CN105679258A - 驱动器以及电子设备 - Google Patents

驱动器以及电子设备 Download PDF

Info

Publication number
CN105679258A
CN105679258A CN201510870967.XA CN201510870967A CN105679258A CN 105679258 A CN105679258 A CN 105679258A CN 201510870967 A CN201510870967 A CN 201510870967A CN 105679258 A CN105679258 A CN 105679258A
Authority
CN
China
Prior art keywords
driving
voltage
electric capacity
circuit
driving part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510870967.XA
Other languages
English (en)
Other versions
CN105679258B (zh
Inventor
森田晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN105679258A publication Critical patent/CN105679258A/zh
Application granted granted Critical
Publication of CN105679258B publication Critical patent/CN105679258B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3685Details of drivers for data electrodes
    • G09G3/3688Details of drivers for data electrodes suitable for active matrices only
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • H03M1/0863Continuously compensating for, or preventing, undesired influence of physical parameters of noise of switching transients, e.g. glitches
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0243Details of the generation of driving signals
    • G09G2310/0251Precharge or discharge of pixel before applying new pixel voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/027Details of drivers for data electrodes, the drivers handling digital grey scale data, e.g. use of D/A converters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0297Special arrangements with multiplexing or demultiplexing of display data in the drivers for data electrodes, in a pre-processing circuitry delivering display data to said drivers or in the matrix panel, e.g. multiplexing plural data signals to one D/A converter or demultiplexing the D/A converter output to multiple columns
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/06Handling electromagnetic interferences [EMI], covering emitted as well as received electromagnetic radiation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/66Digital/analogue converters
    • H03M1/70Automatic control for modifying converter range

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本发明涉及一种驱动器以及电子设备,包括:电容器驱动电路;电容器电路,其具有被设置于多个电容器驱动用节点与数据电压输出端子之间的多个电容器,电容器驱动电路具有输出电容器驱动电压的多个驱动部。在为被驱动的多个电容器中的最大电容的电容器的情况下,对最大电容器进行驱动的驱动部为驱动能力可变的驱动部。

