和/或稀释剂。
在进一步的方面,所述药物组合物包含这样的抗体的水性溶液和缓冲液,其中该抗体以1mg/ml或以上的浓度存在,并且其中所述制剂具有约2.0至约10.0的pH。
如本文使用的“药学上可接受的载体”包括生理上相容的任意和所有溶剂、分散介质、包衣剂、抗细菌剂和抗真菌剂、等渗剂和吸收延迟剂等。优选地,载体适合于肠胃外给药,例如静脉内、肌肉内或皮下给药(例如,通过注射或输注)。取决于给药途径,所述抗体可以用材料包衣,以保护抗体免受酸和可能使该抗体失活或变性的其它自然条件的作用。
优选的药学上可接受的载体包括水性载体或稀释剂。可以在本发明的药物组合物中使用的合适的水性载体的实例包括水、缓冲液和生理盐水。其它载体的实例包括乙醇、多元醇(polyols)(如甘油、丙二醇、聚乙二醇等)及其合适的混合物、植物油(如橄榄油)和可注射的有机酯(如油酸乙酯)。例如,通过使用包衣材料如卵磷脂,在分散体的情况下通过维持所需的颗粒大小,以及通过使用表面活性剂,可以维持适当的流动性。在许多情况下,优选地在组合物中包含等渗剂,例如,糖类,多元醇(polyalcohols)如甘露醇、山梨醇,或氯化钠。
本发明的药物组合物也可以包含药学上可接受的抗氧化剂。这些组合物还可以含有佐剂,如防腐剂、湿润剂、乳化剂和分散剂。通过如上的灭菌程序,以及通过包含不同的抗细菌剂和抗真菌剂,例如对羟基苯甲酸酯(paraben)、三氯叔丁醇、苯酚、山梨酸等,可以确保防止微生物的存在。还希望在组合物中包含等渗剂,如糖类、氯化钠等。此外,通过包含延迟吸收的试剂如单硬脂酸铝和明胶,可以造成可注射药物形式的延长吸收。
治疗组合物在制备和保存条件下一般必须是无菌的和稳定的。可以将组合物配制成溶液、微乳剂、脂质体或其它适合高药物浓度的有序结构。
通过将活性剂(例如抗体)以所需的量在合适的溶剂中根据需要与上面列举的一种成分或成分的组合掺和,接着微滤除菌,可以制备无菌注射溶液。通常,通过将活性剂掺入无菌载体中来制备分散体,该载体含有基础分散介质和所需的来自上面列举的那些的其它成分。在用于制备无菌注射溶液的无菌粉剂的情况下,优选的制备方法是真空干燥和冷冻干燥(冻干),其产生活性剂加上来自其预先无菌过滤的溶液的任何额外的所需成分的粉末。
本发明的药物组合物可以包含额外的活性成分以及本发明的抗体。如上所述,本发明的组合物可以包含一种或多种本发明的抗体。它们还可以包含额外的治疗剂或预防剂。例如,在本发明的药物组合物预期用于治疗出血性疾病的情况下,它可以另外包含一种或多种预期会减轻出血性疾病症状的药剂。例如,该组合物可以包含一种或多种凝固因子。该组合物可以包含一种或多种预期会改善患者状况的其它组分。例如,在该组合物预期用于治疗遭受不希望的出血的患者如正在接受手术的患者或遭受创伤的患者的情况下,该组合物可以包含一种或多种止痛剂、麻醉剂、免疫抑制剂或抗炎剂。包含本发明的抗体或其它组合物以及使用说明书的药剂盒也落入本发明的范围内。这样的药剂盒可以进一步含有一种或多种额外的药剂,如上面讨论的额外的治疗剂或预防剂。
给药方式
本发明的抗体或其抗原结合片段或药物组合物可采用本领域已知的多种方法中的一种或多种经由一种或多种给药途径来施用。如技术人员会理解的,给药途径和/或方式将根据所希望的结果而不同。
本发明的抗体或组合物的优选给药途径包括静脉内、肌肉内、真皮内、腹膜内、皮下、脊柱或其它肠胃外给药途径,例如通过注射或输注。
或者,本发明的抗体可通过非肠胃外途径如经口或局部施用。
本发明的抗体可预防性地或治疗性地施用(根据需求)。
如本文使用的短语“肠胃外给药”是指除了肠和局部给药以外的给药方式,通常通过注射。或者,可以通过非肠胃外途径如局部、表皮或粘膜给药途径施用本发明的抗体或组合物。
类似地,本发明的抗体可以用于制备适合肠胃外给药的药物。
本发明的抗体可以用于制备适合静脉内给药的药物。
本发明的抗体可以用于制备适合肌肉内给药的药物。
本发明的抗体可以用于制备适合皮下给药的药物。
剂量
本发明的抗体的合适剂量可以由熟练的医学从业人员确定。本发明的药物组合物中的活性成分的实际剂量水平可以改变,从而得到有效地实现对于特定患者、组合物和给药方式而言所希望的治疗响应而对该患者无毒性的活性成分的量。所选的剂量水平将取决于多种药代动力学因素,包括:所使用的特定抗体的活性,给药途径,给药时间,抗体的排泄速率,治疗持续时间,与所用的具体组分联合使用的其它药物、化合物和/或物质,接受治疗的患者的年龄、性别、体重、状况、一般健康和既往医疗史,以及医学领域中公知的类似因素。
本发明抗体的合适剂量可以例如在约0.1μg/kg至约100mg/kg待治疗患者体重的范围内。例如,合适的剂量可以是约1μg/kg至约10mg/kg体重/天或约1mg/kg至约5mg/kg体重/天。本发明抗体的合适剂量可以在2-200mg/kg的范围内,诸如约150-200mg/kg,诸如约150-170mg/kg,诸如约100-150mg/kg,诸如约50-100mg/kg,诸如约70-90mg/kg,诸如约10-50mg/kg,诸如约10-30mg/kg。其它合适的剂量可以是大约0.1-10mg/kg,诸如大约0.1-1mg/kg,诸如大约1-2mg/kg,或大约2-3mg/kg,或大约4-5mg/kg,或大约5-6mg/kg,或大约6-7mg/kg,或大约7-8mg/kg,或大约8-9mg/kg,或大约9-10mg/kg;或大约10-21mg/kg,诸如大约10-11mg/kg,或大约11-12mg/kg,或大约12-13mg/kg,或大约13-14mg/kg,或大约14-15mg/kg,或大约15-16mg/kg,或大约16-17mg/kg,或大约17-18mg/kg,或大约18-19mg/kg,或大约19-20mg/kg,或大约20-21mg/kg。施用给受试者的单克隆抗体的量可以使得其施用导致所述单克隆抗体的受试者血浆浓度为约10μg/ml至约40μg/ml,诸如约15-35μg/ml,诸如约10-15μg/ml,诸如约15-20μg/ml,诸如约20-25μg/ml,诸如约25-30μg/ml,诸如约30-35μg/ml,诸如约35-40μg/ml。
剂量方案
可以调整剂量方案,以提供最佳的所需响应(例如,治疗响应)。例如,可以施用单次大量注射(singlebolus),可以随时间施用数个分剂量,或者可以根据治疗情况的紧迫性成比例地减小或增加剂量。以便于施用和剂量均匀性的剂量单位形式配制肠胃外组合物是特别有利的。如本文使用的剂量单位形式是指适合作为单一剂量用于待治疗受试者的物理上离散的单元;每个单元含有与所需的药学载体相组合的预定量的活性化合物,经计算所述量会产生希望的治疗效果。
可以按单次剂量或分多次剂量施用抗体。多次剂量可以经由相同或不同的途径施用,并施用到相同或不同的位置。或者,抗体可以作为持续释放制剂来施用,在该情况下,需要频率更低的施用。剂量和频率可以根据抗体在患者中的半衰期和期望的治疗持续时间而不同。给药剂量和频率也可以根据治疗是预防性的还是治疗性的而不同。在预防性应用中,可以在长时间段内以相对低频的间隔施用相对较低的剂量。在治疗性应用中,可以施用相对较高的剂量,例如直到患者显示出疾病症状的部分或完全改善。
因而,本发明的抗体可以如下施用:大约每天、大约每隔一天、大约每3天、大约每4天、大约每5天、大约每6天;大约每周,诸如每5、6、7、8、9或10天;大约每隔一周,诸如每11、12、13、14、15、16或17天;大约每3周,诸如每18、19、20、21、22、23或24天;大约每4周,诸如每25、26、27、28、29、30或31天。
本发明的抗体也可以按需施用。
进一步的实施方案
提供以下实施方案以帮助理解本发明,然而,本发明并不仅限于以下实施方案。
在一个实施方案中,本发明涉及与蛋白S结合并抑制蛋白S与APC的相互作用的抑制剂(诸如但不限于抗体、Fab或其它片段、肽或适体(aptamers))。
在一个实施方案中,本发明涉及与蛋白S结合并抑制蛋白S与APC的相互作用的抗体或其抗原结合片段。
在一个实施方案中,本发明涉及与蛋白S结合并抑制蛋白S与APC的相互作用而不干扰蛋白S的已知非凝血功能的抗体或其抗原结合片段。
在一个实施方案中,本发明涉及与蛋白S结合并抑制蛋白S与APC的相互作用的抗体或其抗原结合片段在治疗凝血障碍如血友病中的用途。
在一个实施方案中,本发明涉及与蛋白S结合并阻止与APC的相互作用而不干扰蛋白S的已知非凝血功能的抗体或其抗原结合片段在血友病治疗中的用途。
在一个实施方案中,本发明涉及与蛋白S结合的抑制剂在治疗凝血障碍如与APC无关的血友病中的用途。
在一个实施方案中,本发明涉及与蛋白S结合而不干扰蛋白S的已知非凝血功能的抑制剂在与APC无关的血友病治疗中的用途。
在一个实施方案中,本发明涉及与蛋白S结合的抗体或其抗原结合片段在治疗凝血障碍如与APC无关的血友病中的用途。
在一个实施方案中,本发明涉及与蛋白S结合而不干扰蛋白S的已知非凝血功能的抗体或其抗原结合片段在与APC无关的血友病治疗中的用途。
在一个实施方案中,本发明提供了使用能够结合于蛋白S的EGF1-4区的蛋白S抑制剂治疗凝血障碍的方法。
在一个实施方案中,本发明提供了使用能够结合于蛋白S的EGF1-3区的蛋白S抑制剂治疗凝血障碍的方法。
在一个实施方案中,本发明提供了使用能够结合于蛋白S的EGF1-2区的蛋白S抑制剂治疗凝血障碍的方法。
在一个实施方案中,本发明提供了使用能够结合于蛋白S的EGF1区的蛋白S抑制剂治疗凝血障碍的方法。
在一个实施方案中,本发明提供了使用能够结合蛋白S的EGF1-4区的抗蛋白S抗体或其抗原结合片段治疗凝血障碍的方法。
在一个实施方案中,本发明提供了使用能够结合于蛋白S的EGF1-3区的抗蛋白S抗体或其抗原结合片段治疗凝血障碍的方法。
在一个实施方案中,本发明提供了使用能够结合于蛋白S的EGF1-2区的抗蛋白S抗体或其抗原结合片段治疗凝血障碍的方法。
在一个实施方案中,本发明提供了使用能够结合于蛋白S的EGF1区的抗蛋白S抗体或其抗原结合片段治疗凝血障碍的方法。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1-4区的蛋白S抑制剂在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1-3区的蛋白S抑制剂在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1-2区的蛋白S抑制剂在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1区的蛋白S抑制剂在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1-4区的抗蛋白S抗体或其抗原结合片段在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1-3区的抗蛋白S抗体或其抗原结合片段在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1-2区的抗蛋白S抗体或其抗原结合片段在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,本发明提供了能够结合于蛋白S的EGF1区的抗蛋白S抗体或其抗原结合片段在制备用于凝血障碍治疗的药物中的用途。
在一个实施方案中,所述凝血障碍是血友病,如A型或B型血友病。
在一个实施方案中,本发明的抗体或其抗原结合片段与人蛋白S结合。
在一个实施方案中,本发明的抗体或其抗原结合片段与来自食蟹猴的蛋白S结合。
在一个实施方案中,本发明的抗体或其抗原结合片段与兔蛋白S结合。
在一个实施方案中,本发明的抗体或其抗原结合片段能够在兔血友病模型中在体内显著减少失血量。
在一个实施方案中,本发明提供了能够在基于人FVIII缺乏的血浆的凝血酶生成试验中增加凝血酶生成的抗体或其抗原结合片段。
在一个实施方案中,本发明的抗体或其抗原结合片段没有阻止人蛋白S与脂质表面的结合。
在一个实施方案中,本发明的抗体或其抗原结合片段没有阻止人蛋白S与C4BP的结合。
在一个实施方案中,本发明的抗体或其抗原结合片段可以能够以不依赖于Ca2+的方式结合其表位。
在一个实施方案中,本发明的抗体或其抗原结合片段具有缩短人FVIII缺乏的血浆的凝固时间,或减少达到凝固的时间的能力,如在人全血的凝血弹性描记法(TEG)分析中所测量的。
在一个实施方案中,本发明的抗体或其抗原结合片段不影响蛋白S对TFPI的辅因子功能。
在一个实施方案中,本发明的抗体或其抗原结合片段既不阻止蛋白S与脂质表面的结合,也不阻止其与C4BP或TFPI的结合,但对来自不同物种的蛋白S是交叉反应性的,同时在凝血障碍如血友病的治疗中是有用的。
在一个实施方案中,本发明的抗体可以是人抗体或任选地包含一个或多个回复突变的人源化抗体。
在一个实施方案中,本发明提供了抗体或其抗原结合片段,其半衰期可通过应用包括聚乙二醇化、乙酰化等在内的已知延长(protraction)原理而延长。
在一个实施方案中,本发明的抗体或其抗原结合片段可包含来自本文公开的一种或多种特异性抗体的CDR区,如在本文所述的由SEQIDNO:4到45和49-55(SEQIDNO4-45的带注释的CDR序列还参见图9和图10,而SEQIDNO49-55的带注释的CDR序列参见图14和图15)所代表的可变轻链和可变重链序列中的任一个内的CDR区。
在一个这样的实施方案中,在本发明的抗体或其抗原结合片段的轻链内的CDR序列在残基SASSSVSYMY(SEQIDNO:36的CDR1残基24-33)、DTSNLAS(SEQIDNO:36的CDR2残基49-55)和QQWSSYPLT(SEQIDNO:36的CDR3残基88-96)处。
在一个这样的实施方案中,在本发明的抗体或其抗原结合片段的重链内的CDR序列在残基TSGMGVS(SEQIDNO:37的CDR1残基31-37)、HIYWDDDKRYNPSLKS(SEQIDNO:37的CDR2残基52-67)和YGNYGDY(SEQIDNO:37的CDR3残基100-106)处。
在另一个这样的实施方案中,在本发明的抗体或其抗原结合片段的轻链内的CDR序列在残基RASSSVSYMY(SEQIDNO:40的CDR1残基24-33)、ATSNLAS(SEQIDNO:40的CDR2残基49-55)和QQWSSIPPT(SEQIDNO:40的CDR3残基88-96)处。
在另一个这样的实施方案中,在本发明的抗体或其抗原结合片段的重链内的CDR序列在残基SYWIN(SEQIDNO:41的CDR1残基31-35)、RIDPYDSETHYNQKFKD(SEQIDNO:41的CDR2残基50-66)和WGGSGYAMDY(SEQIDNO:41的CDR3残基99-108)处。
在另一个这样的实施方案中,在本发明的抗体或其抗原结合片段的轻链内的CDR序列在残基SVSSSVSYMH(SEQIDNO:10的CDR1残基24-33)、DTSNLVS(SEQIDNO:10的CDR2残基49-55)和QQYSGYLYT(SEQIDNO:10的CDR3残基88-96)处。
在另一个实施方案中,在本发明的抗体或其抗原结合片段的重链内的CDR序列在残基DAWMD(SEQIDNO:11的CDR1残基31-35)、EIRSKANNHATYYAESVKG(SEQIDNO:11的CDR2残基50-68)和TTAFLFDY(SEQIDNO:11的CDR3残基101-108)处。
在又一个这样的实施方案中,在本发明的抗体或其抗原结合片段的轻链内的CDR序列在残基SATSSVTYMH(SEQIDNO:26的CDR1残基24-33)、STSNLAS(SEQIDNO:26的CDR2残基49-55)和QQRSSYPPT(SEQIDNO:26的CDR3残基88-96)处。
在另一个实施方案中,在本发明的抗体或其抗原结合片段的重链内的CDR序列在残基GYGVS(SEQIDNO:27的CDR1残基31-35)、MIWGDGTTDYNSTLKS(SEQIDNO:27的CDR2残基50-65)和DPGAMDY(SEQIDNO:27的CDR3残基98-104)处。
在又一个这样的实施方案中,在本发明的抗体或其抗原结合片段的轻链内的CDR序列在残基SASSSVSYMY(SEQIDNO:12的CDR1残基24-33)、STSNLAS(SEQIDNO:12的CDR2残基49-55)和QQWSSNPYT(SEQIDNO:12的CDR3残基88-96)处。