Description

驱动器以及电子设备
技术领域
本发明涉及一种驱动器以及电子设备等。
背景技术
在投影仪或信息处理装置、便携型信息终端等各种电子设备中使用了显示装置(例如液晶显示装置)。在这种显示装置中高精细化在进步,伴随于此,驱动器对一个像素进行驱动的时间变短。例如,作为对电光面板(例如液晶显示面板)进行驱动的方法,存在相位展开驱动。在该驱动方法中,例如一次对八条源极线进行驱动,并将其重复160次,从而对1280条源极线进行驱动。在对WXGA(1280×768像素)的面板进行驱动的情况下,将上述160次的驱动(即一条水平扫描线的驱动)重复768次。当将刷新频率设为60Hz时,通过简单计算可知,每一像素的驱动时间为大约135毫微秒。实际上,由于存在不对像素进行驱动的期间(例如消隐期间等),因此每一像素的驱动时间进一步缩短为大约70毫微秒左右。
伴随着上述这种的像素的驱动时间的缩短,通过放大电路而在时间内完成数据电压的写入越来越困难。作为解决这种课题的驱动方法,考虑到通过电容器的电荷再分配来对电光面板进行驱动的方法(在下文中,称为“电容驱动”)。例如,在专利文献1、2中公开了一种将电容器的电荷再分配用于D/A转换的技术。在D/A转换电路中,驱动侧的电容与负载侧的电容均被内置于IC(integrated-circuit:集成电路)中,从而在这些电容之间产生电荷再分配。例如,将这种D/A转换电路的负载侧的电容替换成IC外部的电光面板的电容,并作为驱动器来使用。在该情况下,在驱动器侧的电容与电光面板侧的电容之间,电荷再分配被实施。
然而,由于电光面板的输入端子的电阻(例如静电保护用的电阻)会妨碍电荷的移动,因此存在如下课题,即,与所需的数据电压相比,驱动器的输出端子的电压暂时性地上升(或下降)。在该电压的上升(或下降)超过了(或低于了)电源电压时,例如,电荷经由驱动器的静电保护元件(例如被设置在输出端子与电源之间的二极管)而向电源漏出,从而无法保存电荷再分配的电荷。如此一来,将无法获得所需的数据电压。或者,存在电压的上升(或下降)超过晶体管等的耐压,从而驱动器发生故障的可能性。
专利文献1:日本特开2000-341125号公报
专利文献2:日本特开2001-156641号公报
发明内容
根据本发明的几个方式,可提供能够对电容驱动的输出端子的电压上升(或下降)进行抑制的驱动器以及电子设备等。
本发明的一个方式涉及一种驱动器,包括:电容器驱动电路,其将与灰度数据相对应的第1至第n电容器驱动电压向第1至第n电容器驱动用节点输出,其中,n为2以上的自然数;电容器电路,其具有被设置于所述第1至第n电容器驱动用节点与数据电压输出端子之间的第1至第n电容器,所述电容器驱动电路具有输出所述第1至第n电容器驱动电压的第1至第n驱动部,在所述第1至第n电容器的电容中的第n电容器的电容为最大的情况下,所述第1至第n驱动部中的至少所述第n驱动部为驱动能力可变的驱动部。
根据本发明的一个方式,能够以可变的方式对驱动第1至第n电容器中的电容为最大的第n电容器的第n驱动部的驱动能力进行调节。由此,能够使对最大电容的第n电容器进行驱动的第n驱动部的驱动能力降低,从而能够抑制电容驱动的输出端子的电压上升(或下降)。
此外,在本发明的一个方式中,可以采用如下方式,即,在将所述第1至第n驱动部的驱动能力设为D1~Dn,将所述第1至第n电容器的电容设为C1~Cn的情况下,以成为Dn/Cn<D1/C1的方式而对所述第n驱动部的驱动能力Dn进行设定。
通过以成为Dn/Cn<D1/C1的方式而对第n驱动部的驱动能力Dn进行设定,从而能够使对相对于数据电压输出端子的电荷供给量最大的第n电容器进行驱动的第n电容器驱动电压的变化的倾斜度小于对第1电容器进行驱动的第1电容器驱动电压的变化的倾斜度。由此,能够抑制电容驱动的输出端子的电压上升(或下降)。
此外,在本发明的一个方式中,可以采用如下方式,即,包括存储部,所述存储部对所述驱动能力可变的驱动部的驱动能力的设定值进行存储。
如果采用这种方式,则能够根据被存储于存储部中的设定值而将驱动能力设定为可变。例如,通过将与和驱动器连接的电光面板的种类相对应的驱动能力的设定值存储在存储部中,从而能够设定与电光面板的种类相对应的最佳的(保持电容驱动的高速的置位并且使电压峰值降低的)驱动能力。
此外,本发明的另一个方式涉及一种驱动器,包括:电容器驱动电路,其将与灰度数据相对应的第1至第n电容器驱动电压向第1至第n电容器驱动用节点输出,其中,n为2以上的自然数;电容器电路,其具有被设置于所述第1至第n电容器驱动用节点与数据电压输出端子之间的第1至第n电容器,所述电容器驱动电路具有输出所述第1至第n电容器驱动电压的第1至第n驱动部,在将所述第1至第n驱动部的驱动能力设为D1~Dn,将所述第1至第n电容器的电容设为C1~Cn的情况下,以成为Dn/Cn<D1/C1的方式而对所述第n驱动部的驱动能力Dn进行设定。
根据本发明的另一个方式,通过以成为Dn/Cn<D1/C1的方式而对第n驱动部的驱动能力Dn进行设定,从而能够使对相对于数据电压输出端子的电荷供给量最大的第n电容器进行驱动的第n电容器驱动电压的变化的倾斜度小于对第1电容器进行驱动的第1电容器驱动电压的变化的倾斜度。由此,能够抑制电容驱动的输出端子的电压上升(或下降)。
此外,在本发明的一个方式以及另一个方式中,可以采用如下方式,即,所述第1至第n驱动部中的第j至第n驱动部为驱动能力可变的驱动部,其中,j为1≤j≤n的自然数,所述第1至第n驱动部中的第1至第j-1的驱动部为驱动能力固定的驱动部。
第1至第n电容器中的与灰度数据的高阶位侧相对应的第j至第n电容器的电容较大。由于能够以可变的方式对驱动该第j至第n电容器的第j至第n驱动部的驱动能力进行设定,从而能够使对数据电压输出端子的电压的峰值影响较大的高阶位侧的驱动能力降低。
此外,在本发明一个方式以及另一个方式中,可以采用如下方式,即,在将所述第1至第n驱动部的驱动能力设为D1~Dn,将所述第1至第n电容器的电容设为C1~Cn的情况下,以成为Di/Ci<D1/C1的方式而对所述第j至第n驱动部的驱动能力进行设定,其中,i为j≤i≤n的自然数。
如果采用这种方式,则能够使对与灰度数据的高阶位侧相对应的大电容的第j至第n电容器进行驱动的第j至第n电容器驱动电压的变化的倾斜度小于对最小电容的第1电容器进行驱动的第1电容器驱动电压的变化的倾斜度。由此,能够使来自对相对于数据电压输出端子的电荷供给量较大的第j至第n电容器的电荷供给的速度(电流)减小。
此外,在本发明一个方式以及另一个方式中,可以采用如下方式,即,包括存储部,所述存储部对所述驱动能力可变的驱动部的驱动能力的设定值进行存储。
如果采用这种方式,则能够根据被存储于存储部中的设定值而将驱动能力设定为可变。例如,通过将与和驱动器连接的电光面板的种类相对应的驱动能力的设定值存储于存储部中,从而能够设定与电光面板的种类相对应的最佳的(保持电容驱动的高速的置位并且使电压峰值降低的)驱动能力。
此外,在本发明的一个方式中,也可以采用如下方式,即,包括可变电容电路,所述可变电容电路被设置于所述数据电压输出端子与基准电压的节点之间,所述可变电容电路的电容以如下方式被设定,即,使所述可变电容电路的电容和电光面板侧电容相加而得到的电容与所述电容器电路的电容成为所给定的电容比关系。
如果采用这种方式,则即使在电光面板侧电容不同的情况下,也能够通过与之相对应地对可变电容电路的电容进行调节从而实现所给定的电容比关系,由此能够实现与该电容比关系相对应的所需的数据电压的范围。即,能够实现在各种连接环境(例如,与驱动器连接的电光面板的机种或安装有驱动器的印刷电路基板的设计等)下可通用的电容驱动。
此外,本发明的其他方式涉及一种电子设备,所述电子设备包括上述的任一方式所记载的驱动器。
附图说明
图1为驱动器的第一结构例。
图2(A)、图2(B)为与灰度数据相对应的数据电压的说明图。
图3为驱动器与电光面板的示意图。
图4为电容驱动的输出电压的时间变化的示意图。
图5(A)、图5(B)为电容器驱动电路的详细的结构例。
图6为驱动部的驱动能力的比较例。
图7(A)、图7(B)为本实施方式中的驱动部的驱动能力的示例。
图8(A)、图8(B)为电容驱动的输出电压的模拟结果。
图9(A)、图9(B)为电容驱动的输出电压的模拟结果。
图10(A)至图10(C)为第一结构例中的数据电压的说明图。
图11为驱动器的第二结构例。
图12(A)至图12(C)为第二结构例中的数据电压的说明图。
图13为驱动器的详细的结构例。
图14为检测电路的详细的结构例。
图15为对可变电容电路的电容进行设定的处理的流程图。
图16(A)、图16(B)为对可变电容电路的电容进行设定的处理的说明图。
图17为驱动器的第二个详细的结构例、电光面板的详细的结构例、驱动器与电光面板的连接结构例。
图18为驱动器与电光面板的动作时序图。
图19为电子设备的结构例。
具体实施方式
以下,对本发明的优选的实施方式进行详细说明。另外,在下文中所说明的本实施方式并非对权利要求书中所记载的本发明的内容进行不当限定,并且在本实施方式中所说明的全部结构也并不一定都是作为本发明的解决方法所必须的。
1.驱动器的第一结构例
在图1中图示了本实施方式的驱动器的第一结构例。该驱动器100包括电容器电路10、电容器驱动电路20、数据电压输出端子TVQ。另外,在下文中,作为表示电容器的电容值的符号,使用与该电容器的符号相同的符号。
驱动器100例如通过集成电路装置(IC)而被构成。集成电路装置例如对应于在硅基板上形成有电路的IC芯片,或对应于IC芯片被收纳在封装件中的装置。驱动器100的端子(数据电压输出端子TVQ等)对应于IC芯片的衬垫或封装件的端子。
电容器电路10包括第1至第n电容器C1~Cn(n为2以上的自然数)。此外,电容器驱动电路20包括第1至第n驱动部DR1~DRn。另外,虽然在下文中,以n=10的情况为例而进行说明,但n只需为2以上的自然数即可。例如,只需将n设定为与灰度数据的位数相同的数值即可。
电容器C1~C10中的第i电容器(i为n=10以下的自然数)的一端与电容器驱动节点NDRi连接,第i电容器的另一端与数据电压输出节点NVQ连接。数据电压输出节点NVQ为与数据电压输出端子TVQ连接的节点。电容器C1~C10具有以2的乘方而被进行了加权的电容值。具体而言,第i电容器Ci的电容值为2(i-1)×C1。
在第1至第10驱动部DR1~DR10中的第i驱动部DRi的输入节点上被输入灰度数据GD[10:1]中的第i位GDi。第i驱动部DRi的输出节点为第i电容器驱动节点NDRi。灰度数据GD[10:1]通过第1至第10位GD1~GD10(第1至第n位)而被构成,位GD1对应于LSB(LeastSignificantBit,最低有效位),位GD10对应于MSB(MostSignificantBit,最高有效位)。
第i驱动部DRi在位GDi为第一逻辑电平的情况下输出第一电压电平,在位GDi为第二逻辑电平的情况下输出第二电压电平。例如,第一逻辑电平为“0”(低电平),第二逻辑电平为“1”(高电平),第一电压电平为低电位侧电源VSS的电压(例如0V),第二电压电平为高电位侧电源VDD的电压(例如15V)。例如,第i驱动部DRi通过将所输入的逻辑电平(例如逻辑电源的3V)电平转换为驱动部DRi的输出电压电平(例如15V)的电平转换器与对该电平转换器的输出进行缓冲的缓冲电路而被构成。
如上所述,电容器C1~C10的电容值通过与灰度数据GD[10:1]的位GD1~GD10的位数相对应的2的乘方而被加权。而且,驱动部DR1~DR10通过根据位GD1~GD10而输出0V或15V,从而通过该电压而对电容器C1~C10实施驱动。通过该驱动,在电容器C1~C10与电光面板侧电容CP之间产生电荷再分配,其结果为,数据电压会被输出至数据电压输出端子TVQ。