在另一个实施方案中,在本发明的抗体或其抗原结合片段的重链内的CDR序列在残基SYWMN(SEQIDNO:13的CDR1残基31-35)、RIDPYDTETHYNQKFED(SEQIDNO:13的CDR2残基50-66)和WAGSSYAMDY(SEQIDNO:13的CDR3残基99-108)处。
在某些实施方案中,本发明的抗体或其抗原结合片段可在轻链内具有一个或多个以下CDR序列:RASSSVSYMY(SEQIDNO:49的CDR1残基24-33)、ATSNLAS(SEQIDNO:49的CDR2残基49-55)和QQWSSIPPT(SEQIDNO:49的CDR3残基88-96)。
在某些实施方案中,本发明的抗体或其抗原结合片段可在重链内具有一个或多个以下CDR序列:SYWIN(SEQIDNO:50的CDR1残基31-35)、RIDPYDSETHYAQKFQG(SEQIDNO:50的CDR2残基50-66)和WGGSGYAMDY(SEQIDNO:50的CDR3残基99-108)。
在某些实施方案中,本发明的抗体或其抗原结合片段可在轻链内具有一个或多个以下CDR序列:RASSSVSYMY(SEQIDNO:51的CDR1残基)、ATSNLAS(SEQIDNO:51的CDR2残基49-55)和QQWSSIPPT(SEQIDNO:51的CDR3残基88-96)。
在某些实施方案中,本发明的抗体或其抗原结合片段可在重链内具有一个或多个以下CDR序列:SYWIN(SEQIDNO:52的CDR1残基31-35)、RIDPYDSETHYAQKFQG(SEQIDNO:52的CDR2残基50-66)和WGGSGYAMDY(SEQIDNO:52的CDR3残基99-108)。
在某些实施方案中,发明的抗体或其抗原结合片段可在轻链内具有一个或多个以下CDR序列:RASSSVSYMY(SEQIDNO:53的CDR1残基24-33)、ATSNLAS(SEQIDNO:53的CDR2残基49-55)和QQWSSIPPT(SEQIDNO:53的CDR3残基88-96)。
在某些实施方案中,本发明的抗体或其抗原结合片段可在重链内具有一个或多个以下CDR序列:SYWIN(SEQIDNO:54的CDR1残基31-35)、RIDPYDSETHYAQKFQG(SEQIDNO:54的CDR2残基50-66)和WGGSGYAMDY(SEQIDNO:54的CDR3残基99-108)。
在某些实施方案中,本发明的抗体或其抗原结合片段可在重链内具有一个或多个以下CDR序列:SYWIN(SEQIDNO:55的CDR1残基31-35)、RIDPYDSETHYAQKFQG(SEQIDNO:55的CDR2残基50-66)和WGGSGYAMDY(SEQIDNO:55的CDR3残基99-108)。
在某些实施方案中,本发明的抗体或其抗原结合片段可在重链内具有一个或多个以下CDR序列:SYWIN(SEQIDNO:52的CDR1残基31-35)、RIDPYDSETHYNQKFKD(SEQIDNO:41的CDR2残基50-66)和WGGSGYAMDY(SEQIDNO:52的CDR3残基99-108)。
在一个实施方案中,在抗体或其抗原结合片段中,CDR2区中的可能经历异构化成为异天冬氨酸(isoAsp)的潜在天冬氨酸位点通过将SEQIDNO:50、52、54或55的氨基酸残基D55用不是半胱氨酸(C)的不同氨基酸残基替换而得以避免。
在一个实施方案中,本发明的抗体或其抗原结合片段包含以下两个CDR3序列(分别来自轻链和重链):
QQYSGYLYT(SEQIDNO:10的CDR3残基88-96)和
TTAFLFDY(SEQIDNO:11的CDR3残基101-108)。
在一个实施方案中,所述抗体或其抗原结合片段包含以下两个CDR3序列(分别来自轻链和重链):
QQWSSNPYT(SEQIDNO:12的CDR3残基88-96)和
WAGSSYAMDY(SEQIDNO:13的CDR3残基99-108)。
在一个实施方案中,所述抗体或其抗原结合片段包含以下两个CDR3序列(分别来自轻链和重链):
QQRSSYPPT(SEQIDNO:26的CDR3残基88-96)和
DPGAMDY(SEQIDNO:27的CDR3残基98-104)。
在一个实施方案中,所述抗体或其抗原结合片段包含以下两个CDR3序列(分别来自轻链和重链):
QQWSSIPPT(SEQIDNO:40的CDR3残基88-96)和
WGGSGYAMDY(SEQIDNO:41的CDR3残基99-108)。
在一个实施方案中,所述抗体或其抗原结合片段包含以下两个CDR3序列(分别来自轻链和重链):
QQWSSIPPT(SEQIDNO:49的CDR3残基88-96)和
WGGSGYAMDY(SEQIDNO:50的CDR3残基99-108)。
在一个实施方案中,本发明的抗体或其抗原结合片段包含SEQIDNO:10的轻链可变区和SEQIDNO:11的重链可变区。
在一个实施方案中,本发明的抗体或其抗原结合片段包含SEQIDNO:12的轻链可变区和SEQIDNO:13的重链可变区。
在一个实施方案中,本发明的抗体或其抗原结合片段包含SEQIDNO:26的轻链可变区和SEQIDNO:27的重链可变区。
在一个实施方案中,本发明的抗体或其抗原结合片段包含SEQIDNO:40的轻链可变区和SEQIDNO:41的重链可变区。
在一个实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:49的轻链可变区和SEQIDNO:50的重链可变区。
在某些实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:49的轻链可变区,
其中氨基酸残基L45被P替换,且任选地
L46被W替换,
以及
SEQIDNO:50的重链可变区,所述重链可变区任选地进一步包含一个或多个选自M70L、R72V、T74K和V79A的替换。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:51的轻链可变区和SEQIDNO:50的重链可变区。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:51的轻链可变区和SEQIDNO:52的重链可变区。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:51的轻链可变区和SEQIDNO:54的重链可变区。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:51的轻链可变区和SEQIDNO:55的重链可变区。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:53的轻链可变区和SEQIDNO:50的重链可变区。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:53的轻链可变区和SEQIDNO:52的重链可变区。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:53的轻链可变区和SEQIDNO:54的重链可变区。
在一个这样的实施方案中,本发明的抗体或其抗原结合片段可包含SEQIDNO:53的轻链可变区和SEQIDNO:55的重链可变区。
在特定的实施方案中,本发明包括以下单克隆抗体或其抗原结合片段:
抗体,其中所述抗体的轻链包含SEQIDNO:56,且所述抗体的重链包含SEQIDNO:57。
抗体,其中所述抗体的轻链包含SEQIDNO:58,且所述抗体的重链包含SEQIDNO:57。
抗体,其中所述抗体的轻链包含SEQIDNO:58,且所述抗体的重链包含SEQIDNO:59。
抗体,其中所述抗体的轻链包含SEQIDNO:60,且所述抗体的重链包含SEQIDNO:57。
抗体,其中所述抗体的轻链包含SEQIDNO:58,且所述抗体的重链包含SEQIDNO:61。
抗体,其中所述抗体的轻链包含SEQIDNO:58,且所述抗体的重链包含SEQIDNO:62。
抗体,其中所述抗体的轻链包含SEQIDNO:60,且所述抗体的重链包含SEQIDNO:59。
抗体,其中所述抗体的轻链包含SEQIDNO:60,且所述抗体的重链包含SEQIDNO:61。
抗体,其中所述抗体的轻链包含SEQIDNO:60,且所述抗体的重链包含SEQIDNO:62。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的C32、K33、P34、G35、W36、Q37、G38、E39、K40、C41、E42和F43。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的C32、K33、P34、G35、W36、Q37、G38、E39、K40、C41和E42。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的C32、K33、P34、G35、W36、Q37、G38、E39、K40和C41。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的C32、K33、P34、G35、W36、Q37、G38、E39和K40。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的C32、K33、P34、G35、W36、Q37、G38和E39。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的K33、P34、G35、W36、Q37、G38、E39、K40、C41、E42和F43。
在一个实施方案中,抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的P34、G35、W36、Q37、G38、E39、K40、C41、E42和F43。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的P34、G35、W36、Q37、G38、E39、K40、C41和E42。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的P34、G35、W36、Q37、G38、E39、K40和C41。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的G35、W36、Q37、G38、E39、K40、C41、E42和F43。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的G35、W36、Q37、G38、E39、K40、C41和E42。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的G35、W36、Q37、G38、E39、K40和C41。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的S20、C21、K22、G24、C32、K33、P34、G35、W36、Q37、G38、E39、K40、C41、E42、F43。
在一个实施方案中,本发明的抗体或其抗原结合片段能够与人蛋白S表位结合,该人蛋白S表位包含一个或多个选自下组的残基:
SEQIDNO:2的S20、C21、K22、D23、G24、K25、A26、S27、F28、T29、C30、C32、K33、P34、G35、W36、Q37、G38、E39、K40、C41、E42、F43。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基S20的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基C21的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基K22的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基G24的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基A26的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基S27的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基F28的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基T29的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基C30的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基C32的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基K33的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基P34的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基G35的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基W36的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基Q37的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基G38的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基E39的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基K40的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基C41的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基E42的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基F43的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基W36、E39和K40的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基W36、E39和K40,以及C41、E42和F43中的一个或多个的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基W36、E39、K40和F43,以及C41和E42中的一个或多个的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基W36、E39、K40、C41和F43,以及C41和E42中的一个或多个的表位。
在一个实施方案中,本发明的抗体或其抗原结合片段能够结合包含SEQIDNO:2的氨基酸残基W36、E39、K40、C41、E42和F43的表位。
本发明的具体实施方案
方面1.能够特异性结合于人蛋白S的EGF1-3区的抑制剂,其用于治疗人类受试者的凝血障碍。
2.根据方面1的供使用的抑制剂,其中所述抑制剂能够特异性结合于人蛋白S的EGF1区以用于治疗人类受试者的凝血障碍。
3.根据方面1或2的供使用的抑制剂,其中所述抑制剂是抗体或其抗原结合片段。
4.能够特异性结合于人蛋白S的EGF1区的抗体或其抗原结合片段,其中所述结合的区包含一个或多个选自下组的氨基酸残基:
SEQIDNO:2的W36、E39、K40、C41、E42和F43。
5.根据方面4的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段能够特异性结合SEQIDNO:2的氨基酸残基
W36、E39、K40,以及
氨基酸残基C41、E42和F43中的一个或多个。
6.能够特异性结合于人蛋白S的EGF1区的抗体或其抗原结合片段,其中
所述抗体或抗原结合片段的轻链包含:
包含SEQIDNO:49的残基88-96(QQWSSIPPT)的CDR3序列,其中所述残基中的一个或两个可被不同的残基替换,且
所述抗体或抗原结合片段的重链包含:
包含SEQIDNO:50的残基99-108(WGGSGYAMDY)的CDR3序列,其中所述残基中的一个或两个可被不同的残基替换。
7.根据方面6的抗体或其抗原结合片段,其中
所述抗体或抗原结合片段的轻链包含:
包含SEQIDNO:49的残基24-33(RASSSVSYMY)的CDR1序列,和/或
包含SEQIDNO:49的残基49-55(ATSNLAS)的CDR2序列,和/或
包含SEQIDNO:49的残基88-96(QQWSSIPPT)的CDR3序列;
并且所述抗体或抗原结合片段的重链包含:
包含SEQIDNO:50的残基31-35(SYWIN)的CDR1序列,和/或
包含SEQIDNO:50的残基50-66(RIDPYDSETHYAQKFQG)的CDR2序列,和/或
包含SEQIDNO:50的残基99-108(WGGSGYAMDY)的CDR3序列。
8.根据方面6或7的抗体或其抗原结合片段,其中
所述抗体或抗原结合片段的轻链可变区(VL)包含SEQIDNO:49,
其中氨基酸残基L45被P替换,且任选地
L46被W替换,
并且
所述抗体或抗原结合片段的重链可变区(VH)包含SEQIDNO:50,任选地进一步包含一个或多个选自M70L、R72V、T74K和V79A的替换。
9.根据方面6、7或8的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51或53,且所述抗体的重链可变区(VH)包含SEQIDNO:50、52、54或55。
10.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:50。
11.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:52。
12.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:54。
13.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:55。
14.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:50。
15.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:52。
16.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:54。
17.根据方面9的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:55。
18.根据方面7至17的抗体或其抗原结合片段,其中SEQIDNO:50的重链可变区(VH)CDR2氨基酸残基D55任选地可被不是C的不同氨基酸残基替换。
19.根据方面3至18中任一个的抗体,其中所述抗体是单克隆抗体。
20.多核苷酸,其编码根据方面1至19中任一项所述的抑制剂、抗体或其抗原结合片段。
21.药物组合物,其包含根据方面4至19中任一项所述的抑制剂、抗体或其抗原结合片段或多核苷酸,以及药学上可接受的载体或稀释剂。
22.根据方面4至19中任一项所述的抗体或其抗原结合片段,其用于治疗人类受试者的凝血障碍。
23.根据方面22的抗体或其抗原结合片段,其用于治疗人类受试者的血友病。
24.真核细胞,其表达根据方面4至19中任一项所述的抑制剂、抗体或其抗原结合片段。
25.抗体或其抗原结合片段,其与参考抗体竞争结合人蛋白S,其中所述参考抗体包含
根据方面8或18中任一项所述的重链可变区和轻链可变区。
实施例
实施例1:在人血友病血浆中针对蛋白S的多克隆抗体改善APTT
在FVIII缺乏的人血浆中,在APC的存在下,多克隆抗蛋白S抗体浓度依赖性地缩短了凝血时间(图1)。在重新钙化前将先天性FVIII缺乏的人血浆(GeorgeKingBiomedicalInc.)与0.3μg/mlAPC(InnovativeResearch)和指定水平的多克隆抗蛋白S(DAKO#A0384)连同APTT试剂(APTT-SP,IL)一起在37℃下温育300sec。使用ACL9000(ILS)测量纤维蛋白凝块形成的时间。平均EC50为37.1μg/ml(SD=2.4,n=3次实验),对应于约250nM。
实施例2:抗蛋白S抗体与FVIII相比在A型血友病血浆中的促凝血效果
将抗蛋白S抗体在FVIII缺乏的血浆中的最大效果分别与正常人血浆和具有1%、5%和10%FVIII(内部)的人血浆的凝血时间进行比较(图2)。数据表明,使用抗蛋白S的完全响应与具有5-10%FVIII的血浆的凝血时间相似。通过确立具有过量的中和FVIII抗体(内部)的蛋白S缺乏的血浆(HaemochromDiagnostica)(类似于蛋白S和FVIII双重缺乏的血浆)的凝血时间来确认完全中和蛋白S的效果。
将血浆与APC(0.3μg/ml)和抗蛋白S(DAKO,#A0384)或FVIII以不同的组合连同APTT试剂(APTT-SP,IL)一起混合,并在重新钙化前在37℃下温育300sec。使用ACL9000(ILS)测量纤维蛋白凝块形成的时间。数据为平均值±SD,n=3次实验。
实施例3:针对全长和Gla结构域缺失的小鼠蛋白S的多克隆抗体的体内效果
在剪尾(4mm)前5min,分别用针对全长和desGla结构域小鼠蛋白S的兔多克隆抗体(49mg/kg,IV)处理A型血友病小鼠。经30min的时间段测定失血量(Holmberg等人.JTH,7,1517-1522(2006))。数据为平均值±SEM,n=6-8。针对蛋白S(全长)以及desGla蛋白S的多克隆抗体显著减少了A型血友病小鼠尾部出血模型中的失血量(图3)。
通过分别用全长和desGla小鼠蛋白S对兔子进行免疫在体内生成了兔多克隆抗体。随后从血浆中纯化兔IgG。
实施例4:缺乏人蛋白S的Gla结构域和EGF1-4结构域的人蛋白S的产生和纯化
人desGLA蛋白S(SEQIDNO:1)的表达
用于表达人desGLA蛋白S的基于GS的载体的生成
为了在来自Lonza的基于GS的表达系统中表达人desGLA蛋白S(SEQIDNO:1),根据Lonza所述和如下进一步概述的标准程序生成了载体pBOK822。该表达载体包含两个表达盒,一个用于表达人desGLA蛋白S,而第二个用于表达谷氨酰胺合成酶(GS)选择标记。
1.人desGLA蛋白S表达盒包含:
a.人巨细胞病毒主要立即早期(hCMV-MIE)启动子,其包括
来自CMV-MIE基因座的5’非翻译序列,以促进转录/翻译。
b.编码人desGLA蛋白S的cDNA序列
c.SV40多腺苷酸化信号(SV40聚A位点)
2.GS表达盒包含:
a.SV40晚期启动子
b.GS小基因
c.两个多腺苷酸化信号(聚A位点1和2)。
载体的其余部分包含细菌colE1复制起点和氨苄青霉素抗性基因,两者均用于载体在大肠杆菌中的增殖。
a.通过将来自现有的基于pTT的载体pJSV320的PmeI/BsiWI限制酶切片段转移至用NruI/BsiWI线性化的pEE14.4载体内,将人desGLA蛋白S的cDNA克隆至载体pEE14.44(Lonza)内,以生成载体pBOK822。
通过使用全长人蛋白S(IMAGE克隆ID3909023)作为模板,将对应于EGF1的N末端位置处GLA结构域3’的人蛋白ScDNA进行PCR扩增,来生成最初的基于pTT的载体。通过标准的限制酶切消化/连接将扩增的片段插入到携带人CD33的信号肽和HPC4纯化标签的基于pTT的载体中。将人desGLA蛋白ScDNA符合读框地插入5’CD33信号肽序列和包括Ala-Leu-Ala(ALA)克隆间隔区的3’HPC4标签序列(SEQIDNO:1的残基564-578)。
b.通过对人desGLA蛋白S插入片段进行测序来验证最终的载体pBOK822的序列。
c.为转染作准备,通过AclI限制酶切消化将载体pBOK822线性化,并使用QIAEXII凝胶提取试剂盒(Qiagen)进行分离。
人desGLA蛋白S生产细胞系的开发
1.按照Lonza的标准方案,通过电穿孔用线性化的人desGLA蛋白SGS表达载体pBOK822转染CHOK1SV细胞,并以有限的密度接种到二十个96孔板中。
2.将转染的细胞在含有25μM或37μM甲硫氨酸砜亚胺(MSX)(Sigma)—一种谷氨酰胺合成酶(GS)选择性抑制剂—的无谷氨酰胺的CDCHO(Gibco)培养基中温育。约3周后通过目测培养板来鉴定克隆。
3.将24个选择的克隆在含有25μMMSX的CDCHO培养基中从96孔静止培养物扩大至24孔静止培养物。
4.基于在24孔静止培养中历经7天的累积的人desGLA蛋白S产率,对各个克隆进行排序并选择。通过以下斑点印迹(spot-blot)/蛋白质印迹分析(Westernblotanalysis)测定蛋白S产率,并选择最好的3个克隆进一步分析:
a.将5μl细胞培养物点样到硝酸纤维素膜上并使其干燥。
b.将膜在含有2%v/v吐温-20的TBS中封闭2min。
c.将膜转移至含有0.1%v/v吐温-20和1:1000稀释的多克隆兔抗蛋白C(HPC4)-标记抗体(Genscript)的TBS中,并在室温下温育60min。
d.将膜在含有0.1%v/v吐温-20的TBS中洗涤3次,各5min。
e.将膜转移至含有0.1%v/v吐温-20和1:1000稀释的荧光标记的抗兔Ig抗体(Licor)的TBS中,并在室温下温育60min。
f.将膜在含有0.1%v/v吐温-20的TBS中洗涤3次,各5min,并使用Odyssey成像系统(Licor)进行扫描。
5.将选择的细胞系从24孔静止培养物扩大至在50ml生物反应器管(TTP)中的5ml摇床培养物,然后扩大至在125ml锥形瓶(Corning)中的30ml培养物。在这一阶段,使选择压力保持在25μMMSX。基于在摇床培养(过度生长(OG)培养)中历经7天的累积蛋白S产率,选择最高产率的人desGLA蛋白S细胞系。通过标准的蛋白质印迹分析来测量蛋白S产率。
a.通过SDS-PAGE对上清液进行分析,随后根据以上针对斑点印迹/蛋白质印迹分析所述的方案进行标准的蛋白质印迹分析。
6.被选择用于生产人desGLA蛋白S的最终细胞系是:BRTK822_25_2_C10。
7.为了生产目的,将BRTK822_25_2_C10的培养物扩大并接种到在含有25μMMSX的CDCHO培养基中的2x1L培养物中,并在36.5℃、8%CO2和85-125rpm下在定轨摇床中的3L锥形瓶中培养7天。
8.在7天后,通过离心收获上清液,然后使用0.22μmPES过滤器单元(Corning)过滤。
人蛋白SEGF1-4(SEQIDNO:2)的表达
用于表达人蛋白SEGF1-4的基于GS的载体的生成
为了在来自Lonza的基于GS的表达系统中表达人蛋白SEGF1-4(SEQIDNO:2),根据Lonza所述和如下进一步概述的标准程序生成载体pBOK821。该表达载体包含两个表达盒,一个用于表达人蛋白SEGF1-4,而第二个用于表达谷氨酰胺合成酶(GS)选择标记。
1.人蛋白SEGF1-4表达盒包含:
a.人巨细胞病毒主要立即早期(hCMV-MIE)启动子,其包括来自CMV-MIE基因座的5’非翻译序列,以促进转录/翻译。
b.编码人蛋白SEGF1-4的cDNA序列。
c.SV40多腺苷酸化信号(SV40聚A位点)。
2.GS表达盒包含:
a.SV40晚期启动子
b.GS小基因
c.两个多腺苷酸化信号(聚A位点1和2)。
载体的其余部分包含细菌的colE1复制起点和氨苄青霉素抗性基因,两者均用于载体在大肠杆菌中的增殖。
d.通过将来自现有的基于pTT的载体(pJSV321)的PmeI/EcoRI限制酶切片段转移至用NruI/EcoRI线性化的pEE14.4载体内,将人蛋白SEGF1-4的cDNA克隆至载体pEE14.4(Lonza)内,以生成载体pBOK821。
通过使用全长人蛋白S(IMAGE克隆ID3909023)作为模板对覆盖EGF1-4结构域的人蛋白ScDNA进行PCR扩增生成最初的基于pTT的载体。通过标准的限制酶切消化/连接将扩增的片段插入到携带人CD33的信号肽和HPC4纯化标签的基于pTT的载体中。将人蛋白SEGF1-4cDNA符合读框地插入5’CD33信号肽序列和包括Ala-Leu-Ala(ALA)克隆间隔区的3’HPC4标签序列(SEQIDNO:2的残基174-188)。
e.通过对人蛋白SEGF1-4插入片段进行测序来验证最终的载体pBOK821的序列。
f.为转染作准备,通过AclI限制酶切消化将载体pBOK821线性化,并使用QIAEXII凝胶提取试剂盒(Qiagen)进行分离。
人蛋白SEGF1-4生产细胞系的开发
1.按照Lonza的标准方案,通过电穿孔用线性化的人蛋白SEGF1-4GS表达载体pBOK821转染CHOK1SV细胞,并以有限的密度接种到二十个96孔板中。
2.将转染的细胞在含有25μM或37μM甲硫氨酸砜亚胺(MSX)(Sigma)—一种谷氨酰胺合成酶(GS)选择性抑制剂—的无谷氨酰胺的CDCHO(Gibco)培养基中培养。约3周后通过目测培养板来鉴定克隆。
3.将24个选择的克隆在含有25μMMSX的CDCHO培养基中从96孔静止培养物扩大至24孔静止培养物。
4.基于在24孔静止培养中历经7天的累积人蛋白SEGF1-4产率,对各个克隆进行排序并选择。通过以下斑点印迹/蛋白质印迹分析测定蛋白产率,并选择最好的3个克隆进一步分析:
a.将5μl细胞培养物点样到硝酸纤维素膜上并使其干燥。
b.将膜在含有2%v/v吐温-20的TBS中封闭2min。
c.将膜转移至含有0.1%v/v吐温-20和多克隆兔抗蛋白C(HPC4)-标记抗体(Genscript)的1:1000稀释液的TBS中,并在室温下温育60min。
d.将膜在含有0.1%v/v吐温-20的TBS中洗涤3次,各5min。
e.将膜转移至含有0.1%v/v吐温-20和1:1000稀释的荧光标记的抗兔Ig抗体(Licor)的TBS中,并在室温下温育60min。
f.将膜在含有0.1%v/v吐温-20的TBS中洗涤3次,各5min,并使用Odyssey成像系统(Licor)进行扫描。
5.将选择的细胞系从24孔静止培养物扩大至在50ml生物反应器管(TTP)中的5ml摇床培养物,然后扩大至在125ml锥形瓶(Corning)中的30ml培养物。在这一阶段,使选择压力保持在25μMMSX。基于在摇床培养(过度生长(OG)培养)中历经7天的累积蛋白S产率,选择最高产率的人蛋白SEGF1-4细胞系。通过标准的蛋白质印迹分析来测量蛋白S产率。
a.通过SDS-PAGE对上清液进行分析,随后根据以上针对斑点印迹/蛋白质印迹分析所述的方案进行标准的蛋白质印迹分析。
6.被选择用于生产人蛋白SEGF1-4的最终细胞系是:BRTK821_37_2_B11。
7.为了生产目的,将BRTK821_37_2_B11的培养物扩大并接种到在含有25μMMSX的CDCHO培养基中的2x1L培养物中,并在36.5℃、8%CO2和85-125rpm下在定轨摇床中的3L锥形瓶中温育7天。
8.在7天后,通过离心收获上清液,然后使用0.22μmPES过滤器单元(Corning)过滤。
纯化
通过亲和层析(抗HPC4-琼脂糖)及随后在Superdex75柱上凝胶过滤来纯化重组人desGLA蛋白S和人蛋白SEGF1-4。通过SDS-PAGE和SEC-HPLC估计人蛋白SEGF1-4的最终纯度为100%。内毒素<0.1EU/mg(通过动态比浊检测测得)。对于人desGLA蛋白S,其纯度为95%且内毒素<0.04EU/mg。
实施例5:全长食蟹猴蛋白S(SEQIDNO:3)的表达和纯化
用于表达食蟹猴蛋白S的pQMCF1载体的生成