电光面板侧电容CP为,可从数据电压输出端子TVQ看到的电容的合计值。例如,电光面板侧电容CP为,将作为印刷电路基板的寄生电容的基板电容CP1和作为电光面板200内的寄生电容或像素电容的面板电容CP2相加而得到的值。
具体而言,驱动器100作为集成电路装置而被安装在刚性基板上,在该刚性基板上连接有柔性基板,在该柔性基板上连接有电光面板200。在该刚性基板或柔性基板上设置有对驱动器100的数据电压输出端子TVQ与电光面板200的数据电压输入端子TPN进行连接的配线。该配线的寄生电容为基板电容CP1。此外,如通过图17后述的那样,在电光面板200上设置有与数据电压输入端子TPN连接的数据线、源极线、将数据线与源极线连接的开关元件、与源极线连接的像素电路。开关元件例如通过TFT(ThinFilmTransistor:薄膜晶体管)而被构成,在源极与栅极间存在有寄生电容。由于在数据线上连接有多个开关元件,因此在数据线上附带有多个开关元件的寄生电容。此外,在数据线或源极线与面板基板之间存在有寄生电容。此外,在液晶显示面板中,在液晶的像素中存在有电容。将这些电容相加而得到的电容便为面板电容CP2。
电光面板侧电容CP例如为50pF至120pF。如后文所述那样,由于将电容器电路10的电容CO(电容器C1~C10的电容的合计值)与电光面板侧电容CP的比设为1:2,因此电容器电路10的电容CO为25pF至60pF。虽然作为内置于集成电路中的电容较大,但例如通过采用将MIM(MetalInsulationMetal:金属-绝缘体-金属)电容器在纵向上堆积2至3层的截面结构,从而能够实现电容器电路10的电容CO。
2.数据电压
接下来,对与灰度数据GD[10:1]相对应,驱动器100输出的数据电压进行说明。在此,电容器电路10的电容CO(=C1+C2+……C10)被设定为CP/2。
如图2(A)所示,在第i位GDi为“0”的情况下驱动部DRi输出0V,在第i位GDi为“1”的情况下驱动部DRi输出15V。在图2(A)中,以GD[10:1]=“1001111111b”(末尾的b表示“”内的数为二进制数)的情况为例而进行了图示。
首先,在驱动之前实施初始化。即,设定为GD[10:1]=“0000000000b”从而使驱动部DR1~DR10输出0V,并设定电压VQ=VC=7.5V。VC=7.5V为初始化电压。
由于在该初始化中被蓄积于数据电压输出节点NVQ中的电荷在以后的驱动时也被保存,因此根据电荷守恒来对图2(A)的式FE进行求解。在式FE中,符号GDi表示位GDi的值(“0”或“1”)。由式FE的右边第二项可知,灰度数据GD[10:1]被转换为1024灰度的数据电压(5V×0/1023、5V×1/1023、5V×2/1023、……、5V×1023/1023)。在图2(B)中,作为一个示例而表示了使灰度数据GD[10:1]的上位3位变化时的数据电压(输出电压VQ)。
另外,虽然在上文中以正极性驱动为例而进行了说明,但在本实施方式中也可以实施负极性驱动。此外,也可以实施交替地进行正极性驱动与负极性驱动的反转驱动。在负极性驱动中,在初始化中将电容器驱动电路20的驱动部DR1~DR10的输出全部设定为15V,并设定输出电压VQ=VC=7.5V。然后,将灰度数据GD[10:1]的各个位的逻辑电平反转(使“0”为“1”,使“1”为“0”)并输入至电容器驱动电路20,从而实施电容驱动。在该情况下,相对于灰度数据GD[10:1]=“000h”(末尾的h表示“”内的数为十六进制数的情况)而输出VQ=7.5V,相对于灰度数据GD[10:1]=“3FFh”而输出VQ=2.5V,从而数据电压范围成为7.5V至2.5V。
如上文所述,通过在电容器电路10的电容CO与电光面板侧电容CP之间使电荷再分配以实施电容驱动,从而能够输出与灰度数据GD[10:1]对应的数据电压。通过利用电荷再分配而进行驱动,从而与利用反馈控制而使电压置位的放大驱动相比,能够实现高速的置位。
3.电容驱动的输出电压的过渡性的变化
接下来,对电容驱动的输出电压VQ的过渡性的变化进行说明。在图3中,图示了驱动器100和电光面板200的示意图。在图4中,图示了图3中的电容驱动的输出电压VQ的时间变化的示意图。
如图3所示,在电光面板200的数据电压输入端子TPN与面板电容CP2之间,设置有静电保护用的电阻元件RP。电阻元件RP的电阻值例如为200Ω~1kΩ。在驱动器100的数据电压输出节点NVQ上,如通过图11后述那样,设置有可变电容电路30,该可变电容电路30的电容与电容CA相对应。在将电容器电路10的电容设为CO(=C1+C2+……+C10)的情况下,以成为CA+CP=2CO的方式来设定电容CA。当将该电容CA与基板电容CP1相加而得到的电容设为电容CX(=CA+CP1)时,CX+CP2=2CO。
假设将电容器驱动电路20的驱动部DR1~DR10的输出阻抗设为零。在该情况下,在驱动部DR1~DR10的输出发生变化的同时,在电容器电路10的电容CO与电容CX之间完成电荷再分配。即,输出电压VQ上升至通过电容CO与电容CX之比而决定的电压。如图4所示,例如设为灰度数据GD[10:1]从“000h”变化为“3FFh”。虽然在包括面板电容CP2在内产生了电荷再分配的情况下的数据电压从7.5V变化为12.5V,但由于电容CX小于电容CX+CP2,因此输出电压VQ会过渡性地超过12.5V。虽然如上述那样CX+CP2=2CO,但例如设为CX=(1/2)·CO、CP2=(3/2)·CO。在该情况下,在电容器电路10的电容CO与电容CX之间产生了电荷再分配的时间点上,输出电压VQ成为7.5V+15V·(CO/(CO+CX))=17.5V。
另外,由于实际上驱动部DR1~DR10的输出阻抗不为零,因此与考虑到在电容CO与电容CX之间瞬时完成电荷再分配的情况相比,输出电压VQ的上升并不陡峭。因此,在输出电压VQ上升的期间电荷经由电阻元件RP而向面板电容CP2移动,从而输出电压VQ的最大值下降。然而,由于为了驱动高精细的面板而需要进行高速的电容驱动,因此优选为驱动部DR1~DR10的输出阻抗较低。
在输出电压VQ达到最大值之后,由于经由电阻元件RP而在电容CO、CX与电容CP2之间发生电荷再分配,因此输出电压VQ渐近于所需的数据电压(12.5V)。如图7等所示,电容器电路10的电容CO例如为64pF。当将电光面板200的电阻元件RP的电阻值设为例如500Ω时,电容CO、CX、CP2与电阻元件RP的时间常数大约为64pF·500Ω=32ns的程度。
如上文所述,在电容驱动中存在输出电压VQ过渡性地超过电源电压(15V)的可能性。如图3所示,由于在驱动器100的数据电压输出端子TVQ上作为静电保护用的电路而设置有例如二极管DA1、DA2,因此在输出电压VQ超过了电源电压的情况下,电荷将从数据电压输出节点NVQ经由二极管DA1而向电源漏出。如通过图2(A)所说明的那样,由于是通过在电容驱动中在电荷守恒的状态下实施电荷再分配从而输出所需的数据电压的,因此将因电荷漏出而无法得到所需的数据电压。此外,在负极性驱动的情况下,存在输出电压VQ过渡性地低于电源电压(0V)的可能性,从而电荷会经由二极管DA2而向电源漏出,由此无法得到所需的数据电压。
此外,在由二极管DA1、DA2等实施的静电保护不充分的情况下,存在输出电压VQ超过数据电压输出端子TVQ的耐压而导致静电损坏的可能性。例如,在通过图11而后述的可变电容电路30中,开关元件SWA1~SWA5(例如晶体管)与数据电压输出节点NVQ连接,存在致使该开关元件SWA1~SWA5产生静电损坏的可能性。
以上的这种现象的原因在于电光面板200的静电保护用的电阻元件。即,不是负载侧的电容存在于IC内部(例如专利文献1等),而是负载侧的电容(面板电容CP2)存在于驱动器(IC)的外部成为原因之一。
4.电容器驱动电路
在图5(A)、图5(B)中,图示了能够解决上述的这种课题的本实施方式的电容器驱动电路20的详细的结构例。图5(A)为,与灰度数据GD[10:1]的高阶位侧相对应的驱动部DR8~DR10的结构例。图5(B)为,与灰度数据GD[10:1]的低阶位侧相对应的驱动部DR1~DR7的结构例。另外,虽然在此将高阶位侧与低阶位侧的边界设在第七位与第八位之间,但并不限定于此。例如,只需至少与最高阶位相对应的驱动部DR10为图5(A)的结构即可。
如图5(A)所示,高阶位侧的驱动部DR8~DR10的各驱动部DRi包括逻辑非电路IA1~IA10、IQA(逆变器、缓冲器)、逻辑与电路AA1、逻辑或电路OA1、P型晶体管PQA和N型晶体管NQA。
逻辑非电路IA1~IA3、IQA被串联连接,对灰度数据的位GDi进行缓冲并对电容器Ci进行驱动。最终级的逻辑非电路IQA由最大尺寸的晶体管构成,并且其尺寸决定驱动能力。前级的逻辑非电路IA1~IA3为对最终级(IQA)进行驱动的预驱动器。
逻辑与电路AA1、逻辑或电路OA1、逻辑非电路IA4~IA10、P型晶体管PQA和N型晶体管NQA为对驱动部DRi的驱动能力进行切换的电路。即,在控制信号SNRi为使能(高电平)的情况下,对位GDi进行缓冲并对电容器Ci进行驱动。在控制信号SNRi为非使能(低电平)的情况下,P型晶体管PQA、N型晶体管NQA断开从而使输出成为高阻抗状态。在该切换电路中,P型晶体管PQA与N型晶体管NQA为最终级,例如与构成逻辑非电路IQA的晶体管为相同的尺寸。在该情况下,如果将控制信号SNRi设为非使能,则驱动能力将减半。
如图5(B)所示,低阶位侧的驱动部DR1~DR7的各驱动部DRi包括逻辑非电路IB1~IB3、IQB(逆变器、缓冲器)。
低阶位侧的驱动部DRi不包括切换电路。逻辑非电路IB1~IB3、IQB被串联连接,对灰度数据的位GDi进行缓冲并对电容器Ci进行驱动。最终级的逻辑非电路IQB由最大尺寸的晶体管构成,并且其尺寸决定驱动能力。
在图6中,图示了驱动部DR1~DR10的驱动能力的比较例。在图6中,图示了电容器C1~C10的电容、构成驱动部DR1~DR10的最终级的P型晶体管以及N型晶体管的尺寸(栅极宽度W)。此外,还图示了将驱动能力Di设为晶体管(在此为N型)的尺寸的情况下的驱动能力Di与电容器Ci的电容的比Di/Ci。
该比较例为,将比Di/Ci设为固定的情况下的示例。由于驱动部DRi的输出电压的变化的倾斜度为dV/dt=(dQ/dt)/Ci=I/Ci,驱动部DRi向电容器Ci供给的电流I与晶体管尺寸成比例,因此倾斜度dV/dt与比Di/Ci大致成比例。即,在该比较例中,驱动部DR1~DR10的输出电压的变化的倾斜度dV/dt大致相同。例如在驱动部DR1~DR10的输出电压从0V变化至15V的情况下,如果倾斜度dV/dt相同,则达到15V的定时也相同。在从数据电压输出节点NVQ侧进行观察时,来自电容器C1~C10的电荷供给同时开始且同时结束(电荷供给的峰值重叠)。因此,图4的电压VQ的峰值变高,从而超过电源电压的可能性较高。
此外,由于与最高阶位相对应的电容器C10的电容成为与最低阶位相对应的电容器C1的电容的512倍(29倍),因此在将比Di/Ci设为固定的情况下,晶体管尺寸也成为512倍。即使将驱动部DR1的最终级的晶体管尺寸设为工艺规则的最小值,该512倍的晶体管尺寸也会变得非常大(例如在图6中P型晶体管为9mm以上)。如果考虑到芯片面积等,则这将是不现实的尺寸。
因此,在本实施方式中,将高阶位侧的驱动能力设为小于低阶位侧的驱动能力。在图7(A)、图7(B)中,图示了本实施方式中的驱动部DR1~DR10的驱动能力的示例。此外,能够对驱动能力进行切换的驱动部DR8~DR10的晶体管尺寸为,对逻辑非电路IQA的晶体管以及P型晶体管PQA、N型晶体管NQA的尺寸进行合计而得到的尺寸。