使用来自Icosagen的QMCF表达平台来表达食蟹猴(Macacafascicularis)蛋白S(SEQIDNO:3)。
1.QMCFCHO细胞系CHOEBNAL85支持伴随的QMCF质粒的稳定维持和分配(partitioning)。
2.QMCF质粒包含:
a.小鼠多瘤病毒(Py)DNA复制起点,其与
b.EB病毒(EBV)EBNA-1蛋白质结合位点相组合,确保质粒在QMCF细胞中的稳定增殖。
通过以下一系列步骤生成用于表达全长食蟹猴蛋白S的基于QMCF的表达载体:
a.使用基于登录号XM_005548385的序列设计的扩增引物,从食蟹猴cDNA克隆食蟹猴蛋白S的cDNA。
b.将扩增的片段纯化并克隆至Zero-BLUNTtopo载体(Invitrogen)内,以用于序列验证。
c.对于最终的表达载体pBOK835,使用接头引物(adaptorprimers)来扩增食蟹猴蛋白S,该接头引物引入1)位于ATG起始密码子的5’的Kozak序列基序(GCCGCCACC)和5’末端NotI限制酶切位点,2)在蛋白S序列的C末端的HPC4标签(SEQIDNO:3的残基636-647)和3’末端EcoRI限制酶切位点。
d.将所得PCR片段纯化并用作使用第二组接头引物的第二次PCR扩增的模板,该接头引物引入1)位于Kozak序列和ATG起始密码子的5’的末端NheI限制酶切位点,以及2)位于HPC4标签序列的3’的末端AscI限制酶切位点。
e.由所得PCR片段生成NheI/AscI限制酶切片段,并将其插入NheI/AscI线性化的pQMCF1载体内。
f.通过对食蟹猴蛋白S插入片段进行测序来验证最终载体pBOK835的序列。
全长食蟹猴蛋白S的转染/表达
1.将CHOEBNALT85细胞维持在QMix1培养基中,该培养基由等量的CDCHO培养基(Gibco)和补充有6mML-谷氨酰胺(Gibco)、0.5xHT补充剂(Gibco)和20μg/ml嘌呤霉素(Gibco)的293SFMII培养基(Gibco)制备。
2.收获、洗涤细胞,并将其重悬于CHCHO培养基中(在0.7ml中10E7个细胞),之后采用GenePulserXcellTM电穿孔系统(Biorad)和指数电穿孔方案(300V,900μF,∞Ω,4mm小杯),通过电穿孔,用10μg食蟹猴蛋白SpQMCF1表达载体(pBOK835)转染。
3.在电穿孔后,立即将细胞转移至在125ml锥形瓶中的20mlQMix1培养基中,并在36.5℃、8%CO2、125rpm下在定轨摇床中培养。
4.转染后24hr,添加G418选择试剂(Gibco)至700μg/ml的最终浓度,并将细胞恢复72-96hr。通过使用CedexHiRes细胞计数器测量细胞培养物活力和密度来监测恢复。
5.当细胞再次活跃地分裂时,扩大培养以达到最终的生产量,将细胞维持在0.2x10E6-3x10E6个细胞/ml。
6.对于最终的生产,将2x1L培养物接种到3L锥形瓶中的补充有700ug/mlG418和5ug/ml维生素K的QMix1培养基中,并在36.5℃、8%CO2和85rpm下在定轨摇床中培养7天。
7天后,通过离心收获上清液,然后使用0.22μmPES过滤器单元(Corning)过滤。如以上实施例中所述完成纯化。通过SDS-PAGE、N末端氨基酸序列分析和LC-MS估计食蟹猴蛋白S的最终纯度很高,然而,通过SEC-HPLC测得的单体比例为48%。内毒素为63EU/mg。
实施例6:抗蛋白S(EGF1-4)单克隆抗体的生成
用来源于人血浆的蛋白S(HTI)、缺乏Gla结构域的重组人蛋白S(desGLA蛋白S,SEQIDNO:1)或仅包含人蛋白S的EGF1-4结构域(SEQIDNO:2)的重组蛋白免疫RBF小鼠。在免疫前,将蛋白质在不完全弗氏佐剂中乳化。在免疫开始时,对小鼠进行皮下注射,然后每两周一次进行共三次腹腔内免疫。在最后一次免疫之后10天,从小鼠采集血液,并制备血清,并且通过ELISA确定抗EGF1-4抗体滴度,在该ELISA中,将NUNCMaxisorp板用人蛋白S的EGF1-4结构域包被并封闭,之后施加稀释的血清。在温育和洗涤后,添加HRP标记的山羊抗小鼠IgG二抗(Jackson),并在温育和洗涤后通过添加3,3',5,5'-四甲基联苯胺来对ELISA进行显色。
不使用佐剂,用desGLA蛋白S或人蛋白S的EGF1-4结构域向对于抗EGF1-4发生响应的小鼠进行静脉内(i.v.)加强免疫。加强免疫后三天,在无菌条件下取出脾脏,并将其分散成单细胞悬浮液。通过标准电融合完成小鼠脾细胞与骨髓瘤细胞(P3X63Ag8.653,ATCC-#CRL1580)的融合,并将细胞接种到微量滴定板中,在37℃、5%CO2下培养。在13天的时间段内更换组织培养基两次,并在HAT/HT培养基(Sigma)中选择杂交瘤。
还可通过采用噬菌体展示筛选FAb、scFv等文库来鉴定与蛋白S和蛋白S片段结合的抗体。还可通过采用噬菌体展示筛选肽文库或筛选适体文库来获得促凝血蛋白S结合剂。
实施例7:与人蛋白S的EGF1-4结构域和食蟹猴蛋白S结合的抗体的初步筛选
用如上所述的ELISA分析杂交瘤上清液结合人EGF1-4的能力,随后分析其结合来自食蟹猴的重组蛋白S(SEQIDNO:3)的能力。使与人蛋白S的EGF1-4结构域和食蟹猴蛋白S均结合的抗体表达,并在功能鉴定之前从杂交瘤上清液中纯化。为了生成单克隆且稳定的杂交瘤细胞系,通过有限稀释对杂交瘤细胞进行亚克隆。将细胞以1个细胞/孔的密度接种到96孔板中。两周后,如上所述针对与人蛋白S的EGF1-4结构域的结合,筛选来自每个孔的上清液。
实施例8:对FVa的ACP/蛋白S失活的抗蛋白S(EGF1-4)介导的保护的筛选
针对蛋白S对APC介导的FVa失活的辅因子活性,蛋白S结合抗体(通常以0-400nM范围内的浓度存在于FVa失活反应步骤中)对该蛋白S辅因子活性的中和作用在室温下在生物化学试验中测量。
简而言之,将30μL纯化的抗体(在20mMTris,pH7.4中)与20μL人蛋白S(HaematologicTechnologiesInc,#HCPS-0090)在微量滴定板(PerkinElmer,#6005659)中的试验缓冲液(30mMHEPES,135mMNaCl,1mMEDTA,0.1%BSA,pH7.4)中混合。将反应温育30min以使抗原结合。然后,添加20μL含有人APC(HaematologicTechnologiesInc,#HCAPC-0080)和磷脂-TGT(Rossix,#PL604T)的混合物,并将反应温育5min。随后,添加20μL人因子Va(HaematologicTechnologiesInc,#HCVA-0110),并使失活反应进行30min。在该步骤中,蛋白S的浓度为10nM,APC为65pM,而FVa为50pM。然后,添加人凝血酶原(EnzymeResearchLaboratories,#HP1002)与人FXa(EnzymeResearchLaboratories,#HFXa1011)的100μL混合物,以引发凝血酶生成,在这种情况下FVa是限速决定因素。反应进行10min。在该步骤中,磷脂的浓度为23.8μM,凝血酶原为100nM,而FXa为0.5nM。最后,添加100μL溶解在EDTA缓冲液(20mMHEPES,140mMNaCl,20mMEDTA,1g/LBSA,pH7.4)中的显色凝血酶肽底物S-2238(Chromogenix,#S-2238)至400μM的最终浓度,并立即且重复地每30sec在405nm处读取该板,持续10min。针对每一个抗体浓度计算初始反应速度,并将其用作剩余的FVa辅因子活性的度量。根据两个不含任何抗体的对照对该信号进行归一化;两个对照均含有FVa和APC,但+/-蛋白S。因此,0%对应于存在蛋白S时的信号,而100%对应于不存在蛋白S时的信号。能够以浓度依赖性方式使FVa辅因子活性恢复至最大辅因子活性的30%或以上的抗体被认为是蛋白S功能中和性的。克隆满足所述标准的抗体,并如以下实施例中所述对其进行进一步研究。
实施例9:从杂交瘤上清液中纯化的单克隆抗体与蛋白S及其变体的ELISA结合
在ELISA中确认了从杂交瘤上清液中纯化的抗体与人蛋白S的EGF1-4结构域和食蟹猴蛋白S的结合(参见实施例6)。此外,研究了与来自血浆的蛋白S(HTI)以及人蛋白S的EGF1-2和EGF3-4结构域的结合(表1)。所有结合实验均在不含钙的TBS缓冲液(138μMNaCl,270nMKCl,pH8,SigmaT6664)中进行。因此,鉴定的抗蛋白SmAb能够以不依赖钙的方式结合蛋白S。
表1:从杂交瘤上清液中纯化的单克隆抗体的ELISA结合
hPS-dGla:Gla结构域缺失的重组人蛋白S;hEGF1-4:重组人蛋白S的EGF结构域1至4;hEGF1-2:重组人蛋白S的EGF结构域1和2;hEGF3-4:重组人蛋白S的EGF结构域3和4;CyPS-dGla:Gla结构域缺失的重组食蟹猴蛋白S。抗TNP:小鼠抗TNP阴性对照mAb。’+’:结合,‘-‘:未结合。
随后针对分子克隆的抗体的亚组重复结合数据(在以下实施例中描述;表2)。
表2:重组抗蛋白S抗体的ELISA结合
分子克隆的NNCD# hEGF1-4 hEGF1-2 hEGF3-4 血浆PS hPS-dGla CyPS-dGla
0322-0000-0916 + + - + + +
0322-0000-0918 + + - + + +
0322-0000-0909 + + - + + +
0322-0000-0920 + + - + + +
0322-0000-0912 + + - + + +
0322-0000-0921 + + - + + +
0322-0000-0910 + - + + + +
0322-0000-0914 + + - + + +
0322-0000-0919 + - + + + +
抗TNP - - - - - -
hPS-dGla:Gla结构域缺失的重组人蛋白S;hEGF1-4:重组人蛋白S的EGF结构域1至4;hEGF1-2:重组人蛋白S的EGF结构域1和2;hEGF3-4:重组人蛋白S的EGF结构域3和4;CyPS-dGla:Gla结构域缺失的重组食蟹猴蛋白S。抗TNP:小鼠抗TNP阴性对照mAb。
实施例10:对来自分离的杂交瘤的抗蛋白S(EGF1-4)单克隆抗体可变轻链和可变重链cDNA的克隆和测序
该实施例描述了对表1中列出的抗蛋白S抗体的鼠重链和轻链序列的克隆和测序。
使用来自Qiagen的RNeasy-Mini试剂盒从杂交瘤细胞中提取总RNA,并将其用作cDNA合成的模板。使用来自Clontech的SMARTTMRACEcDNA扩增试剂盒在5’-RACE反应中合成cDNA。使用PhusionHotStart聚合酶(Finnzymes)和作为正向引物包含在SMARTTMRACE试剂盒中的通用引物混合物(UPM),通过PCR进行随后的HC和LC序列的靶扩增。
对于HC(VH域)扩增,使用具有以下序列的反向引物(SEQIDNO:47):
5’-CCCTTGACCAGGCATCCCAG-3’。
对于LC扩增,使用具有以下序列的反向引物(SEQIDNO:48):
5’-GCTCTAGACTAACACTCATTCCTGTTGAAGCTCTTG-3’
将PCR产物通过凝胶电泳进行分离,使用来自GEHealthcareBio-Sciences的GFXPCRDNA&GelBandPurification试剂盒进行提取,并使用ZeroBluntTOPOPCRCloning试剂盒和化学感受态TOP10大肠杆菌(Invitrogen)克隆以供测序。使用来自Qiagen的DNAminiprep试剂盒,从通过标准碱裂解方案生成的质粒制剂中获得用于测序的DNA质粒材料。或者,通过菌落PCR反应获得用于测序的DNA材料,该反应使用来自AppliedBiosystems的AmpliTaqGoldMasterMix和M13uni/M13rev引物在选择的菌落上进行。使用ExoSAP-IT酶混合物(USB)进行菌落PCR清除(clean-up)。在MWGBiotech,MartinsriedGermany处使用M13uni(-21)/M13rev(-29)测序引物进行测序。使用VectorNTI程序对序列进行分析并注释。所有的试剂盒和试剂均按照制造商的说明书使用。
针对每个杂交瘤鉴定单个独特的鼠κ型LC和单个独特的鼠HC,亚类mIgG1。
将可变重链和可变轻链序列的氨基酸序列指定为SEQIDNO:4-45(不包含前导肽序列),还参见以上‘序列表简述’部分。CDR序列在图9和图10中注释并突出显示。
实施例11:抗蛋白S抗体的重组表达
用于重组表达抗蛋白S抗体的载体的生成
生成一系列基于CMV启动子的表达载体(pTT载体)以用于小鼠IgG1和小鼠/人IgG4(S241P)嵌合抗蛋白S抗体在EXPI293F细胞(LifeTechnologies)(0322-0000-1069)中的瞬时表达。pTT载体由YvesDurocher(Durocher等人.NucleicAcidResearch,2002)开发用于瞬时蛋白质表达。除了CMV启动子外,基于pTT的载体还包含pMB1起点、EBV起点和Amp抗性基因。
轻链(LC)表达载体:
生成基于pTT的LC载体以用于小鼠抗蛋白S抗体的瞬时表达。初始时,针对每一种抗蛋白S抗体(参见表1),使用含有对鉴定的可变区序列的3’和5’区具有特异性的序列的引物,从最初的TOPO测序克隆PCR扩增对应于该抗体的轻链(VL)可变区的区域。此外,有义引物包含与人CD33信号肽序列的3’端的DNA序列互补的序列。相应地,反义引物包含与轻链恒定区的5’端的DNA序列互补的序列。将生成的PCR片段使用GFXPCR纯化试剂盒(GEHealthcare)进行纯化,并克隆至含有CD33信号肽序列和小鼠κ恒定区序列(用于小鼠抗体表达)或人κ恒定区序列(用于嵌合抗体表达)的基于pTT的载体的PCR扩增片段内。通过使用对人CD33信号肽序列的3’端具有特异性的反义引物和对轻链恒定区的5’端具有特异性的有义引物对pTT载体进行PCR扩增来获得载体片段。将该载体片段用DpnI限制性核酸酶进行处理以去除模板DNA,并使用GFXPCR纯化试剂盒(GEHealthcare)进行纯化。按照制造商的说明书,使用HDCloning试剂盒(Clontech)将扩增的VL片段符合读框地克隆至载体中CD33信号肽与轻链恒定区之间。随后将克隆反应转化到大肠杆菌中以供选择。通过DNA测序来验证最终构建体的序列。
重链(HC)表达载体:
生成基于pTT的HC载体以用于小鼠抗蛋白S抗体的瞬时表达。初始时,针对每一种抗蛋白S抗体(参见表1),使用含有对鉴定的可变区序列的3’和5’区具有特异性的序列的引物,从最初的TOPO测序克隆PCR扩增将对应于该抗体的重链(VH)可变区的区域。此外,有义引物包含与人CD33信号肽序列的3’端的DNA序列互补的序列。相应地,反义引物包含与重链恒定区的5’端的DNA序列互补的序列。将生成的PCR片段使用GFXPCR纯化试剂盒(GEHealthcare)进行纯化,并克隆至含有CD33信号肽序列和小鼠IgG1恒定区序列(用于小鼠抗体表达)或人IgG4(S241P)恒定区序列(用于嵌合抗体表达)的基于pTT的载体的PCR扩增片段内。在IgG4铰链区中引入在位置241(根据Kabat编号,对应于根据EU编号系统的残基228(EdelmanG.M.等人.Proc.Natl.Acad.USA63,78-85(1969))处的脯氨酸突变,以消除单体抗体片段的形成,即由一条LC和一条HC组成的“半抗体(half-antibodies)”的形成。
通过使用对人CD33信号肽序列的3’端具有特异性的反义引物和对重链恒定区的5’端具有特异性的有义引物对载体序列进行PCR扩增来获得载体片段。将该载体片段用DpnI限制性核酸酶进行处理以去除模板DNA,并使用GFXPCR纯化试剂盒(GEHealthcare)进行纯化。按照制造商的说明书,使用HDCloning试剂盒(Clontech)将扩增的VH片段符合读框地克隆至载体中CD33信号肽与重链恒定区之间。随后将克隆反应转化到大肠杆菌中以供选择。通过DNA测序来验证最终构建体的序列。
单克隆抗体的重组表达:
根据制造商的说明书,通过基于pTT的LC/HC表达载体的共转染,在EXPI293F细胞(LifeTechnologies)中瞬时表达抗蛋白S抗体。以下程序描述了通用EXPI293F表达方案。