图7(A)为,将控制信号SNR8~SNR10设为使能的情况下的驱动能力的示例。高阶位侧的驱动部DR5~DR10的驱动能力以6.25被设定为相同,且小于低阶位侧的驱动部DR1~DR4的驱动能力。具体而言,低阶位侧的驱动部DR1~DR4的驱动能力以依次变小的方式而被设定。而且,将高阶位侧的驱动部DR5~DR10的驱动能力设定为与低阶位侧的驱动部DR1~DR4的驱动能力的最小值12相比较小的值。
由于来自电容器C1~C10的电荷供给量在高阶位侧较大,因此对电压VQ的贡献也是高阶位侧较大。该情况根据图2(A)的式FE也可明确。在本实施方式中,通过将高阶位侧的驱动能力设为小于低阶位侧的驱动能力,从而能够使对电压VQ的贡献较大的高阶位侧的电荷供给与低阶位侧相比延迟。由此,由于来自高阶位侧的电容器的电荷供给延迟(电荷供给结束的定时与低阶位侧相比延迟),因此电荷供给的峰值将发生偏移,从而能够使电压VQ的峰值降低。由此,能够降低超过电源电压的可能性。
图7(B)为,将控制信号SNR8~SNR10设为非使能的情况下的驱动能力的示例。能够对驱动能力进行切换的驱动部DR8~DR10的驱动能力被设定为图7(A)的一半,即3.125。驱动部DR5~DR7的驱动能力仍为6.25。即,在驱动部DR8~DR10和驱动部DR5~DR7中各自的驱动能力相同,并且其中的作为高阶位侧的驱动部DR8~DR10的驱动能力低于驱动部DR5~DR7的驱动能力。当然,驱动部DR8~DR10的驱动能力也小于低阶位侧的驱动部DR1~DR4的驱动能力中的最小值12。
通过以此方式设为能够对高阶位侧的驱动能力进行切换,从而能够根据驱动器100的连接环境(电光面板200的种类、安装基板的设计等)而选择恰当的驱动能力。关于这一点将在下文中进行说明。
在图8(A)、图8(B)中,图示了将控制信号SNR8~SNR10设为使能(高阶位侧的驱动能力较高)的情况下的电容驱动的输出电压VQ的模拟结果。
图8(A)为,在正极性驱动中使灰度数据GD[10:1]从“000h”变化为“3FFh”的情况下的波形。图8(B)为,在负极性驱动中使灰度数据GD[10:1]从“000h”变化为“3FFh”的情况下的波形。在该示例中,在正极性驱动中超过电源电压15V,在负极性驱动中低于电源电压0V。
在图9(A)、图9(B)中,图示了将控制信号SNR8~SNR10设为非使能(高阶位侧的驱动能力较低)的情况下的电容驱动的输出电压VQ的模拟结果。
图9(A)为,在正极性驱动中使灰度数据GD[10:1]从“000h”变化为“3FFh”的情况下的波形。图9(B)为,在负极性驱动中使灰度数据GD[10:1]从“000h”变化为“3FFh”的情况下的波形。在该示例中,在正极性驱动中未超过电源电压15V,在负极性驱动中不低于电源电压0V。
根据以上的模拟结果可知,首先,通过降低高阶位侧的驱动能力从而能够使输出电压VQ的峰值下降。但是,上述的模拟结果只不过是一个示例,根据与驱动器100连接的电光面板200的种类的不同,输出电压VQ的峰值会发生改变。即,虽然电容器电路10的电容CO与负载侧的电容CX+CP2之比为1:2,但面板电容CP2根据电光面板200的种类不同而不同,与之相对应地,电容CX会发生变动。由于电容CX越小则输出电压VQ的峰值越高,因此在连接了面板电容CP2较大的电光面板200的情况下,输出电压VQ的峰值容易变高。相反地,在连接了面板电容CP2较小的电光面板200的情况下,输出电压VQ的峰值容易变低。
对于这一点,根据本实施方式,通过构成为能够对高阶位侧的驱动能力进行切换,从而能够根据电光面板200的种类而选择最佳的驱动能力。例如,在驱动能力较高的设定下输出电压VQ的峰值会超过电源电压的情况下,能够选择驱动能力较低的设定。或者,在驱动能力较高的设定下输出电压VQ的峰值不会超过电源电压的情况下,能够选择驱动能力较高的设定。此外,如上述那样,从实现高速的驱动这一点出发,优选为驱动能力较高,在本实施方式中,能够在输出电压VQ的峰值不超过电源电压的范围内,选择尽可能高的驱动能力。
根据以上的实施方式,驱动器100包括电容器驱动电路20和电容器电路10。电容器驱动电路20将与灰度数据GD[10:1]相对应的第1至第10电容器驱动电压(0V或15V)向第1至第10电容器驱动用节点NDR1~NDR10输出。电容器电路10具有被设置在第1至第10电容器驱动用节点NDR1~NDR10与数据电压输出端子TVQ之间的第1至第10电容器C1~C10。电容器驱动电路20具有输出第1至第10电容器驱动电压的第1至第10驱动部DR1~DR10。而且,在第1至第10电容器C1~C10的电容中的第10电容器的电容为最大的情况下,第1至第10驱动部DR1~DR10中的至少第10驱动部DR10为驱动能力可变的驱动部。
通过以此方式将对电容器C1~C10中的最大电容进行驱动的驱动部DR10设为驱动能力可变,从而至少能够使对最大电容的电容器C10进行驱动的驱动部DR10的驱动能力降低。由此,能够使通过电容驱动而输出的电压VQ的过渡性的变化中的峰值降低(或者,在负极性驱动的情况下上升)。即,由于电容器C1~C10中的最大电容的电容器C10相对于数据电压输出节点NVQ的电荷的供给量也最大,因此使驱动部DR1~DR10中的驱动部DR10的驱动能力降低也最有助于使输出电压VQ的峰值降低。
此外,通过将驱动能力设为可变,从而能够在输出电压VQ的峰值不超过(或者,在负极性驱动的情况下不低于)电源电压的范围内,将驱动能力设定为较高。由此,能够根据驱动器100的连接环境来设定最佳的驱动能力。即,能够保持电容驱动的高速的置位并且使输出电压VQ的峰值降低(或者,在负极性驱动的情况下上升)。
另外,虽然在本实施方式中以两级来切换驱动能力的情况为例而进行了说明,但将驱动能力设为可变的结构并不限定于此。例如,也可以采用以更多级来切换驱动能力的结构。
在此,驱动能力为,对作为驱动对象的电容器进行驱动的能力,且为对电容器供给电荷(电流)的能力。驱动能力能够通过例如构成驱动部的晶体管中的对电容器进行驱动的晶体管(输出级、最终级)的尺寸或该晶体管的通态电阻等来表现。
此外,在本实施方式中,在将第1至第10驱动部DR1~DR10的驱动能力设为D1~D10,将第1至第10电容器C1~C10的电容设为C1~C10的情况下,以成为D10/C10<D1/C1的方式而对第10驱动部DR10的驱动能力D10进行设定。例如在图7(A)的示例中,D10/C10=6.25<96=D1/C1,在图7(B)的示例中,D10/C10=3.125<96=D1/C1。
如上述那样,驱动能力Di与电容器Ci电容之比Di/Ci决定了驱动部DRi的输出电压的变化的倾斜度。在本实施方式中,通过设定为D10/C10<D1/C1,从而至少能够使对最大电容的电容器C10进行驱动的电压的变化的倾斜度小于对最小电容的电容器C1进行驱动的电压的变化的倾斜度。由此,由于能够使来自电荷供给量最大的(最会使输出电压VQ的峰值提升的)电容器C10的电荷供给的速度(即电流)变小,因此能够有效地使输出电压VQ的峰值下降。
此外,在本实施方式中,第1至第10驱动部DR1~DR10中的第8至第10驱动部DR8~DR10(广义而言为第j至第n驱动部,j为1≤j≤n的自然数)为驱动能力可变的驱动部。而且,第1至第10驱动部DR1~DR10中的第1至第7驱动部DR1~DR7(广义而言为第1至第j-1驱动部)为驱动能力固定的驱动部。
如上述那样,电荷供给量越大的电容器,越会使输出电压VQ的峰值提升。对于这一点,根据本实施方式,能够将对电容较大的高阶位侧的电容器C8~C10进行驱动的驱动部DR8~DR10的驱动能力设定为可变。由此,由于能够使对输出电压VQ的峰值影响较大的高阶位侧的驱动能力降低,因此能够有效地使输出电压VQ的峰值下降。此外,通过将驱动能力设为可变,从而能够保持电容驱动的高速的置位,并且使输出电压VQ的峰值降低。
此外,在本实施方式中,以成为D8/C8<D1/C1、D9/C9<D1/C1、D10/C10<D1/C1(广义而言为Di/Ci<D1/C1,i为j≤i≤n的自然数)的方式而设定第8至第10驱动部的驱动能力。
如果采用这种方式,则能够使对电容较大的高阶位侧的电容器C8~C10进行驱动的电压的变化的倾斜度小于对最小电容的电容器C1进行驱动的电压的变化的倾斜度。由此,由于能够使来自电荷供给量较大的(使输出电压VQ的峰值提升的)电容器C8~C10的电荷供给的速度(即电流)变小,因此能够有效地使输出电压VQ的峰值下降。
此外,如在图6的比较例中所说明的那样,当将高阶位侧的驱动能力与低阶位侧的驱动能力设为相同时,存在高阶位侧的驱动部的晶体管尺寸变得过大的课题。对于这一点,根据本实施方式,通过使高阶位侧的Di/Ci降低,从而能够使高阶位侧的驱动部的晶体管尺寸减小。
此外,在本实施方式中,驱动器100包括存储部,所述存储部对驱动能力可变的驱动部DR8~DR10的驱动能力的设定值(控制信号SNR8~SNR10)进行存储。
例如,如通过图13后述的那样,存储部为寄存器(寄存器部48)。此外,存储部并不限定于寄存器,只要是能够对设定值进行存储的部件即可。例如,也可以是熔断器(例如,在制造时通过激光等进行切断从而对设定值进行设定)或非易失性存储器(例如EEPROM等)。
如果采用这种方式,则能够基于被存储在存储部中的设定值而将驱动能力设定为可变。例如,在图5(A)的结构例中,能够通过根据设定值,将控制信号SNRi输入到驱动部DRi中,从而对驱动能力进行切换。而且,通过将与和驱动器100连接的电光面板200的种类相对应的驱动能力的设定值存储在存储部中,从而能够选择与电光面板200的种类相对应的最佳的驱动能力。
5.驱动器的第二结构例
接下来,再次考虑图1中所说明的第一结构例中的数据电压。虽然在图2(A)中,是以电容器电路10的电容CO与电光面板侧电容CP的比被设定为1:2为前提的,但在此也考虑包括比值不为1:2的情况在内的数据电压的最大值。如在下文中所说明那样,当欲制作对于各种电光面板200均通用的驱动器100时,存在无法将比值保持为1:2,从而无法输出固定的数据电压范围的课题。
如图10(A)所示,首先,实施电容器电路10的初始化。即,设定灰度数据GD[10:1]=“000h”(末尾的h表示“”内的数值为16进制数的情况),从而将驱动部DR1~DR10的全部输出均设定为0V。此外,如图10(A)的式FA所示那样设定电压VQ=VC=7.5V。在该初始化中被蓄积于电容器电路10的电容CO与电光面板侧电容CP中的电荷的总量在以后的数据电压输出中被保存。由此,输出以初始化电压VC(共同电压)为基准的数据电压。
如图10(B)所示,输出数据电压的最大值的情况为,设定灰度数据GD[10:1]=“3FFh”从而将驱动部DR1~DR10的全部输出均设定为15V的情况。此时的数据电压能够根据电荷守恒法则而求出,并成为图10(B)的式FB所示的值。
如图10(C)所示,所需的数据电压范围例如为5V。由于初始化电压VC=7.5V为基准,因此最大值为12.5V。实现该数据电压的情况为,式FB中CO/(CO+CP)=1/3的情况。即,只需相对于电光面板侧电容CP而设定为电容器电路10的电容CO=CP/2(即,CP=2CO)即可。对于某特定的电光面板200与安装基板而言,通过以此方式设计为CO=CP/2,从而能够实现5V的数据电压范围。
但是,电光面板侧电容CP根据电光面板200的种类或安装基板的设计而具有50pF至120pF左右的幅度。此外,即使是相同种类的电光面板200以及安装基板,在连接多个电光面板的情况下(例如在投影仪中连接R、G、B三个电光面板),由于各个电光面板与驱动器的连接配线的长度不同,因此基板电容CP1也不一定相同。
例如,以相对于某电光面板200与安装基板而使电容器电路10的电容CO成为CP=2CO的方式进行设计。在相对于该电容器电路10而连接了不同种类的电光面板或安装基板的情况下,有可能为CP=CO/2或CP=5CO。在CP=CO/2的情况下,如图10(C)所示,数据电压的最大值成为17.5V,从而超过了电源电压15V。在该情况下,不仅是数据电压的范围,从驱动器100或电光面板200的耐压的观点出发也存在问题。此外,在CP=5CO的情况下,数据电压的最大值成为10V,从而无法获得足够的数据电压范围。
在像这样根据电光面板侧电容CP而设定电容器电路10的电容CO的情况下,存在如下的课题,即,驱动器100相对于该电光面板200或安装基板而成为专用设计。即,每当电光面板200的种类或安装基板的设计改变时,不得不重新设计其专用的驱动器100。
在图11中图示了能够解决上述那样的课题的本实施方式的驱动器的第二结构例。该驱动器100包括电容器电路10、电容器驱动电路20、可变电容电路30。另外,对于与已经进行了说明的结构要素相同的结构要素标注相同的符号,并适当地省略对该结构要素的说明。
可变电容电路30为与数据电压输出节点NVQ连接的电容,且为能够将其电容值设定为可变的电路。具体而言为,可变电容电路30包括第1至第m开关元件SWA1~SWAm(m为2以上的自然数)和第1至第m调节用电容器CA1~CAm。另外,在下文中,以m=6的情况为示例进行说明。
第1至第6开关元件SWA1~SWA6例如通过P型或N型的MOS晶体管,或将P型MOS晶体管与N型MOS晶体管组合而成的传输门而构成。开关元件SWA1~SWA6中的第s开关元件SWAs(s为m=6以下的自然数)的一端与数据电压输出节点NVQ连接。
第1至第6调节用电容器CA1~CA6具有以2的乘方而被进行了加权的电容值。具体而言为,调节用电容器CA1~CA6中的第s调节用电容器CAs的电容值为2(s-1)×CA1。第s调节用电容器CAs的一端与第s开关元件SWAs的另一端连接。第s调节用电容器CAs的另一端与低电位侧电源(广义而言为基准电压的节点)连接。
例如在设定为CA1=1pF的情况下,在仅开关元件SWA1导通的状态下,可变电容电路30的电容为1pF,在开关元件SWA1~SWA6全部导通的状态下,可变电容电路30的电容为63pF(=1pF+2pF+……+32pF)。由于电容值以2的乘方而被加权,因此能够根据开关元件SWA1~SWA6的导通、切断状态而在1pF至63pF之间以1pF(CA1)的幅度来设定可变电容电路30的电容。
6.第二结构例中的数据电压
对本实施方式的驱动器100所输出的数据电压进行说明。在此,对数据电压的范围(数据电压的最大值)进行说明。
如图12(A)所示,首先,实施电容器电路10的初始化。即,将驱动部DR1~DR10的全部输出设定为0V,并设定电压VQ=VC=7.5V(式FC)。在该初始化中被蓄积于电容器电路10的电容CO、可变电容电路的电容CA和电光面板侧电容CP中的电荷的总量在以后的数据电压输出中被保存。
如图12(B)所示,输出数据电压的最大值的情况为,将驱动部DR1~DR10的全部输出均设定为15V的情况。此时的数据电压成为图12(B)的式FD所示的值。
如图12(C)所示那样,所需的数据电压范围例如设为5V。实现数据电压的最大值12.5V的情况为,式FD中CO/(CO+(CA+CP))=1/3、即CA+CP=2CO的情况。由于CA为可变电容电路的电容,因此能够自由设定,并且能够相对于所提供的CP而设定为CA=2CO-CP。即,无论与驱动器100连接的电光面板200的种类或安装基板的设计如何,都能够将数据电压的范围始终设定为7.5V至12.5V。
根据以上的第二结构例,驱动器100包括可变电容电路30。可变电容电路30被设置于数据电压输出端子TVQ与基准电压(低电位侧电源的电压,0V)的节点之间。而且,以如下的方式来设定可变电容电路30的电容CA,即,使可变电容电路30的电容CA和电光面板侧电容CP相加而得到的电容CA+CP(以下,称为“被驱动侧的电容”)与电容器电路10的电容CO(以下,称为“驱动侧的电容”)成为所给定的电容比关系(例如CO:(CA+CP)=1:2)。
在此,可变电容电路30的电容CA为,相对于可变电容电路30的可变的电容而被设定的电容值。在图11的示例中,为将与开关元件SWA1~SWA6中的成为导通的开关元件连接的调节用电容器的电容合计而得到的电容。此外,电光面板侧电容CP为,相对于数据电压输出端子TVQ而被连接于外部的电容(寄生电容、电路元件的电容)。在图11的示例中,为基板电容CP1与面板电容CP2。此外,电容器电路10的电容CO为,将电容器C1~C10的电容合计而得到的电容。
此外,所给定的电容比关系是指,驱动侧的电容CO与被驱动侧的电容CA+CP的比的关系。这种关系并不限定于各个电容的值被测定(明确地决定了电容值)的情况下的电容比。例如,也可以为根据与所给定的灰度数据GD[10:1]相对应的输出电压VQ而被推断出的电容比。由于电光面板侧电容CP通常不是事先能够获得测定值的电容,因此无法直接在该状态下决定可变电容电路30的电容CA。因此,如通过图15后述的那样,例如以相对于灰度数据GD[10:1]的中央值“200h”而输出VQ=10V的方式来决定可变电容电路30的电容CA。在该情况下,结果可推断出电容比CO:(CA+CP)=1:2,并能够根据该比与电容CA而推断出电容CP(虽然能够推断,但也可以不知晓电容CP)。
那么,在通过图1等进行了说明的第一结构例中,存在如下课题,即,当驱动器100的连接环境(安装基板的设计或电光面板200的种类)改变时,每次都需要变更设计。
对于这一点,根据第二结构例,通过设置可变电容电路30,从而能够实现不依赖于驱动器100的连接环境的通用的驱动器100。即,即使在电光面板侧电容CP不同的情况下,也能够通过相应地调节可变电容电路30的电容CA从而实现所给定的电容比关系(例如CO:(CA+CP)=1:2)。由于根据该电容比关系来决定数据电压的范围(在图12(A)至图12(C)的示例中为7.5V至12.5V),因此能够实现不依赖于连接环境的数据电压的范围。
此外,在本实施方式中,电容器驱动电路20根据灰度数据GD[10:1]的第1至第10位GD1~GD10而输出第一电压电平(0V)或第二电压电平(15V)以作为所述第1至第10电容器驱动电压中的各个驱动电压。而且,所给定的电容比关系通过第一电压电平与第二电压电平的电压差(15V)和被输入至数据电压输出端子TVQ的数据电压(输出电压VQ)之间的电压关系而被决定。
例如,在图12(A)至图12(C)的示例中,被输出至数据电压输出端子TVQ的数据电压的范围为5V(7.5V至12.5V)。在该情况下,以实现第一电压电平与第二电压电平的电压差(15V)和数据电压的范围(5V)之间的电压关系的方式来决定所给定的电容比关系。即,通过由电容CO与电容CA+CP所实现的分压(电压分割)而使15V被分压为5V的电容比CO:(CA+CP)=1:2成为所给定的电容比关系。
如果采用这种方式,则能够根据第一电压电平与第二电压电平的电压差(15V)和被输出至数据电压输出端子TVQ的数据电压(范围5V)之间的电压关系而决定所给定的电容比关系CO:(CA+CP)=1:2。反之,对于是否实现了所给定的电容比关系,只需对电压关系进行检查便能够判断出。即,即使不知晓电光面板侧电容CP,也能够根据电压关系来决定实现电容比CO:(CA+CP)=1:2的可变电容电路30的电容CA(例如图15的流程)。
7.驱动器的详细的结构例
在图13中图示了本实施方式的驱动器的详细的结构例。该驱动器100包括数据线驱动电路110和控制电路40。数据线驱动电路110包括电容器电路10、电容器驱动电路20、可变电容电路30、检测电路50。控制电路40包括数据输出电路42、接口电路44、可变电容控制电路46、寄存器部48(存储部)。另外,对于已经进行了说明的构成要素相同的构成要素标注相同的符号,并适当地省略了对于该构成要素的说明。
数据线驱动电路110对应于一个数据电压输出端子TVQ而设置有一个。虽然驱动器100包括多个数据线驱动电路与多个数据电压输出端子,但在图13中仅图示了一个。
接口电路44实施对驱动器100进行控制的显示控制器300(广义而言为处理部)与驱动器100之间的接口处理。例如,实施基于LVDS(LowVoltageDifferentialSignaling:低压差分信号)等的串行通信的接口处理。在该情况下,接口电路44包括对串行信号进行输入输出的I/O电路和对控制数据或图像数据进行串行并行转换的串行并行转换电路。此外,还包括线锁存器,所述线锁存器对从显示控制器300被输入并被转换为并行数据的图像数据进行锁存。线锁存器例如同时对与一条水平扫描线相对应的图像数据进行锁存。
数据输出电路42从与水平扫描线相对应的图像数据中取出向电容器驱动电路20输出的灰度数据GD[10:1],并作为数据DQ[10:1]而输出。数据输出电路42例如包括:定时控制器,其对电光面板200的驱动定时进行控制;选择电路,其从与水平扫描线相对应的图像数据中选择灰度数据GD[10:1];输出锁存器,其将所选择的灰度数据GD[10:1]作为数据DQ[10:1]而进行锁存。在实施通过图17等后述的相位展开驱动的情况下,输出锁存器同时对8个像素量(相当于数据线DL1~DL8的条数的量)的灰度数据GD[10:1]进行锁存。在该情况下,定时控制器以与相位展开驱动的驱动定时一致的方式对选择电路与输出锁存器的动作定时进行控制。此外,也可以根据通过接口电路44而接收到的图像数据来生成水平同步信号或垂直同步信号。此外,也可以向电光面板200输出用于对电光面板200的开关元件(SWEP1等)的导通、断开进行控制的信号(ENBX)、对栅极驱动(电光面板200的水平扫描线的选择)进行控制的信号。
检测电路50对数据电压输出节点NVQ的电压VQ进行检测。具体而言,对所给定的检测电压与电压VQ进行比较,并将其结果作为检测信号DET而输出。例如,在电压VQ为检测电压以上的情况下输出DET=“1”,在电压VQ小于检测电压的情况下输出DET=“0”。
可变电容控制电路46根据检测信号DET而对可变电容电路30的电容进行设定。该设定处理的流程将通过图15而在后文中进行叙述。可变电容控制电路46输出设定值CSW[6:1]以作为可变电容电路30的控制信号。该设定值CSW[6:1]通过第1至第6位CSW1~CSW6(第1至第m位)而被构成。位CSWs(s为m=6以下的自然数)被输入到可变电容电路30的开关元件SWAs中。例如,在位CSWs=“0”的情况下开关元件SWAs断开,在位CSWs=“1”的情况下开关元件SWAs导通。在实施设定处理的情况下,可变电容控制电路46输出检测用数据BD[10:1]。而且,数据输出电路42将检测用数据BD[10:1]作为输出数据DQ[10:1]而向电容器驱动电路20输出。
寄存器部48对通过设定处理而被设定的可变电容电路30的设定值CSW[6:1]和设定电容器驱动电路20的高阶位侧的驱动部DR8~DR10的驱动能力的设定值(控制信号SNR8~SNR10)进行存储。此外,寄存器部48被构成为,能够由显示控制器300经由接口电路44而进行访问。即,显示控制器300能够相对于寄存器部48而实施设定值CSW[6:1]、SNR8~SNR10的读取或写入。
在图14中图示了检测电路50的详细的结构例。检测电路50具有:检测电压生成电路GCDT,其生成检测电压Vh2;比较器OPDT,其对数据电压输出节点NVQ的电压VQ与检测电压Vh2进行比较。
检测电压生成电路GCDT输出通过例如由电阻元件形成的电压分割电路等而被预先决定的检测电压Vh2。或者,也可以通过寄存器设定等而输出可变的检测电压Vh2。在该情况下,检测电压生成电路GCDT也可以为对寄存器设定值实施D/A转换的D/A转换电路。