细胞维持:
使EXPI293F细胞在Expi293TM表达培养基(LifeTechnologies)中悬浮生长。将细胞在36.5℃、8%CO2和85-125rpm下在定轨摇床培养箱中的锥形摇瓶中培养,并维持细胞密度为0.4-4x106个细胞/ml。
DNA转染:
1)首先制备DNA和转染试剂的单独稀释液。
a)每ml细胞培养物使用总计1μg的载体DNA(0.5μgLC载体和0.5μgHC载体)。将DNA在Opti-MEM培养基(Gibco)中以50μl培养基/μgDNA稀释,混合,并在室温(23-25℃)下温育5min。
b)以2.7μl/μgDNA的浓度使用ExpifectaminTM293(LifeTechnologies)作为转染试剂。将ExpifectaminTM溶液在Opti-MEM培养基(Gibco)中稀释18.5倍,混合,并在室温(23-25℃)下温育5min。
2)混合DNA和ExpifectaminTM293稀释液,并使其在室温(23-25℃)下温育10min。
3)将DNA-ExpifectaminTM293混合物直接添加至EXPI293F细胞培养物中。
a)在转染时,EXPI293F培养物的细胞密度应为2.8-3.2x106个细胞/ml。
4)将转染的细胞培养物转移至在36.5℃、8%CO2和85-125rpm下的定轨摇床培养箱中。
5)转染后18hr,添加5ulExpifectaminTM293TransfectionEnhancer1/ml培养物和50μlExpifectaminTM293TransfectionEnhancer2/ml培养物,并将培养物返回到在36.5℃、8%CO2和85-125rpm下的定轨摇床培养箱中。
6)转染后5天,通过离心收获细胞培养上清液,然后通过0.22μmPES过滤器单元(Corning)过滤。
实施例12:通过凝血酶生成试验对血友病血浆中的中和抗蛋白S抗体的鉴定
在基于血浆的凝血酶生成试验中,抗蛋白S抗体被鉴定为在外源添加的APC的存在下能够增加凝血酶生成。室温下,在最终试验中以0nM–500nM测试纯化的测试抗体。简而言之,将在-80℃下储存的人A型血友病(HA)(FVIII缺乏的)血浆(GeorgKingMedical,#0800)在37℃的水中解冻5min,随后储存在室温下直至使用。将18μL血浆添加至384孔微量滴定板(PerkinElmer)中,随后添加2μL抗体溶液(在20nMTris,pH7.4中),并且抗原结合进行20min。随后,将5μL溶液(其中向制备的PPP-ReagentLOW试剂(Thrombinoscope,#TS31.00)中掺加(100倍稀释)APC(HaematologicTechnologiesInc,#HCAPC-0080))添加至该试验中,最终导致在最终试验中APC为2nM,组织因子为1pM,而磷脂为4μM。在没有温育的情况下,添加5μL制备的FluCa试剂(Thrombinoscope,#TS50.00),并且每30sec连续读取荧光,持续2hr。凝血酶生成曲线(thrombogram)计算为积分荧光曲线的一阶导数,并且ETP和凝血酶峰值参数根据凝血酶生成图进行计算,并在凝血酶生成的评价中使用。将某些商品化单克隆抗体(表3)与以下内部抗蛋白S抗体的亚组的性能进行比较:0322-0000-0114、0322-0000-0914、0322-0000-0910、0322-0000-0916和仅缓冲液(图4)。
表3:选择的商品化单克隆蛋白S抗体的来源
实施例13:通过自动校正凝血酶曲线法(Thrombography)测得的抗体对人、食蟹猴和兔血浆中的凝血酶生成的影响
在人A型血友病血浆中的凝血酶生成
在存在和不存在活化的蛋白C(APC)的情况下,抗体以浓度依赖性方式增加了血小板贫乏的严重A型血友病患者血浆中的凝血酶生成(图5)。通过自动校正凝血酶曲线法(CalibratedAutomatedThrombography)(Hemker等人."CalibratedAutomatedThrombinGenerationMeasurementinClottingPlasma,"PathophysiolHaemostThromb.33:4-15(2003);Hemker等人."ThrombinGenerationinPlasma:ItsAssessmentviatheEndogenousThrombinPotential,"ThrombHaemost.74:134-138(1995))来测定在血浆中生成的凝血酶的量。在96孔板中,将来自缺乏因子VIII抑制物的严重A型血友病患者的72μL因子VIII缺乏的血浆池(<1%残留活性,血小板贫乏的)(GeorgeKingBio-Medical,OverlandPark,Kans.)与8μL抗体一起在37℃下温育10分钟,随后与10μLAPC或HEPES-BSA缓冲液和20μLThrombinoscopePPP触发物(Trigger)(5pM组织因子和4μM磷脂)混合,并通过在包含0.1MCaCl2的HEPES-BSA缓冲液中与20μL荧光底物(Z-Gly-Gly-Arg-AMC)混合来立即启动反应。所有试剂均预热至37℃。以20秒的时间间隔使用FluoroskanAscent读取仪(ThermoLabsystemsOY,Helsinki,Finland)监测37℃下荧光信号的形成。用来自凝血酶校准样品的参考信号校正荧光信号(Hemker等人."CalibratedAutomatedThrombinGenerationMeasurementinClottingPlasma,"PathophysiolHaemostThromb.33:4-15(2003)),并且如先前所述(Hemker等人."ThrombinGenerationinPlasma:ItsAssessmentviatheEndogenousThrombinPotential,"ThrombHaemost.74:134-138(1995))计算实际的凝血酶生成(nM)(图5)。
在稀释的兔和食蟹猴血浆中的凝血酶生成
在血栓调节蛋白(TM)的存在下,抗体以浓度依赖性方式增加了血小板贫乏的食蟹猴血浆中的凝血酶生成(图6)。通过自动校正凝血酶曲线法(Hemker等人."CalibratedAutomatedThrombinGenerationMeasurementinClottingPlasma,"PathophysiolHaemostThromb.33:4-15(2003);Hemker等人."ThrombinGenerationinPlasma:ItsAssessmentviatheEndogenousThrombinPotential,"ThrombHaemost.74:134-138(1995))来测定在兔和食蟹猴血浆(用HEPES-BSA缓冲液1:3稀释)中生成的凝血酶的量。在96孔板中,将来自兔或食蟹猴的72μL稀释的血浆池(内部)与8μL抗体一起在37℃下温育10分钟,随后与10μL血栓调节蛋白(在血浆中的最终浓度为50nM)(HaematologicTechnologies,Inc,VT,USA,HTI兔血栓调节蛋白RABT-4202)或HEPES-BSA缓冲液和20μLThrombinoscopePPP触发物(5pM组织因子和4μM磷脂)混合,并通过在包含0.1MCaCl2的HEPES-BSA缓冲液中与20μL荧光底物(Z-Gly-Gly-Arg-AMC)混合来立即启动反应。所有试剂均预热至37℃。以20秒的时间间隔使用FluoroskanAscent读取仪(ThermoLabsystemsOY,Helsinki,Finland)监测37℃下荧光信号的形成。用来自凝血酶校准样品的参考信号校正荧光信号(Hemker等人."CalibratedAutomatedThrombinGenerationMeasurementinClottingPlasma,"PathophysiolHaemostThromb.33:4-15(2003)),并且如先前所述(Hemker等人."ThrombinGenerationinPlasma:ItsAssessmentviatheEndogenousThrombinPotential,"ThrombHaemost.74:134-138(1995))计算实际的凝血酶生成(nM)(图6)。
实施例14:通过HX-MS对抗蛋白S(EGF1-4)单克隆抗体的表位作图HX-MS简介
HX-MS技术利用蛋白质的氢交换(HX),然后进行质谱法(MS)。通过用含有氘的水溶剂替代含有氢的水溶剂,在蛋白质中的给定位点处掺入氘原子将会导致质量增加1Da。在交换反应的淬灭样品中,可通过质谱法来随时间监测这种质量增加。可通过在淬灭条件下的胃蛋白酶消化并根据所得肽的质量增加,将氘标记信息亚定位至蛋白质中的区域。
HX-MS的一种用途是通过鉴定在蛋白质-蛋白质复合物形成时氢交换减少的区域来探测参与分子相互作用的位点。通常,由于溶剂的空间排斥而导致的氢交换显著减少将会揭示结合界面。仅仅通过在存在和不存在各自的结合配体(bindingpartner)的情况下,随时间测量掺入任一蛋白质成员的氘的总量,可通过HX-MS检测蛋白质-蛋白质复合物的形成。HX-MS技术使用天然组分,即,蛋白质和抗体或Fab片段,并在溶液中进行。因此,HX-MS提供了模拟体内条件的可能性(关于HX-MS技术的综述,参见例如Wales和Engen,MassSpectrom.Rev.25,158(2006))。
材料
所使用的蛋白质:
人蛋白S:含有与C末端HCP4纯化标签融合的人蛋白S的全部EGF1-4结构域(SEQIDNO:2)的蛋白质分子在本研究中使用(EGF1-4)。
mAb分子:
0322-0000-0017
0322-0000-0114
0322-0000-0158
0322-0000-0203
0322-0000-1069(鼠-人IgG4嵌合体(chimer))
在实验之前,所有蛋白质均缓冲液交换为25mMMESpH6.5,5mMCaCl2,150mMNaCl。
方法:HX-MS实验
仪器和数据记录
HX实验在偶联至SynaptG2质谱仪(WatersInc.)的具有HDX技术的nanoACQUITYUPLC系统(WatersInc.)上进行。WatersHDX系统包含由LeapShell软件(LeapTechnologiesInc/WatersInc.)操纵的Leap机器人(H/D-xPAL;WatersInc.),其执行氘交换反应的启动、反应时间控制、淬灭反应、向UPLC系统上的注入和消化时间控制。Leap机器人装备有两个温度控制堆栈(stack),它们分别维持在20℃以用于缓冲液储存和HX反应,维持在2℃以用于蛋白质和淬灭溶液的储存。WatersHDX系统还包含温度控制室,其将前置柱和分析柱以及LC管和开关阀保持在0.5℃。一个单独的温度控制室将胃蛋白酶柱保持在25℃。对于内联(inline)胃蛋白酶消化,将含有200pmolEGF1-4的100μL淬灭的样品在2℃下温育60sec,随后使用100μL/min的等度流速(0.1%甲酸:CH3CN95:5)将其注入并通过置于25℃的固定化的胃蛋白酶柱(2.1×30mm(AppliedBiosystems))。所得肽在VanGuard前置柱BEHC181.7μm(2.1×5mm(WatersInc.))上捕获并脱盐。随后,将阀切换至使前置柱与分析柱UPLC-BEHC181.7μm(1×100mm(WatersInc.))内联放置,并使用以40μl/min递送的10-50%B的9min梯度从nanoAQUITYUPLC系统(WatersInc.)上分离所述肽。流动相由A:0.1%甲酸和B:在CH3CN中的0.1%甲酸组成。使用具有离子迁移性的SynaptG2质谱仪(WatersInc.)在正离子模式下获得ESIMS数据和单独的升高能量(MSE)实验。亮氨酸-脑啡肽用作锁定质量(lockmass)(m/z556.2771处的[M+H]+离子),并且以连续模式收集数据(关于进一步的描述,参见Andersen和Faber,Int.J.MassSpec.,302,139–148(2011))。
数据分析
胃酶解肽(pepticpeptides)在单独的实验中使用标准MSE方法鉴定,在该方法中,使用SynaptG2(WatersInc.)的离子迁移特性进一步比对所述肽和片段。MSE数据使用ProteinLynxGlobalServer版本2.5(WatersInc.)进行处理,并且在肽检索中包括Asn或Asp的任选羟基化,因为EGF结构域包含该翻译后修饰。HX-MS原始数据文件在DynamX2.0软件(WatersInc.)中进行处理。DynamX自动地进行锁定质量-校正和氘掺入测定,即,氘化肽的重心测定。此外,手动检查所有的肽,以确保通过该软件赋予了正确的峰和氘化。
表位作图实验
通过在存在或不存在mAb0322-0000-0017、0322-0000-0114、0322-0000-0158、0322-0000-0203或0322-0000-1069的情况下,将EGF1-410倍稀释至对应的氘化缓冲液(即,由浓缩的原液在D2O中制得的25mMMES,5mMCaCl2,150mMNaCl,最终为94%D2O,pH6.5(未校正的值))中启动酰胺氢/氘交换(HX)。所有HX反应均在20℃下进行,并且在存在或不存在2.4μMmAb的情况下含有4μMEGF1-4,从而得到1.2倍摩尔过量的mAb结合区。以0.25、0.5、1、3、10和30分钟的时间间隔,用50μl冰冷的淬灭缓冲液(1.35MTCEP,2M尿素)淬灭HX反应的50μl等份,导致最终pH为2.5(未校正的值)。
结果与讨论
人蛋白S蛋白质
含有人蛋白S结构域的EGF1-4的蛋白质分子用于本研究。EGF结构域包含参与Ca2+结合的Asn或Asp残基的羟基化(Stenberg等人J.Biol.Chem.(1997)272:23255-23260)。未修饰的序列和羟基化的序列均在MS-MS实验中检测到,并且这些胃酶解肽的这两种形式均包括在数据分析中(参见表4)。本实施例和表4中的所有编号均参见SEQIDNO:2。
HX-MS分析
在存在或不存在mAb0322-0000-0017、0322-0000-0114、0322-0000-0158、0322-0000-0203或0322-0000-1069的情况下监测42种胃酶解肽的HX时程,这42种胃酶解肽覆盖95%的EGF1-4的一级结构。在存在或不存在mAb0322-0000-0017、0322-0000-0114、0322-0000-0158、0322-0000-0203或0322-0000-1069的情况下在早期时间点(<10min)观测到的交换模式可被分为两个不同的组:一组EGF1-4胃酶解肽显示出不受mAb结合的影响的交换模式。相反,另一组EGF1-4中的肽显示出受到保护而在mAb结合时不会发生交换(参见表4)。在重叠胃酶解肽的情况下,假设肽N末端与第一肽键完全交换回去,试图将交换保护信息亚定位至所述肽内的特定区段。肽中的交换保护表明该区域参与mAb结合。因此,该表位部分地或完全位于由特定肽限定的区域内。然而,由于HX-MS的分辨率是基于氘化蛋白质的胃蛋白酶消化,因此给定区域内的交换保护并不意味着由胃酶解肽限定的区域内的每一个残基都必然参与mAb结合。
mAb0322-0000-0017、0322-0000-0203和0322-0000-1069的表位作图
mAb0322-0000-0017、mAb0322-0000-0203和mAb0322-0000-1069的HX模式是类似的,因此在此合并描述。在EGF1结构域中直到残基Phe43观测到针对mAb0322-0000-0017、-0203和-1069的表位信号(参见表4)。交换保护变得越强,肽从起始点(残基1或4)延伸得越长,从而表明交换保护在这些肽的更为C末端的区域中。相反,肽1-15、4-15和4-19不显示交换保护。
因此,针对0322-0000-0017、0322-0000-0203和0322-0000-1069的表位产生于EGF1结构域内的SCKDGKASFTCTCKPGWQGEKCEF序列,即,SEQIDNO:2的残基20-43。
mAb0322-0000-0114和0322-0000-0158的表位作图
mAb0322-0000-0114和mAb0322-0000-0158的HX模式是类似的,因此在此合并描述。在肽的EGF2结构域中从残基Val78开始观测到针对mAb0322-0000-0114和-0158的表位信号(参见表4)。交换保护持续到EGF3结构域中,并且在肽中直到残基Phe111。然而,由于在肽中从残基103及更远处开始没有观测到交换保护(参见表4),因此残基105和更远的残基可被排除在表位区之外。因此,针对0322-0000-0114和0322-0000-0158两者的表位产生于EGF2-3结构域内的VMLSNKKDCKDVDECSLKPSICGTAVCK序列,即,SEQIDNO:2的残基78-105。
表4:人蛋白SEGF1-4的HX-MS分析
人蛋白SEGF1-4的HX-MS分析产生了关于抗体分子0322-0000-0017、0322-0000-0114、0322-0000-0158、0322-0000-0203和0322-0000-1069的表位信息。氘交换反应之后,用胃蛋白酶消化EGF1-4,产生了经分析的以下胃酶解肽区域。该表中EGF1-4残基的编号基于SEQIDNO:2,然而,C末端HCP4标签A174-K188不是天然人蛋白S序列的一部分。
EX:抗体结合时的交换保护指示表位区(在至少三个时间点>0.3Da)。
N:抗体结合时没有交换保护(<0.3Da)。
na:在各自的实验中不可分析。
实施例15:通过抗蛋白S(EGF1-4)单克隆抗体的HX-MS进行的残基特异性表位作图
该实施例进一步描述了在蛋白SEGF1-4结构域(SEQIDNO:2)上定位的抗体NNC0322-0000-1069的表位。这是实施例14中所述的表位作图实验的延伸。这里所述的实验基于与实施例14中的实验相同的氢-氘交换的原理,但进一步利用了肽的片段化以使得能够残基特异性确定氘掺入。
使用与氢-氘交换的肽的电子转移解离(ETD)片段化相结合的氢-氘交换(HX)质谱法(MS)进行了分辨率低至单个残基水平的表位作图。
ETD引起肽的快速片段化,同时保留了骨架酰胺氮上氢-氘交换的质子的位置。这样有可能以低至蛋白质骨架中单个残基的水平定位氘掺入。
ETD引起的片段化在酰胺氮与C-α碳之间断裂肽的骨架。含有肽的N末端部分的片段表示为C片段,而含有肽的C末端部分的片段表示为Z片段。C1片段将由肽的第一(N末端)残基以及肽的第二残基的骨架酰胺组成。同样地,Z1片段由除了骨架酰胺基团之外的肽的最后的(C末端)残基组成。C片段和相应的可由其确定骨架酰胺HX的残基列于表5中,而Z片段和相应的可由其确定骨架酰胺HX的残基列于以下结果部分的表6中。
实验
蛋白SEGF1-4的溶液单独地或在一种抗体——0322-0000-1069抗体的存在下在氘化的MES缓冲液(25mMMES,150mM氯化钠,5mM氯化钙,pH6.5)中稀释25倍。未氘化的对照通过稀释至氕化的MES缓冲液中来制备。氢交换实验在具备HDX技术的nanoAcquityUPLC系统(WatersCorporation,Milford,MA,USA)上进行,该系统包括用于自动化样品制备的HD-xPAL自动进样器(LEAPTechnologiesInc.,Carrboro,NC,USA),和超高效液相色谱(UPLC)系统。UPLC管、前置柱和分析柱和开关阀位于冷却至0.3℃的区室中。胰蛋白酶消化柱在25℃下储存。氢交换反应在20℃下进行。使用WatersSYNAPTG2HDMS质谱仪在线进行质量分析。
将含有300pmol蛋白SEGF1-4的体积在具有或没有330pmol抗体的情况下稀释至氘化的MES缓冲液中。以15秒、分钟、4分钟和16分钟的时间间隔,将50μl样品在调节至pH2.7的50μl1.35mM三(2-羧乙基)膦中淬灭并保持在3℃。淬灭的样品在3℃下温育60秒,随后立即注入99μl淬灭的溶液并通过Porozyme固定化的胃蛋白酶柱(2.1mmx30mm)(AppliedBiosystems,LifeTechnologiesCorporation,Carlsbad,CA,USA),并使用5%甲醇、0.1%甲酸流动相和100μl/min流速在WatersVanGuardBEHC181.7μm(2.1mm×5mm)柱上捕获。使用含有0.1%甲酸的15min10–40%乙腈梯度以40μl/min流速在WatersUPLCBEHC181.7μm(1.0mmx100mm)柱上分离所述肽。向流动相添加用于增压的0.1%3-硝基苯甲醇以增强ETD片段化。
质谱仪以正离子模式运行,使得能够进行ETD片段化。所使用的仪器参数为3.0kV毛细管、18V样品锥和4V提取锥偏移、100ml/min的去溶剂化气体流和25ml/min的锥气流。将来源块(sourceblock)加热至90℃,而去溶剂化气体加热至350℃。捕获和转移区用14ml/min缓冲气流冲洗,以捕获离子。为了有效的ETD片段化,将捕获波高度降至0.5V。使用1,4-二氰基苯作为ETD试剂,并且使用25ml/min补充气流和71V放电电流产生离子。基于实施例14所述的表位作图的结果,选择肽D16-F28和T29-F43用于残基特异性表位作图,因为这些肽覆盖蛋白SEGF1-4上的NNC0322-0000-1069的表位,是丰富的且导致高
使用MicrosoftExcel的内部宏(in-housemacro)手动分析这些数据,其通过对强度加权的m/z值取平均值来确定指定间隔的平均质量。通过由不存在抗体时测得的片段的平均质量减去存在mAb0322-0000-1069时测得的片段的平均质量来计算交换保护。保护的程度被测定为包含在实验中的四个温育时间的平均值。对每一个样品进行2次重复测量,并对结果取平均值。
结果
来自肽D16-F28的结果是不确定的。针对抗体0322-0000-1069与蛋白SEGF1-4结构域结合时氢-氘交换的保护分别示于表5(C离子片段系列)和表6(Z离子片段系列)中。
表5:肽T29-F43ETDC离子片段和位点特异性氢交换保护
片段C1-C5的氘掺入无法测定。对于C6片段观测到0.04Da的交换保护。不认为这是显著性差异,因为它小于0.09Da。对于片段C7观察到交换保护的显著增加,这表明残基W36参与抗体结合。对于片段C8和C9没有观察到交换保护的显著增加。片段C10的氘掺入无法测定。对于片段C11观察到氢交换保护的显著增加,这表明残基E39和K40中的至少一个参与抗体结合。氢交换保护的较大增加(0.39Da)可支持这两个残基都对抗体结合有贡献。片段C12的氘掺入无法测定。对于片段C13观察到交换保护的显著增加,这表明残基C41和E42中的一个或两个对抗体结合有贡献。
表6:肽T29-F43ETDZ离子片段和位点特异性氢交换保护
片段Z1-Z3的氘掺入无法测定。对于片段Z4观察到显著的氢交换保护,这表明残基C41、E42和F43中的一个或多个对抗体结合有贡献。对于Z5片段观察到氢交换保护的显著增加,这表明残基K40对抗体结合有贡献。片段Z6的氘掺入无法测定。对于Z7片段观察到氢交换保护的增加,这表明残基G38和E39中的一个或两个对抗体结合有贡献。对于Z8片段没有观察到氢交换保护的显著增加。Z9片段的氘掺入无法测定。对于Z10片段观察到氢交换保护的显著增加,这表明残基G35和W36中的一个或两个对抗体结合有贡献。对于片段Z11、Z12或Z13没有观察到氢交换保护的显著增加。片段Z14的氘掺入无法测定。
C离子片段系列揭示,当结合抗体NNC0322-0000-1069时,对于残基W36、残基E39和K40中的一个或两个、残基C41和E42中的一个或两个观察到氢氘交换保护。此外,Z离子片段系列揭示,残基G35和W36中的一个或两个、残基G38和E39中的一个或两个、残基K40以及残基C41、E42和F43中的一个或多个受到保护而免于抗体结合时的氢氘交换。
因此,结合从C离子和Z离子片段系列获得的信息,将受到保护而免于抗体结合时的氢-氘交换的残基限定于残基W36、E39、K40,以及残基C41、E42和F43中的一个或多个。
因此,在抗体NNC0322-0000-1069与蛋白S(EGF1-4)结合时受到保护而免于氢-氘交换的残基包括残基W36、E39、K40,以及残基C41、E42和F43中的一个或多个。
实施例16:蛋白S/抗蛋白S抗体复合物与脂质表面的相互作用
使用Biacore3000仪器,通过表面等离子体共振来评估人蛋白S/抗蛋白S复合物与含磷脂酰丝氨酸的脂质囊泡的结合。如Hodnik等人MethodsMolBiol.(2010)627:201-11所述,在L1传感器芯片(GEhealthcare目录号BR-1005-58)上捕获脂质囊泡。
将含磷脂酰丝氨酸的脂质囊泡(AvantiPolarLipids,Inc.;目录号211635)固定在有效(active)流动池上,并且将磷酸胆碱囊泡(AvantiPolarLipids,Inc.;目录号211621)固定在参照流动池上。
人蛋白S(HaematologicTechnologiesInc.;目录号HCPS-0090)(100nM)在脂质表面上捕获(约200RU),并监测单克隆抗体(250nM)的结合。通过含EDTA的再生缓冲液从传感器表面上去除结合的蛋白质。
图7显示了单克隆抗体0322-0000-0114(实线)和0322-0000-0203(虚线)与在含磷脂酰丝氨酸的脂质囊泡上捕获的蛋白S的结合的表面等离子体共振(SPR)传感图(sensorgrams)。所述抗体能够与在脂质表面上结合的蛋白S结合。
在类似的实验中,将蛋白S的系列稀释液(100nM和2倍稀释系列)与饱和浓度的单克隆抗体(500nM)一起温育,之后经芯片表面注入。从结合传感图得出蛋白S/抗蛋白S复合物与脂质表面结合的估算亲和力,并且与游离蛋白S进行比较。亲和力如下:游离蛋白S:2.5nM,蛋白S/0114:4.0nM,蛋白S/0203:4.0nM。
图8显示了游离蛋白S(100nM)或与指定单克隆抗体(500nM)一起温育的蛋白S(100nM)与含磷脂酰丝氨酸的脂质囊泡的结合的SPR传感图。抗体2F140作为对照包括在内,它是一种结合蛋白S的Gla结构域的抗体。正如预期的,2F140阻止蛋白S与脂质表面的结合。
可得出以下结论,在0322-0000-0114和-0203的存在下,蛋白S与脂质表面的结合亲和力得以保留,因此所述单克隆抗体不阻止蛋白S与脂质表面的结合。
实施例17:抗蛋白SmAb0914的体内效果
如Hilden等人Blood(2012)Jun14;119(24):5871-8所述,在诱发性A型血友病的兔模型中考察了抗蛋白S抗体对角质层出血的体内效果。简而言之,通过静脉内施用对兔FVIII具有交叉反应性的单克隆抗人FVIII抗体(2000个兔Bethesda单位/kg),使麻醉的兔暂时患血友病。施用抗FVIII后八分钟,使用1.18ml/kg的给药量给两组各10只兔子施用9mg/kg的抗蛋白S抗体0322-0000-0914(mAb0914)或同种型对照抗体。再过12分钟后,通过切割第三趾的指甲的尖端(包括角质层的顶端)引起出血,之后将血液收集在37℃生理盐水中达60分钟。出血通过测量流进生理盐水的血红蛋白来定量。
如通过双尾T检验结合针对不同方差的Welch校正所确定的,抗蛋白S抗体引起平均失血量的统计学显著性(p=0.013)减少,从减少14,563nmol血红蛋白(95%CI:5,845-23,281nmol)至减少2,712nmol(95%CI:1,060-4,363nmol),参见以下表7和图11。
表7:暂时诱发A型血友病并用抗蛋白SmAb0914或同种型对照处理的兔子的平均失血量
实施例18:蛋白S/蛋白S-mAb复合物与C4b结合蛋白质的相互作用
使用BiacoreT200仪器,通过表面等离子体共振来评估游离人蛋白S(来自EnzymeResearchLaboratories,目录号HPS)和与mAb0322-0000-1069或相应Fab片段(0322-0000-1139)复合的蛋白S同C4b结合蛋白(C4BP;来自HyphenBioMed,目录号PP015A)的结合。
简而言之,通过标准胺偶合化学法将针对α链的多克隆抗C4BP抗体(来自abcam的ab83755)固定在CM5Biacore传感器芯片上。捕获C4BP后,注入游离蛋白S或与摩尔过量的mAb/Fab一起温育的蛋白S的系列稀释液。该实验在补充有0.005%吐温20的10mMHepes,pH7.4;150mMNaCl;10MCaCl2中进行,并且芯片用甘氨酸-HClpH1.7再生。对于游离蛋白S与C4BP的结合估计的亲和力被确定为2nM。作为对照,研究了与LamG特异性抗体0322-0000-0023复合的蛋白S的结合。C4BP和蛋白S的结合通过蛋白S的LamG结构域介导(HeX.等人Biochemistry,1997;36(12):3745-54),并且正如预期的,0322-0000-0023完全阻断了蛋白S与C4BP之间的相互作用。
mAb和Fab均不会阻止蛋白S与C4BP的结合。为了进一步支持mAb和Fab不干扰蛋白S与C4BP结合的结论,测定了0322-0000-1139对在C4BP上固定的蛋白S的亲和力。0322-0000-1139与固定在C4BP上的蛋白S结合,其亲和力类似于蛋白S与全长抗体0322-0000-1069结合的亲和力(KD分别为10和20nM)。
实施例19:在A型血友病样血液中血栓弹力描计术(thrombelastography)的刺激
使用止血分析仪(美国专利号5,223,227和Luddington,RJ,"Thrombelastography/thromboelastometry"ClinLabHaematol.27:81-90(2005)),经由血栓弹力描计术测量在血栓形成过程中血液的弹性性质。随着血液在类似于缓慢的静脉血流的低剪切环境下被诱导凝结,止血分析仪监测血液的弹性性质。形成凝块的剪切弹性的变化模式使得能够确定凝块形成的动力学,以及形成的凝块的强度和稳定性;总之,形成凝块的力学性能。在中,总体积为340μL的预热(37℃)的人全血与化合物、中和多克隆抗FVIII抗体、活化的蛋白C(APC)或血栓调节蛋白(TM)和组织因子(TF)的组合一起温育。该血液用20μL氯化钙(0.2M)重新钙化,以启动TEG分析。
R值为凝血时间,其被定义为从启动到振幅达到2mm时的时间。血栓生成的最大速率(MTG;mmx100/s)被定义为振幅对时间的一阶导数的全局最大值。
结果
表8至表11提供了在正常的和A型血友病样人血液(即,在不存在或存在0.1mg/mL中和抗FVIII多克隆抗体的情况下)中测得的血栓弹力描计术参数R值和MTG。表8和表9显示了在存在1nMAPC和浓度渐增的抗体0322-0000-0114、0322-0000-0910和0322-0000-0914(0nM至1633nM)时的这些值(表8显示R值,而表9显示MTG)。
表10和表11显示了在存在5nMTM和浓度渐增的相同抗体时的这些值(表10显示R值,而表11显示MTG)。在来自两个不同供体的血液中对每一种抗体进行测试。使用40,000倍稀释的TF(Innovin,约6nM储存液,150fM最终浓度)启动血栓弹力描计术。所有三种蛋白S抗体均浓度依赖性地减小R值并增加MTG。
表8:使用0nM至1633nM的蛋白S抗体和1nMAPC,在正常的或A型血友病样全血中的R值
表9:使用0nM至1633nM的蛋白S抗体和1nMAPC,在正常的或A型血友病样全血中的MTG
表10:使用0nM至1633nM的蛋白S抗体和5nMTM,在正常的或A型血友病样全血中的R值
表11:使用0nM至1633nM的蛋白S抗体和5nMTM,在正常的或A型血友病样全血中的MTG
实施例20:针对蛋白S对TFPI抑制FXa的辅因子功能,0322-0000-1069/1139对其的影响的评估