8.对可变电容电路的电容进行设定的处理
在图15中图示了对可变电容电路30的电容进行设定的处理的流程图。该处理例如在对驱动器100接通了电源时的启动时(在初始化处理中)实施。
如图15所示,当开始实施处理时,输出设定值CSW[6:1]=“3Fh”,从而将可变电容电路30的开关元件SWA1~SWA6全部设为导通(步骤S1)。接下来,输出检测用数据BD[10:1]=“000h”,从而将电容器驱动电路20的驱动部DR1~DR10的输出全部设定为0V(步骤S2)。接下来,将输出电压VQ设定为初始化电压VC=7.5V(步骤S3)。该初始化电压VC例如经由端子TVC而从外部被供给。
接下来,对可变电容电路30的电容进行临时设定(步骤S4)。例如,设定为设定值CSW[6:1]=“1Fh”。在该情况下,由于开关元件SWA6断开,开关元件SWA5~SWA1导通,因此电容成为最大值的一半。接下来,解除向输出电压VQ的初始化电压VC的供给(步骤S5)。接下来,将检测电压Vh2设定为所需的电压(步骤S6)。例如,设定为检测电压Vh2=10V。
接下来,使检测用数据BD[10:1]的MSB从BD10=“0”变化为BD10=“1”(步骤S7)。接下来,对输出电压VQ是否在检测电压Vh2=10V以上进行检测(步骤S8)。
在步骤S8中输出电压VQ小于检测电压Vh2=10V的情况下,返回至位BD10=“0”(步骤S9)。接下来,使设定值CSW[6:1]=“1Fh”减1而成为“1Eh”,从而使可变电容电路30的电容减小一级(步骤S10)。接下来,设定为位BD10=“1”(步骤S11)。接下来,对输出电压VQ是否在检测电压Vh2=10V以下进行检测(步骤S12)。在输出电压VQ在检测电压Vh2=10V以下的情况下返回至步骤S9,在输出电压VQ大于检测电压Vh2=10V的情况下结束处理。
在步骤S8中输出电压VQ在检测电压Vh2=10V以上的情况下,返回至位BD10=“0”(步骤S13)。接下来,使设定值CSW[6:1]=“1Fh”加1而成为“20h”,从而使可变电容电路30的电容增大一级(步骤S14)。接下来,设定为位BD10=“1”(步骤S15)。接下来,对输出电压VQ是否在检测电压Vh2=10V以上进行检测(步骤S16)。在输出电压VQ在检测电压Vh2=10V以上的情况下返回至步骤S13,在输出电压VQ小于检测电压Vh2=10V的情况下结束处理。
在图16(A)、图16(B)中模式化地图示了通过上述的步骤S8至S16而决定设定值CSW[6:1]的情况。
在上述的流程中,将检测用数据BD[10:1]的MSB设定为BD10=“1”,并对此时的输出电压VQ与检测电压Vh2=10V进行比较。BD[10:1]=“200h”为灰度数据范围“000h”至“3FFh”的中央值,检测电压Vh2=10V为数据电压范围7.5V至12.5V的中央值。即,如果在设为BD10=“1”时输出电压VQ与检测电压Vh2=10V一致,则可获得准确的(所需的)数据电压。
如图16(A)所示,在临时设定值CSW[6:1]=“1Fh”时,在步骤S8中为“否”的情况下,VQ<Vh2。在该情况下,需要使输出电压VQ上升。由图12(B)的式FD可知,当减小可变电容电路30的电容CA时输出电压VQ将上升,因此使设定值CSW[6:1]每次减小“1”。而且,在最初成为VQ≥Vh2的设定值CSW[6:1]=“1Ah”时停止。由此,能够决定可获得与检测电压Vh2最接近的输出电压VQ的设定值CSW[6:1]。
如图16(B)所示,在临时设定值CSW[6:1]=“1Fh”时,在步骤S8中为“是”的情况下,VQ≥Vh2。在该情况下,需要使输出电压VQ下降。由图12(B)的式FD可知,当增大可变电容电路30的电容CA时输出电压VQ将下降,因此使设定值CSW[6:1]每次增大“1”。而且,在最初成为VQ<Vh2的设定值CSW[6:1]=“24h”时停止。由此,能够决定可获得与检测电压Vh2最接近的输出电压VQ的设定值CSW[6:1]。
将通过以上的处理所获得的设定值CSW[6:1]决定为最终的设定值CSW[6:1],并将该设定值CSW[6:1]写入到寄存器部48中。在通过电容驱动对电光面板200进行驱动时,利用被存储于寄存器部48中的设定值CSW[6:1]来设定可变电容电路30的电容。
另外,虽然在本实施方式中以将可变电容电路30的设定值CSW[6:1]存储在寄存器部48中的情况为例进行了说明,但并不限定于此。例如,也可以将设定值CSW[6:1]存储在RAM等存储器中,还可以通过熔断器(例如,在制造时利用激光等切断而对设定值进行设定)来对设定值CSW[6:1]进行设定。
9.相位展开驱动的方法
接下来,对电光面板200的驱动方法进行说明。虽然在下文中以相位展开驱动为例而进行了说明,但本实施方式的驱动器100所实施的驱动方法并不限定于相位展开驱动。
在图17中,图示了驱动器第二个详细的结构例、电光面板的详细的结构例、驱动器与电光面板的连接结构例。
驱动器100包括控制电路40、第1至第k数据线驱动电路DD1~DDk(k为2以上的自然数)。数据线驱动电路DD1~DDk分别对应于图13的数据线驱动电路110。另外,在下文中以k=8的情况为例进行说明。
控制电路40向数据线驱动电路DD1~DD8中的各个数据线驱动电路输出对应的灰度数据。此外,控制电路40将控制信号(例如图18的ENBX等)向电光面板200输出。
数据线驱动电路DD1~DD8将灰度数据转换为数据电压,并将该数据电压作为输出电压VQ1~VQ8而向电光面板200的数据线DL1~DL8输出。
电光面板200包括数据线DL1~DL8(第1至第k数据线)、开关元件SWEP1~SWEP(tk)、源极线SL1~SL(tk)。t为2以上的自然数,在下文中,以t=160(即tk=160×8=1280(WXGA))的情况为例进行说明。
开关元件SWEP1~SWEP1280中的开关元件SWEP((j-1)×k+1)~SWEP(j×k)的一端被连接于数据线DL1~DL8。j为t=160以下的自然数。例如,在j=1的情况下,为开关元件SWEP1~SWEP8。
开关元件SWEP1~SWEP1280例如通过TFT(ThinFilmTransistor,薄膜晶体管)等而被构成,并根据来自驱动器100的控制信号而被控制。例如,电光面板200包括未图示的开关控制电路,该开关控制电路根据ENBX等控制信号而对开关元件SWEP1~SWEP1280的导通、断开进行控制。
在图18中,图示了图17的驱动器100与电光面板200的动作时序图。
在预充电期间中,信号ENBX成为高电平,开关元件SWEP1~SWEP1280全部成为导通。而且,源极线SL1~SL1280全部被设定为预充电电压VPR。
在初始化期间中,信号ENBX成为低电平,开关元件SWEP1~SWEP1280全部断开。而且,数据线DL1~DL8被设定为初始化电压VC=7.5V。源极线SL1~SL1280仍为预充电电压VPR。
在数据电压输出期间的第1输出期间中,与源极线SL1~SL8相对应的灰度数据被输入至数据线驱动电路DD1~DD8中。然后,实施由电容器电路10与电容器驱动电路20进行的电容驱动和由电压驱动电路80进行的电压驱动,数据线DL1~DL8通过数据电压SV1~SV8而被驱动。在电容驱动和电压驱动开始后,信号ENBX成为高电平,开关元件SWEP1~SWEP8导通。然后,源极线SL1~SL8通过数据电压SV1~SV8而被驱动。此时,通过未图示的栅极驱动器来选择一条栅极线(水平扫描线),并将数据电压SV1~SV8写入到与该被选择的栅极线和数据线DL1~DL8连接的像素电路中。另外,在图18中作为示例而图示了数据线DL1、源极线SL1的电位。
在第2输出期间中,与源极线SL9~SL16相对应的灰度数据被输入至数据线驱动电路DD1~DD8中。然后,实施由电容器电路10与电容器驱动电路20进行的电容驱动和由电压驱动电路80进行的电压驱动,数据线DL1~DL8通过数据电压SV9~SV16而被驱动。在电容驱动和电压驱动开始后,信号ENBX成为高电平,开关元件SWEP9~SWEP16导通。然后,源极线SL9~SL16通过数据电压SV9~SV16而被驱动。此时,将数据电压SV9~SV16写入到与所选择的栅极线和数据线DL9~DL16连接的像素电路中。另外,在图20中作为示例而图示了数据线DL1、源极线SL9的电位。
以后,以相同的方式在第3输出期间、第4输出期间、……、第160输出期间中,对源极线SL17~SL24、SL25~SL32、……、SL1263~SL1280进行驱动,并转移到后充电期间。
10.电子设备
在图19中图示了能够应用本实施方式的驱动器100的电子设备的结构例。作为本实施方式的电子设备,例如能够假定投影仪、电视机装置、信息处理装置(计算机)、便携型信息终端、汽车导航系统、便携型游戏机终端等搭载了显示装置的各种电子设备。
图19所示的电子设备包括驱动器100、电光面板200、显示控制器300(第一处理部)、CPU310(第二处理部)、存储部320、用户接口部330、数据接口部340。
电光面板200例如为矩阵型的液晶显示面板。或者,电光面板200也可以为使用了自发光元件的EL(Electro-Luminescence:场致发光)显示面板。用户接口部330为接收来自用户的各种操作的接口部。例如,通过按键或鼠标、键盘、被安装在电光面板200上的触摸面板等而被构成。数据接口部340为实施图像数据与控制数据的输入输出的接口部。例如为,USB等有线通信接口或无线LAN等无线通信接口。存储部320对从数据接口部340所输入的图像数据进行存储。或者,存储部320作为CPU310或显示控制器300的工作存储器而发挥作用。CPU310实施电子设备的各部的控制处理与各种数据处理。显示控制器300实施驱动器100的控制处理。例如,显示控制器300将从数据接口部340或存储部320传送来的图像数据转换为驱动器100能够接收的形式,并将该转换后的图像数据向驱动器100进行输出。驱动器100根据从显示控制器300传送来的图像数据而对电光面板200进行驱动。
另外,虽然以上述方式对本实施方式进行了详细说明,但本领域技术人员能够很容易理解如下的内容,即,能够实施在实质上不脱离本发明的新颖事项以及效果的多种改变。因此,这种改变例也全部被包含在本发明的范围中。例如,在说明书或附图中至少一次与更为广义或同义的不同用语(第一逻辑电平、第二逻辑电平)一起记载的用语(低电平、高电平),在说明书或附图的任意位置处均能够置换为该不同的用语。此外,本实施方式以及改变例的所有的组合也被包含在本发明的范围内。此外,电容器电路、电容器驱动电路、可变电容电路、检测电路、控制电路、驱动器、电光面板、电子设备的结构与动作等均不限定于本实施方式中所说明的内容,能够实施各种改变。
符号说明
10:电容器电路;20:电容器驱动电路;30:可变电容电路;40:控制电路;42:数据输出电路;44:接口电路;46:可变电容控制电路;48:寄存器部(存储部);50:检测电路;100:驱动器;110:数据线驱动电路;200:电光面板;300:显示控制器;310:CPU;320:存储部;330:用户接口部;340:数据接口部;C1:电容器;CA:可变电容电路的电容;CA1:调节用电容器;CO:电容器电路的电容;CP:电光面板侧电容;DD1、DD2:静电保护用的二极管;DL1:数据线;DR1:驱动部;GD1:位;GD[10:1]:灰度数据;NDR1:电容器驱动节点;RP:静电保护用的电阻元件;SL1:源极线;SWA1:开关元件;SWEP1:开关元件;TVQ:数据电压输出端子;VC:初始化电压;Vh2:检测电压;VPR:预充电电压。