已经报道,蛋白S通过加强TFPI对FXa活性的抑制而作为TFPI的辅因子起作用(HackengT.M.等人PNAS(2006)103(9):3106-11)。为了研究mAb0322-0000-1069和相应的Fab片段0322-0000-1139对蛋白S的辅因子活性的影响,建立了FXa活性试验。简而言之,人蛋白S(50nM,来自EnzymeResearchLaboratories)与脂质囊泡(25μM;来自AvantiPolarLipids的25:75POPS:POPC)和mAb/Fab(500nM)一起在25℃下温育10分钟。添加人全长TFPI(5nM)和S-2765(200μM,来自Chromogenix),并用人FXa(0.5nM;来自Haematologictechnologies)启动反应。该实验在补充有1mg/ml牛血清白蛋白和1mg/mlPEG8000的50mMHepes,pH7.4;0.1MNaCl;10mMCaCl2中进行。通过使用SpectraMaxM2仪器测量405nm处的吸光度,随时间推移跟踪FXa特异性底物的水解。
如先前所报道的,蛋白S增强TFPI的抑制活性,并且0322-0000-1069和fab片段0322-0000-1139(数据未示出)均不影响蛋白S对TFPI的辅因子功能。然而,针对LamG结构域的抗体0322-0000-0032完全消除了蛋白S的影响(图12)。
实施例21:游离蛋白S和与0322-0000-1069/0322-0000-1139复合的蛋白S与TFPI的相互作用的评估
使用BiacoreT200仪器,通过表面等离子体共振来研究游离人蛋白S(来自EnzymeResearchLaboratories)和与mAb0322-0000-1069或相应Fab片段0322-0000-1139复合的蛋白S与全长人TFPI的结合。
简而言之,通过标准胺偶合化学法将TFPI固定在CM5biacore传感器芯片上。评估游离蛋白S(200nM)或与0322-0000-1069(200nM)或0322-0000-1139(400nM)复合的蛋白S(200nM)的结合。作为对照,包括针对蛋白S的LamG结构域的0322-0000-0023。该实验在补充有0.005%吐温20的10mMHepes,pH7.4;150mMNaCl;10MCaCl2中进行,并且芯片用甘氨酸-HClpH2.5再生。0322-0000-1069或0322-0000-1139不阻止蛋白S与TFPI的结合,而0322-0000-0023完全抑制蛋白S与TFPI的结合(图13)。
这些观察结果与这些抗体的已知表位有良好的一致性。0322-0000-1069/0322-0000-1139结合蛋白S的EGF-1结构域,该结构域的位置远离已知会介导与TFPI的结合的LamG结构域(Reglilska-MatveyevN.等人Blood(2014)123(25):3979-3987)。0322-0000-0023针对LamG结构域,因此最有可能与TFPI有重叠的表位。
实施例22:抗蛋白SmAb0322-0000-0914的人源化
使用MOE中的标准技术(可从www.chemcomp.com获得)建立代表鼠抗蛋白S抗体0322-0000-0914的Fab片段的3D模型(VH/VL还在嵌合的mAb0322-0000-1069中表示),并且将的有效CDR区(VH:31-35B、50-59、95-102;VL:24-34、50-56、89-97)内的所有残基定义为掩蔽残基(Maskresidues)(根据Kabat编号)。所有掩蔽残基对于维持CDR中的结合都是潜在重要的。有效CDR区基于在公共领域中可得的抗原-抗体3D结构中观测到的大多数相互作用模式来定义。
0322-0000-0914的掩蔽残基包括位置:
重链的1-4、23-37、47、50-59、69-71、73、76、78、91-103和
轻链的1-5、22-36、46-60、62、63、65、69-71、87-98(根据Kabat编号)。
使用种系同源性检索(种系序列可在http://www.imgt.org中找到)和序列合格性的手动评估,IGHV1-46*03和J6*02被确定为用于重链的合适的人种系组合,而IGKV3-11*01和JK4*02被确定为用于轻链的合适的人种系组合,尽管其它种系可能也适合作为人源化骨架。
·随后根据以下方案进行人源化,并概括在图14(轻链)和图15(重链)中:
·掩蔽残基外部的残基被看作是人的。
·掩蔽残基内部和KabatCDR内部的残基被看作是鼠的。
·具有小鼠/人种系一致性的掩蔽残基内部和KabatCDR外部的残基被看作共有序列。
·具有小鼠/人种系差异的掩蔽残基内部和KabatCDR外部的残基被看作:
-人的,即不经历回复突变,或
-鼠的,即经历潜在的回复突变
以下列出了由所述人源化方案产生的人源化轻链和重链可变区,同时列出及不列出潜在回复突变。还列出了CDR区和单独的回复突变。
按照上述的人源化方案,初始人源化0322-0000-0914VH构建体携带根据最小CDR移植策略(graftingstrategy)设计的VHCDR2,其中VHCDR2以短于Kabat定义(残基50-65)的“有效CDR”版本(残基50-59)进行移植。这导致在对应于残基60-65(根据Kabat编号)的重链CDR2的远端部分中引入人种系序列。还生成了人源化0322-0000-0914VH构建体的备选版本,它根据该人源化方案设计,但在重链中携带完全为鼠的CDR2(VHCDR2*)(参见以下CDR序列)。
人源化VL区
HZ0914_VL(SEQIDNO:49)
EIVLTQSPATLSLSPGERATLSCRASSSVSYMYWYQQKPGQAPRLLIYATSNLASGIPA
RFSGSGSGTDFTLTISSLEPEDFAVYYCQQWSSIPPTFGGGTKVEIK
人源化VL区的CDR区
CDR1:RASSSVSYMY(SEQIDNO:49的残基24-33)
CDR2:ATSNLAS(SEQIDNO:49的残基49-55)
CDR3:QQWSSIPPT(SEQIDNO:49的残基88-96)
如在以上序列中以灰色突出显示的,在人源化VL区(根据Kabat编号)中的潜在回复突变的列表。
HZ0914_VLE1Q
HZ0914_VLT5S
HZ0914_VLS22T
HZ0914_VLL46P
HZ0914_VLL47W
HZ0914_VLI58V
HZ0914_VLD70S
HZ0914_VLF71Y
人源化VH区
HZ0914_VH(SEQIDNO:50)
QVQLVQSGAEVKKPGASVKVSCKASGYTFTSYWINWVRQAPGQGLEWMGRIDPYDSETH
YAQKFQGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARWGGSGYAMDYWGQGTTVTVS
S
人源化VH区的CDR区
CDR1:SYWIN(SEQIDNO:50的残基31-35)
CDR2:RIDPYDSETHYAQKFQG(SEQIDNO:50的残基50-66)
CDR3:WGGSGYAMDY(SEQIDNO:50的残基99-108)
CDR2*:RIDPYDSETHYNQKFKD(SEQIDNO:41的残基50-66)
如在以上序列中以灰色突出显示的,在人源化VH区(根据Kabat编号)中的潜在回复突变的列表。
HZ0914_VHA60N
HZ0914_VHM69L
HZ0914_VHR71V
HZ0914_VHT73K
HZ0914_VHV78A
实施例23:用于瞬时表达人源化抗蛋白S抗体变体的表达载体的生成
代表人源化0322-0000-0914VH和VL区的编码区的DNA片段根据上述人源化方案合成(GENEARTAG/LifeTechnologies)。
获得了人源化VL区的序列,其具有/没有8个潜在回复突变。还合成了在VL区中携带单独的8个回复突变的一组8个变体。使用突变引物和来自Agilent的LightningSite-Directed或LightningMultiSite-DirectedMutagenesis试剂盒,通过定点突变生成携带2、3、4、5、6和7个经鉴定的潜在VL回复突变的组合的大量变体。试剂盒根据制造商的方案使用。通过使用设计为向携带单回复突变的变体中添加回复突变的突变引物或设计为从携带全部8个回复突变的变体中去除回复突变的突变引物来生成组合突变。
获得了人源化VH区的序列,其具有/没有5个潜在回复突变。还合成了一系列在VH区中携带单独5个回复突变的5个变体和25个变体的组合文库,该25个变体携带2、3和4个经鉴定的潜在VH回复突变的组合。此外,还合成了携带完全为鼠的VHCDR2(以上列为CDR2*)而没有额外的回复突变的人源化VH构建体。
对于VL和VH构建体,两者均包括人CD33的前导肽序列代替天然免疫球蛋白信号肽序列,并且在ATG起始密码子的上游紧接着引入Kozak序列(5’-GCCGCCACC-3’)。
生成基于pTT的表达载体以用于将人源化抗蛋白S抗体瞬时表达为人κ/IgG4(S241P)同种型。在IgG4铰链区中包括在位置241(根据Kabat编号,对应于根据EU编号系统的残基228(EdelmanG.M.等人Proc.Natl.Acad.USA63,78-85(1969))处的脯氨酸突变,以消除单体抗体片段的形成,即包含一条LC和一条HC的“半抗体”的形成。
使用标准的基于限制酶切的克隆(HindIII/NheI限制酶消化),将VH片段从GENEART克隆载体中切下,并符合读框地克隆至线性化的含有人IgG4(S241P)CH结构域序列的基于pTT的载体(HindIII/NheI限制酶消化)中。使用标准的基于限制酶切的克隆(HindIII/BsiWI限制酶消化),将VL片段从GENEART克隆载体中切下,并符合读框地克隆至线性化的含有人κCL结构域序列的基于pTT的载体(HindIII/BsiWI限制酶消化)中。随后将组装的载体转化到大肠杆菌中以供选择。通过DNA测序来验证最终构建体的序列。如上所述,使用突变引物和来自Agilent的LightningSite-Directed或LightningMultiSite-DirectedMutagenesis试剂盒,通过定点突变生成携带VL回复突变的组合的变体。
通过如实施例11中所述共转染不同的基于pTT的LC/HC表达载体,在EXPI293F细胞(LifeTechnologies)中瞬时表达人源化变体。
人源化过程作为迭代的(iterative)蛋白质工程过程进行。变体生成、产生和测试的迭代步骤概括如下:
步骤1:CDR移植的人源化变体(0322-0000-1152)与最初的鼠抗体(0322-0000-0914)的鼠-人嵌合版本(0322-0000-1069)进行比较。鼠-人嵌合抗体在整个人源化过程中用作参照物。携带全部5个潜在VH回复突变和全部8个潜在VL回复突变的CDR移植的变体(0322-0000-1155),还连同携带全部5个VH回复突变但在CDR移植的轻链中没有回复突变的变体(0322-0000-1154),或携带全部8个VL回复突变但在CDR移植的重链中没有回复突变的变体(0322-0000-1153)一起测试。
步骤2:携带单独8个潜在VL回复突变或5个潜在VH回复突变的变体(例如0322-0000-1166)与鼠-人嵌合mAb(0322-0000-1069)和携带全套的5个VH回复突变或8个VL回复突变的人源化变体(分别为0322-0000-1154或0322-0000-1153)进行比较。
步骤3:在多个迭代中,测试具有不同VL回复突变(例如0322-0000-1223)或VH回复突变的组合的人源化变体以及具有不同VL和VH突变的组合的人源化变体(例如0322-0000-1201),并与先前鉴定的变体和鼠-人嵌合mAb(0322-0000-1069)参照物进行比较。表12显示了优选的人源化变体。
人源化变体在结合、功能试验中进行测试,并针对生物物理学/化学性质和免疫原性进行评价。
为了避免在本发明抗体的序列中有潜在的isoAsp位点——SEQIDNO:50(即人源化重链)的D55,在一个实施方案中可用非半胱氨酸(C)的不同氨基酸残基替换该残基。
表12:选择的人源化变体
回复突变根据Kabat或根据相应的SEQIDNO编号。
实施例24:使用凝血酶生成试验对于抗蛋白S人源化变体在血友病血浆中的功效的评价
使用CalibratedAutomated(CAT)系统评价0322-0000-1069的人源化变体相比于0322-0000-1069改善血友病血浆中的凝血酶生成的能力。
简言之,将人源化变体与掺加有活化的蛋白C(APC;HaematologicTechnologies,Inc)的人A型血友病(HA)血浆(GeorgeKingBio-medicalInc)混合。血浆中抗体的浓度在3与1000nM之间变化,并且血浆中的APC浓度为5nM。接下来,一式两份将80μl的该血浆混合物与含有最终浓度分别为5pM和4μM的组织因子和磷脂的20μlPPP试剂(Thrombinoscope)一起在Immulon2HB-HighBinding96孔U形底培养板(VWR)中在37℃下温育10min。在对照孔中,将80μl血浆(不含抗体或APC)与20μl凝血酶校准物混合。通过添加含有CaCl2和荧光凝血酶底物的20μl预热(37℃)的FluCa试剂(Thrombinoscope)启动反应。每20秒监测荧光,持续60min,并使用ThrombinoscopeAnalysis版本5.0进行分析。该软件提供由积分荧光曲线的一阶导数计算的凝血酶生成图,以及与凝血酶生成图相关的参数,诸如以nM计量的凝血酶峰值。
将不含回复突变(BM)的人源化变体(0322-0000-1152)与鼠-人IgG4嵌合体0322-0000-1069进行比较(参见表13)。
表13:来自第一轮人源化的凝血酶生成结果
首先,相对于在LC中含有L46P突变的没有任何BM的变体,变体,即0322-0000-1166,能够改善凝血酶生成活性。
作为进一步人源化的一部分,引入回复突变(BM)的组合,其全部在LC中含有L46P突变。所测试的全部组合均具有改善凝血酶生成的能力,并且大多数组合生成了等于或优于0322-0000-1166的凝血酶水平。
直接使用凝血酶生成比较八个最终组合(参见表14)。这些分子中的全部8个均具有与0322-0000-1069相当的活性。
表14:来自最后一组的人源化变体在HA血浆+5nMAPC中的凝血酶生成结果
实施例25:相应的ID编号和名称
重组表达的和杂交瘤产生的抗体的ID编号和名称列于表15中。在整个文件中使用完整的ID编号(例如0322-0000-0914)以及含有ID的最后几个数字的缩写ID(例如mAb0914或mAb914)。
表15:相应的ID编号和名称的概述
*0322-0000-1069的重组表达的鼠-人嵌合Fab片段被标识为0322-0000-1139。通过使用上表中列出的ID的最后四个数字,mAb和Fab片段的标识通常缩写为mAb1069或Fab1139。
虽然本文中已说明并描述了本发明的某些特征,但本领域普通技术人员现将想到许多修改、替换、改变和等同物。因此,可以理解,所附权利要求旨在涵盖落入本发明的实质范围内的所有这些修改和改变。

Claims (25)

1.能够特异性结合于人蛋白S的EGF1-3区的抑制剂,其用于治疗人类受试者的凝血障碍。
2.根据权利要求1所述的供使用的抑制剂,其中所述抑制剂能够特异性结合于人蛋白S的EGF1区以用于治疗人类受试者的凝血障碍。
3.根据权利要求1或2所述的供使用的抑制剂,其中所述抑制剂是抗体或其抗原结合片段。
4.能够特异性结合于人蛋白S的EGF1区的抗体或其抗原结合片段,其中所述结合区包含一个或多个选自下组的氨基酸残基:
SEQIDNO:2的W36、E39、K40、C41、E42和F43。
5.根据权利要求4所述的抗体或其抗原结合片段,其中所述抗体或其抗原结合片段能够特异性结合SEQIDNO:2的氨基酸残基
W36、E39、K40,以及
氨基酸残基C41、E42和F43中的一个或多个。
6.能够特异性结合于人蛋白S的EGF1区的抗体或其抗原结合片段,其中
所述抗体或抗原结合片段的轻链包含:
包含SEQIDNO:49的氨基酸残基88-96(QQWSSIPPT)的CDR3序列,其中所述残基中的一个或两个可被不同的残基替换,且
所述抗体或抗原结合片段的重链包含:
包含SEQIDNO:50的氨基酸残基99-108(WGGSGYAMDY)的CDR3序列,其中所述残基中的一个或两个可被不同的残基替换。
7.根据权利要求6所述的抗体或其抗原结合片段,其中
所述抗体或抗原结合片段的轻链包含:
包含SEQIDNO:49的氨基酸残基24-33(RASSSVSYMY)的CDR1序列,其中所述残基中的一个或两个可被不同的残基替换,和/或
包含SEQIDNO:49的氨基酸残基49-55(ATSNLAS)的CDR2序列,其中所述残基中的一个或两个可被不同的残基替换,和/或
包含SEQIDNO:49的氨基酸残基88-96(QQWSSIPPT)的CDR3序列,其中所述残基中的一个或两个可被不同的残基替换;
并且所述抗体或抗原结合片段的重链包含:
包含SEQIDNO:50的氨基酸残基31-35(SYWIN)的CDR1序列,其中所述残基中的一个或两个可被不同的残基替换,和/或
包含SEQIDNO:50的氨基酸残基50-66(RIDPYDSETHYAQKFQG)的CDR2序列,其中所述残基中的一个或两个可被不同的残基替换,和/或
包含SEQIDNO:50的氨基酸残基99-108(WGGSGYAMDY)的CDR3序列,其中所述残基中的一个或两个可被不同的残基替换。
8.根据权利要求6或7所述的抗体或其抗原结合片段,其中
所述抗体或抗原结合片段的轻链可变区(VL)包含SEQIDNO:49,其中氨基酸残基L45被P替换,且任选地
L46被W替换,
并且
所述抗体或抗原结合片段的重链可变区(VH)包含SEQIDNO:50,任选地进一步包含一个或多个选自M70L、R72V、T74K和V79A的替换。
9.根据权利要求6、7或8所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51或53,且所述抗体的重链可变区(VH)包含SEQIDNO:50、52、54或55。
10.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:50。
11.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:52。
12.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:54。
13.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:51,且所述抗体的重链可变区(VH)包含SEQIDNO:55。
14.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:50。
15.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:52。
16.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:54。
17.根据权利要求9所述的抗体或其抗原结合片段,其中所述抗体的轻链可变区(VL)包含SEQIDNO:53,且所述抗体的重链可变区(VH)包含SEQIDNO:55。
18.根据权利要求7至17所述的抗体或其抗原结合片段,其中SEQIDNO:50的重链可变区(VH)CDR2氨基酸残基D55任选地可被不是C的不同氨基酸残基替换。
19.根据权利要求3至18中任一项所述的抗体,其中所述抗体是单克隆抗体。
20.多核苷酸,其编码根据权利要求1至19中任一项所述的抑制剂、抗体或其抗原结合片段。
21.药物组合物,其包含根据权利要求4至19中任一项所述的抑制剂、抗体或其抗原结合片段或多核苷酸,以及药学上可接受的载体或稀释剂。
22.根据权利要求4至19中任一项所述的抗体或其抗原结合片段,其用于治疗人类受试者的凝血障碍。
23.根据权利要求22所述的抗体或其抗原结合片段,其用于治疗人类受试者的血友病。
24.真核细胞,其表达根据权利要求4至19中任一项所述的抑制剂、抗体或其抗原结合片段。
25.抗体或其抗原结合片段,其与参考抗体竞争结合人蛋白S,其中所述参考抗体包含
根据权利要求8或18中任一项所述的重链可变区和轻链可变区。
CN201480060652.2A 2013-11-07 2014-11-07 用于治疗凝血障碍的新方法和抗体 Withdrawn CN105705517A (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP13191940.9 2013-11-07
EP13191940 2013-11-07
US201361901496P 2013-11-08 2013-11-08
US61/901496 2013-11-08
EP14175858 2014-07-04
EP14175858.1 2014-07-04
PCT/EP2014/074043 WO2015067755A2 (en) 2013-11-07 2014-11-07 Novel methods and antibodies for treating coagulapathy

Publications (1)

Publication Number Publication Date
CN105705517A true CN105705517A (zh) 2016-06-22

Family

ID=53042267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480060652.2A Withdrawn CN105705517A (zh) 2013-11-07 2014-11-07 用于治疗凝血障碍的新方法和抗体

Country Status (5)

Country Link
US (1) US20160297892A1 (zh)
EP (1) EP3066132A2 (zh)
CN (1) CN105705517A (zh)
TW (1) TW201605904A (zh)
WO (1) WO2015067755A2 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248964A (zh) * 2017-02-01 2019-09-17 诺和诺德股份有限公司 促凝血抗体
CN112513096A (zh) * 2018-08-01 2021-03-16 诺和诺德股份有限公司 改进的促凝血抗体
CN116731165A (zh) * 2023-03-23 2023-09-12 北京巴瑞医疗器械有限公司 一种抗血清素抗体及其应用
CN117192132A (zh) * 2023-11-03 2023-12-08 庄亚(北京)生物科技有限公司 一种vWF片段残留检测试剂盒及方法
CN117683127A (zh) * 2023-12-05 2024-03-12 华中农业大学 猪流行性腹泻病毒抗体捕获elisa检测试剂盒
CN117903305A (zh) * 2023-12-05 2024-04-19 南京欧凯生物科技有限公司 针对雌二醇的单克隆抗体、基于其的检测试剂及其应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102709811B1 (ko) * 2014-08-20 2024-09-24 스티흐팅 산퀸 불드포르지닝 인자 h 강화 항체 및 그의 용도
WO2018156180A1 (en) 2017-02-24 2018-08-30 Kindred Biosciences, Inc. Anti-il31 antibodies for veterinary use
AU2020313981A1 (en) 2019-07-17 2022-03-03 Gemini Therapeutics Sub, Inc. Factor H potentiating antibodies and uses thereof
CA3177329A1 (en) * 2020-05-05 2021-11-11 Vega Therapeutics, Inc. Protein s antibodies, methods of making and uses thereof
JP2023532726A (ja) * 2020-06-29 2023-07-31 インサーム(インスティテュ ナシオナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシェ メディカル) 抗プロテインsシングルドメイン抗体及びそれを含むポリペプチド
CN111925438B (zh) * 2020-08-28 2021-03-09 和元生物技术(上海)股份有限公司 能够与aav1-13结合的抗体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677425A (en) 1987-09-04 1997-10-14 Celltech Therapeutics Limited Recombinant antibody
US5223227A (en) 1989-06-19 1993-06-29 Haemoscope Corporation Disposable pin and cup with reuseable stem and collar for blood coagulation analyzer
DE3920358A1 (de) 1989-06-22 1991-01-17 Behringwerke Ag Bispezifische und oligospezifische, mono- und oligovalente antikoerperkonstrukte, ihre herstellung und verwendung
US5321123A (en) * 1991-07-02 1994-06-14 The Scripps Research Institute Protein S polypeptides and anti-peptide antibodies that inhibit protein S binding to C4B binding protein, diagnostic systems and therapeutic methods
ES2165851T3 (es) 1991-11-25 2002-04-01 Enzon Inc Proteinas multivalentes que se unen a antigenos.
AU7266898A (en) 1997-04-30 1998-11-24 Enzon, Inc. Single-chain antigen-binding proteins capable of glycosylation, production and uses thereof
US20030133939A1 (en) 2001-01-17 2003-07-17 Genecraft, Inc. Binding domain-immunoglobulin fusion proteins
JP2007534631A (ja) 2003-10-28 2007-11-29 ノボ ノルディスク アクティーゼルスカブ ラミニン−5γ2結合性ペプチド、その関連組成物およびその使用
WO2007014749A2 (en) * 2005-07-29 2007-02-08 Universiteit Van Maastricht Regulation of tissue factor activity by protein s and tissue factor pathway inhibitor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110248964A (zh) * 2017-02-01 2019-09-17 诺和诺德股份有限公司 促凝血抗体
CN110248964B (zh) * 2017-02-01 2024-08-27 诺和诺德股份有限公司 促凝血抗体
US12084512B2 (en) 2017-02-01 2024-09-10 Novo Nordisk A/S Procoagulant antibodies
CN112513096A (zh) * 2018-08-01 2021-03-16 诺和诺德股份有限公司 改进的促凝血抗体
CN112513096B (zh) * 2018-08-01 2023-08-25 诺和诺德股份有限公司 改进的促凝血抗体
CN116731165A (zh) * 2023-03-23 2023-09-12 北京巴瑞医疗器械有限公司 一种抗血清素抗体及其应用
CN117192132A (zh) * 2023-11-03 2023-12-08 庄亚(北京)生物科技有限公司 一种vWF片段残留检测试剂盒及方法
CN117192132B (zh) * 2023-11-03 2024-02-02 庄亚(北京)生物科技有限公司 一种vWF片段残留检测试剂盒及方法
CN117683127A (zh) * 2023-12-05 2024-03-12 华中农业大学 猪流行性腹泻病毒抗体捕获elisa检测试剂盒
CN117903305A (zh) * 2023-12-05 2024-04-19 南京欧凯生物科技有限公司 针对雌二醇的单克隆抗体、基于其的检测试剂及其应用

Also Published As

Publication number Publication date
US20160297892A1 (en) 2016-10-13
EP3066132A2 (en) 2016-09-14
WO2015067755A3 (en) 2015-07-30
TW201605904A (zh) 2016-02-16
WO2015067755A2 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
CN102325795B (zh) 针对组织因子途径抑制剂的抗体
AU2009279804C1 (en) Monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
CN105705517A (zh) 用于治疗凝血障碍的新方法和抗体
JP7355874B2 (ja) 改良された血液凝固促進抗体
JP6342467B2 (ja) 組織因子経路インヒビターに特異的に結合することが可能な抗体
CN110248964A (zh) 促凝血抗体
US10144784B2 (en) Monoclonal antibodies against antithrombin beta
CN105473619B (zh) 能够引起促凝血活性的识别组织因子途径抑制剂的n-末端部分的抗体
TW201617371A (zh) 針對經活化之因子v之抗體
AU2016269554B2 (en) Optimized monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
AU2013202752B2 (en) Monoclonal antibodies against tissue factor pathway inhibitor (TFPI)
BR112021000823B1 (pt) ANTICORPOS PRÓ-COAGULANTES CAPAZES DE ESTIMULAR A ATIVIDADE ENZIMÁTICA DE FIXa EM DIREÇÃO A FX, COMPOSIÇÃO FARMACÊUTICA COMPREENDENDO OS DITOS ANTICORPOS E SEU USO NO TRATAMENTO DA HEMOFILIA A
HK1226645B (zh) 針對組織因子途徑抑制劑(tfpi)的單克隆抗體

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C04 Withdrawal of patent application after publication (patent law 2001)
WW01 Invention patent application withdrawn after publication

Application publication date: 20160622