Claims (9)

1.一种驱动器,其特征在于,包括:
电容器驱动电路,其将与灰度数据相对应的第1至第n电容器驱动电压向第1至第n电容器驱动用节点输出,其中,n为2以上的自然数;
电容器电路,其具有被设置于所述第1至第n电容器驱动用节点与数据电压输出端子之间的第1至第n电容器,
所述电容器驱动电路具有输出所述第1至第n电容器驱动电压的第1至第n驱动部,
在所述第1至第n电容器的电容中的第n电容器的电容为最大的情况下,所述第1至第n驱动部中的至少所述第n驱动部为驱动能力可变的驱动部。
2.如权利要求1所述的驱动器,其特征在于,
在将所述第1至第n驱动部的驱动能力设为D1~Dn,将所述第1至第n电容器的电容设为C1~Cn的情况下,
以成为Dn/Cn<D1/C1的方式而对所述第n驱动部的驱动能力Dn进行设定。
3.如权利要求1或2所述的驱动器,其特征在于,
包括存储部,所述存储部对所述驱动能力可变的驱动部的驱动能力的设定值进行存储。
4.一种驱动器,其特征在于,包括:
电容器驱动电路,其将与灰度数据相对应的第1至第n电容器驱动电压向第1至第n电容器驱动用节点输出,其中,n为2以上的自然数;
电容器电路,其具有被设置于所述第1至第n电容器驱动用节点与数据电压输出端子之间的第1至第n电容器,
所述电容器驱动电路具有输出所述第1至第n电容器驱动电压的第1至第n驱动部,
在将所述第1至第n驱动部的驱动能力设为D1~Dn,将所述第1至第n电容器的电容设为C1~Cn的情况下,
以成为Dn/Cn<D1/C1的方式而对所述第n驱动部的驱动能力Dn进行设定。
5.如权利要求1至4中任一项所述的驱动器,其特征在于,
所述第1至第n驱动部中的第j至第n驱动部为驱动能力可变的驱动部,其中,j为1≤j≤n的自然数,
所述第1至第n驱动部中的第1至第j-1驱动部为驱动能力固定的驱动部。
6.如权利要求5所述的驱动器,其特征在于,
在将所述第1至第n驱动部的驱动能力设为D1~Dn,将所述第1至第n电容器的电容设为C1~Cn的情况下,
以成为Di/Ci<D1/C1的方式而对所述第j至第n驱动部的驱动能力进行设定,其中,i为j≤i≤n的自然数。
7.如权利要求5或6所述的驱动器,其特征在于,
包括存储部,所述存储部对所述驱动能力可变的驱动部的驱动能力的设定值进行存储。
8.如权利要求1至7中任一项所述的驱动器,其特征在于,
包括可变电容电路,所述可变电容电路被设置于所述数据电压输出端子与基准电压的节点之间,
所述可变电容电路的电容以如下方式被设定,即,使所述可变电容电路的电容和电光面板侧电容相加而得到的电容与所述电容器电路的电容成为所给定的电容比关系。
9.一种电子设备,其特征在于,
包括权利要求1至8中任一项所述的驱动器。
CN201510870967.XA 2014-12-05 2015-12-02 驱动器以及电子设备 Active CN105679258B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-246531 2014-12-05
JP2014246531A JP6455110B2 (ja) 2014-12-05 2014-12-05 ドライバー及び電子機器

Publications (2)

Publication Number Publication Date
CN105679258A true CN105679258A (zh) 2016-06-15
CN105679258B CN105679258B (zh) 2019-11-08

Family

ID=56094841

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510870967.XA Active CN105679258B (zh) 2014-12-05 2015-12-02 驱动器以及电子设备

Country Status (3)

Country Link
US (1) US9792872B2 (zh)
JP (1) JP6455110B2 (zh)
CN (1) CN105679258B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI713986B (zh) * 2018-01-30 2020-12-21 聯詠科技股份有限公司 積體電路與顯示裝置及其抗干擾方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020060636A1 (en) * 2000-09-14 2002-05-23 Maeda Kazuhiro Digital-to-analog conversion circuit and image display apparatus using the same
US20050206598A1 (en) * 1999-07-23 2005-09-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for operating the same
CN1691518A (zh) * 2004-04-30 2005-11-02 中国科学院半导体研究所 单电子数字模拟信号转换装置
CN101501997A (zh) * 2006-08-11 2009-08-05 夏普株式会社 数模转换器
US20110148680A1 (en) * 2009-12-18 2011-06-23 Advantest Corporation Digital-analog converting apparatus and test apparatus
CN102594353A (zh) * 2011-01-13 2012-07-18 中兴通讯股份有限公司 一种数模转换器及逐次逼近存储转换器
CN103684267A (zh) * 2012-09-11 2014-03-26 联发科技股份有限公司 信号混频电路以及相关转换器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911677B1 (en) * 1997-04-18 2007-08-22 Seiko Epson Corporation Circuit and method for driving electrooptic device, electrooptic device, and electronic equipment made by using the same
US6420988B1 (en) 1998-12-03 2002-07-16 Semiconductor Energy Laboratory Co., Ltd. Digital analog converter and electronic device using the same
JP4485030B2 (ja) 1999-08-16 2010-06-16 株式会社半導体エネルギー研究所 D/a変換回路、半導体装置、及び電子機器
US6486812B1 (en) 1999-08-16 2002-11-26 Semiconductor Energy Laboratory Co., Ltd. D/A conversion circuit having n switches, n capacitors and a coupling capacitor
JP2004117742A (ja) * 2002-09-25 2004-04-15 Sharp Corp 表示装置ならびにその駆動回路および駆動方法
JP2010102080A (ja) 2008-10-23 2010-05-06 Seiko Epson Corp 集積回路装置及び電子機器
JP4743286B2 (ja) 2009-02-04 2011-08-10 セイコーエプソン株式会社 集積回路装置、電気光学装置及び電子機器
US7965212B1 (en) * 2010-02-12 2011-06-21 Bae Systems Information And Electronic Systems Integration Inc. DAC circuit using summing junction delay compensation
JP6149596B2 (ja) 2013-08-13 2017-06-21 セイコーエプソン株式会社 データ線ドライバー、半導体集積回路装置、及び、電子機器
JP6390078B2 (ja) 2013-08-17 2018-09-19 セイコーエプソン株式会社 データ線ドライバー、半導体集積回路装置、及び、電子機器
US9741311B2 (en) 2013-08-13 2017-08-22 Seiko Epson Corporation Data line driver, semiconductor integrated circuit device, and electronic appliance with improved gradation voltage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050206598A1 (en) * 1999-07-23 2005-09-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for operating the same
US20020060636A1 (en) * 2000-09-14 2002-05-23 Maeda Kazuhiro Digital-to-analog conversion circuit and image display apparatus using the same
CN1691518A (zh) * 2004-04-30 2005-11-02 中国科学院半导体研究所 单电子数字模拟信号转换装置
CN101501997A (zh) * 2006-08-11 2009-08-05 夏普株式会社 数模转换器
US20110148680A1 (en) * 2009-12-18 2011-06-23 Advantest Corporation Digital-analog converting apparatus and test apparatus
CN102594353A (zh) * 2011-01-13 2012-07-18 中兴通讯股份有限公司 一种数模转换器及逐次逼近存储转换器
CN103684267A (zh) * 2012-09-11 2014-03-26 联发科技股份有限公司 信号混频电路以及相关转换器

Also Published As

Publication number Publication date
JP6455110B2 (ja) 2019-01-23
JP2016109836A (ja) 2016-06-20
US9792872B2 (en) 2017-10-17
US20160163284A1 (en) 2016-06-09
CN105679258B (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN105529005A (zh) 驱动器以及电子设备
CN109559696B (zh) 显示模组及其伽马电压调节方法,以及显示装置
CN105895021B (zh) 用于显示面板的耦合补偿器和包括耦合补偿器的显示装置
CN103325349B (zh) 液晶显示设备
KR101966381B1 (ko) 쉬프트 레지스터 및 이를 포함하는 평판표시장치
CN105590598A (zh) 驱动器以及电子设备
CN101191927B (zh) 显示装置的驱动电路和重置方法、及源电压生成器
CN105679260B (zh) 驱动器以及电子设备
KR102333485B1 (ko) 디스플레이 구동 회로 및 그것을 포함하는 표시 장치
US11049451B2 (en) Display device performing multi-frequency driving
JP6439393B2 (ja) ドライバー及び電子機器
CN105825825A (zh) 驱动器、电光装置及电子设备
CN105528980A (zh) 驱动器以及电子设备
CN111383595A (zh) 支持部分驱动模式的有机发光二极管显示装置
CN101944322B (zh) 移位寄存电路
CN105679258A (zh) 驱动器以及电子设备
CN105528975A (zh) 驱动器以及电子设备
CN105825824A (zh) 驱动器、电光装置及电子设备
US20080042958A1 (en) Circuits and Methods for Generating a Common Voltage
CN202183221U (zh) 提高薄膜晶体管像素充电能力的驱动电路
CN110349541A (zh) 显示装置的扫描驱动器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant