CN105645951A - 一种促进二氧化钛相变且抑制晶粒长大的方法 - Google Patents

一种促进二氧化钛相变且抑制晶粒长大的方法 Download PDF

Info

Publication number
CN105645951A
CN105645951A CN201610001912.XA CN201610001912A CN105645951A CN 105645951 A CN105645951 A CN 105645951A CN 201610001912 A CN201610001912 A CN 201610001912A CN 105645951 A CN105645951 A CN 105645951A
Authority
CN
China
Prior art keywords
titanium dioxide
grain growth
phase transformation
liquid
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610001912.XA
Other languages
English (en)
Inventor
严继康
姜贵民
段志操
杜景红
甘国友
易健宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201610001912.XA priority Critical patent/CN105645951A/zh
Publication of CN105645951A publication Critical patent/CN105645951A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种促进二氧化钛相变且抑制晶粒长大的方法,属于功能材料技术领域。本发明所述方法利用不同的二氧化钛粉体制备方法制备出掺杂的二氧化钛粉末;将二氧化钛粉末加入表面具脱模剂的石墨模具中,之后将石墨模具放入热压烧结炉中,在气氛中进行热压烧结,并且在保温结束后降温过程中,加速气氛的流通量,使样品快速冷却;本发明降低了二氧化钛粉末由锐钛矿相金红石转变温度,并有效抑制晶粒的长大。

Description

一种促进二氧化钛相变且抑制晶粒长大的方法
技术领域
本发明涉及一种促进二氧化钛相变且抑制晶粒长大的方法,属于功能材料技术领域。
背景技术
TiO2存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,板钛矿和锐钛矿相是亚稳态,是TiO2的低温相;金红石相是热力学稳定态,是TiO2的高温相,锐钛矿相和板钛矿相得到金红石相的转化温度一般为500~600℃。从锐钛矿到金红石的相变是亚稳态到稳定态的不可逆相变,不存在特定的相变温度,通常有较宽的相变温度范围。温度的升高是促进锐钛矿向金红石转变必不可少的条件,达到相变温度时,金红石的(100)面在母相锐钛矿的(112)上形核长大。但相变的温度却受很多复杂的影响,如制备方法、晶粒尺寸、晶粒形态、表面积、大气压、样品体积、煅烧时的升温速度、掺杂、第二相等。压力作为相变的影响因素,不仅会促进相变,降低相变温度,也会在烧结过程中抑制晶粒长大,锐钛矿相向金红石相转变(A→R转变)过程中金红石相晶粒尺寸反而减小,这是因为金红石相在形成过程中发生复成核。
由于锐钛矿相和金红石相结构不同,它们的性质也不同,因而不同应用,所需晶型有所不同。在光催化和光电转化性能方面,锐钛矿相要优于金红石相,而金红石型TiO2因折射率高,耐候性、热稳定性和化学稳定性优越,而广泛用于塑料、油墨、白色颜料和高级轿车金属面漆等,电子工业常利用金红石相二氧化钛的电常数和半导体性质来生产陶瓷电容器等电子元器件。所以不同的应用所需晶型或是仅需单一晶型特性或是需两种或三种晶型特性,如作为光催化剂的P25,三种晶型都存在。不容质疑的是,晶粒尺寸达到纳米级,由于尺寸效应,其各方面性能均会有提高。得到纳米级的陶瓷晶粒,粉体至少也要是纳米级的,而粉末粒度越小,相变温度越低;粒度越大,转化温度越高。纳米级的TiO2相变温度为500~600℃。在粉体加热中再施加压力即利用热压烧结来制备TiO2陶瓷,其相变温度在400℃或更低。若要利用TiO2陶瓷的力学性能时,陶瓷的晶粒须非常细小,甚至达到纳米量级,因此其力学性能方面得到显著改善。
常规烧结由于温度相对热压高,且烧结时间较长,晶粒尺寸很容易因烧结时间长而增大,对其性能会有所降低。利用热压烧结不仅促进了相变,而且最重要的是抑制其晶粒长大,尤其A→R相变时金红石相由于复成核其尺寸会更小,对于性能方面有所提高。
发明内容
为了提高二氧化钛的光催化性,本发明通过掺杂元素及氧化气氛热压烧结降低二氧化钛从锐钛矿向金红石转变的相变温度,所制备出二氧化钛为纳米级,而且在烧结过程中抑制晶粒长大从而将晶粒尺寸也控制在纳米级,本发明所述方法包括以下步骤:
(1)将所得的纳米TiO2粉末放入内壁及垫片有脱模剂的石墨模具中;
(2)将石墨模具放入热压烧结炉中,进行1-7h的气氛热压烧结,保温结束后降温过程中,加速气氛的流通量,使样品快速冷却得到二氧化钛陶瓷。
优选的,本发明所述热压烧结时温度为400-700℃。
优选的,本发明所述纳米TiO2粉末的粒度为20~100nm。
优选的,本发明所述所得粉体热压烧结过程中压力不得小于粒径(20~100nm)所对应“阈值”0.5GPa~2GPa。
优选的,本发明所述气氛为H2、Cl2和Ar等。
优选的,本发明所述纳米TiO2粉末由以下方法制备得到:
(1)按前驱体钛酸四丁酯与无水乙醇体积比为1:1.9~2.1的比例,将前驱体钛酸四丁酯与无水乙醇在磁力搅拌下混合后超声10~20min作为A液。
(2)按质量百分比浓度为65~70%的HNO3、去离子水、无水乙醇的体积比为1:3:16~18的比例将HNO3、去离子水、无水乙醇混合后作为B液。
(3)若有掺杂,将掺杂物溶于B液,并利用超声振荡器使其完全溶解。
(4)在磁力搅拌器中,将B液缓慢滴加入A液后直至PH值为4.7~5.2,之后继续搅拌1小时并超声10~20min;将该溶胶在室温下静置陈化18~30小时,然后放入干燥箱中于70~90℃下干燥85~105小时;取出干凝胶在玛瑙研钵中进行研磨。
本发明所用的热压石墨模具需在内腔、石墨垫片与样品接触的表面亦涂上脱模剂(石墨、氮化硼),晾干后,将适量的纳米TiO2粉末放入各层的垫片间,最上一层亦设一垫片,并装入上、下冲头。
本发明的原理:常规烧结由于温度相对热压高,且烧结时间较长,晶粒尺寸很容易因烧结时间长而增大,对其性能会有所降低;利用热压烧结不仅促进了相变,而且最重要的是抑制其晶粒长大,尤其A→R相变时金红石相由于复成核其尺寸会更小,对于性能方面有所提高;反应气氛对相变的作用主要是不同气氛在二氧化钛晶体中所造成的晶格缺陷方式的差异引起的;晶隙钛对原子扩散有阻滞作用,往往能够推迟相变的发生;因为二氧化钛的锐钛矿相到金红石相的相变涉及六个钛氧键中两个键的断裂,而氧缺陷的存在则降低了相变活化能,从而有利于相变的进行;因此,增加晶格中氧缺陷浓度的反应气氛则能够促进相变的进行;反之,增加晶隙钛浓度的反应气氛则推迟相变的发生。氧化气氛中如氯气等都会将晶格表面中的氧反应,并形成氧空位;从而促进相变。
本发明的有益效果为:
(1)本发明可有效的降低二氧化钛相变的温度,且操作简单;
(2)本发明制备的纯TiO2粉末的锐钛矿相向金红石相转变主要发生在450~650℃之间,加压的TiO2粉末的锐钛矿相向金红石相转变主要发生在400~500℃之间,可见,热压提高了TiO2粉末的相转变,将相变终止温度降低了150℃;这是因为高压产生的应变是母相(锐钛矿相)连续失稳,并且应变产生的缺陷也促进新相形核,从而提高了TiO2的晶型转变。
(3)本发明制备的纯TiO2纳米陶瓷,其晶粒尺寸随压力的提高而减少,这是由于高烧结压力导致快的核化速率而引起的,这种现象随着压力的升高更趋明显。这也意味着在低温下加压烧结最终会产生更细的颗粒。
具体实施方式
下面结合具体实施方式对本发明作进一步详细说明,但本发明的保护范围并不限于所述内容。
实施例1
(1)纳米TiO2粉末的制备:
①按前驱体钛酸四丁酯与无水乙醇体积比为1:1.9的比例,将前驱体钛酸四丁酯与无水乙醇在磁力搅拌下混合后超声10min作为A液;
②按质量百分比浓度为70%的HNO3、去离子水、无水乙醇的体积比为1:3:16的比例将HNO3、去离子水、无水乙醇混合后作为B液;
③将La2O3和Ce(NO3)3·6H2O溶于B液,B液中镧和铈的浓度均为5mol%,并利用超声振荡器使其完全溶解;
④在磁力搅拌器中,将③中的到的溶液液缓慢滴加入A液后直至PH值为4.7,之后继续搅拌1小时并超声20min;将该溶胶在室温下静置陈化18小时,然后放入干燥箱中于80℃下干燥85小时;取出干凝胶在玛瑙研钵中进行研磨。
(3)将所得的纳米TiO2粉末放入内壁及垫片有脱模剂的石墨模具中;
(4)将石墨模具放入热压烧结炉中,400℃进行7h的气氛Cl2热压烧结,压力0.5Gp,保温结束后降温过程中,加速气氛的流通量(350ml/min),使样品快速冷却得到二氧化钛陶瓷然后随炉冷却,得到二氧化钛陶瓷。
本发明制备的镧、铈掺杂的二氧化钛粉末D50=41nm的纳米粉,热压烧结在400℃即完成非晶向锐钛矿相的转变并发生A→R相变,随着烧结压力的增大,金红石的含量增多,压力为0时相转变量为5.3%,相转变量最大可达到96%(样品:P=1.5Gpa,T=400℃)。且相变后的晶粒变小(1.25GPa时40~36nm,1.5GPa时53~41nm)。
实施例2
(1)纳米TiO2粉末的制备:
①按前驱体钛酸四丁酯与无水乙醇体积比为1:2的比例,将前驱体钛酸四丁酯与无水乙醇在磁力搅拌下混合后超声15min作为A液;
②按质量百分比浓度为68%的HNO3、去离子水、无水乙醇的体积比为1:3:18的比例将HNO3、去离子水、无水乙醇混合后作为B液;
③将La2O3和Ce(NO3)3·6H2O溶于B液,B液中镧和铈的浓度均为5mol%,并利用超声振荡器使其完全溶解;
④在磁力搅拌器中,将③中的到的溶液液缓慢滴加入A液后直至PH值为5,之后继续搅拌1小时并超声15min;将该溶胶在室温下静置陈化25小时,然后放入干燥箱中于70℃下干燥95小时;取出干凝胶在玛瑙研钵中进行研磨。
(3)将所得的纳米TiO2粉末放入内壁及垫片有脱模剂的石墨模具中;
(4)将石墨模具放入热压烧结炉中,600℃进行5h的气氛(H2)热压烧结,压力0.5GPa,保温结束后降温过程中,加速气氛的流通量(350ml/min),使样品快速冷却得到二氧化钛陶瓷然后随炉冷却,得到二氧化钛陶瓷。
本发明制备的镧、铈掺杂的二氧化钛粉末D50=46nm的纳米粉,热压烧结在500℃已完成非晶向锐钛矿相的转变并发生A→R相变,此样品表明了金红石相粒径要远远小于锐钛矿相的粒径(分别为54nm,71nm),且发生了91%相变(A→R相变)。
实施例3
(1)纳米TiO2粉末的制备:
①按前驱体钛酸四丁酯与无水乙醇体积比为1:2.1的比例,将前驱体钛酸四丁酯与无水乙醇在磁力搅拌下混合后超声20min作为A液;
②按质量百分比浓度为65%的HNO3、去离子水、无水乙醇的体积比为1:3:17的比例将HNO3、去离子水、无水乙醇混合后作为B液;
③将La(NO3)3·6H2O和Fe(NO3)3·6H2O及尿素(CO(NH2)2)溶于B液,B液中镧、铁和氮的浓度均为3mol%,并利用超声振荡器使其完全溶解;
④在磁力搅拌器中,将③中的到的溶液缓慢滴加入A液后直至PH值为5.2,之后继续搅拌1小时并超声10min;将该溶胶在室温下静置陈化30小时,然后放入干燥箱中于90℃下干燥105小时;取出干凝胶在玛瑙研钵中进行研磨。
(3)将所得的纳米TiO2粉末放入内壁及垫片有脱模剂的石墨模具中;
(4)将石墨模具放入热压烧结炉中,700℃进行1h的气氛(Ar)热压烧结,压力1.5Gpa,保温结束后降温过程中,加速气氛的流通量(400ml/min),使样品快速冷却得到二氧化钛陶瓷然后随炉冷却,得到二氧化钛陶瓷。
本发明制备的镧、铁和氮掺杂的二氧化钛粉末D50=41nm的纳米粉,在热压烧结下400℃即完成二氧化钛非晶向锐钛矿相的转变,相变前后锐钛矿相和金红石相的晶粒尺寸分别为:67nm、53nm。且有87%的锐钛矿相发生相变转变为金红石相。
实施例4
(1)纳米TiO2粉末的制备:
①按前驱体钛酸四丁酯与无水乙醇体积比为1:2的比例,将前驱体钛酸四丁酯与无水乙醇在磁力搅拌下混合后超声15min作为A液;
②按质量百分比浓度为68%的HNO3、去离子水、无水乙醇的体积比为1:3:18的比例将HNO3、去离子水、无水乙醇混合后作为B液;
③将La2O3和Ce(NO3)3·6H2O溶于B液,B液中镧和铈的浓度均为5mol%,并利用超声振荡器使其完全溶解;
④在磁力搅拌器中,将③中的到的溶液液缓慢滴加入A液后直至PH值为5,之后继续搅拌1小时并超声15min;将该溶胶在室温下静置陈化25小时,然后放入干燥箱中于70℃下干燥95小时;取出干凝胶在玛瑙研钵中进行研磨。
(3)将所得的纳米TiO2粉末放入内壁及垫片有脱模剂的石墨模具中;
(4)将石墨模具放入热压烧结炉中,600℃进行5h的气氛(H2)热压烧结,压力0.5GPa,保温结束后降温过程中,加速气氛的流通量(400ml/min),使样品快速冷却得到二氧化钛陶瓷然后随炉冷却,得到二氧化钛陶瓷。
本发明制备的镧、铈掺杂的二氧化钛粉末D50=46nm的纳米粉,热压烧结在500℃已完成非晶向锐钛矿相的转变并发生A→R相变,此样品表明了金红石相粒径要远远小于锐钛矿相的粒径(分别为53nm,72nm),且发生了93%相变(A→R相变)。

Claims (6)

1.一种促进二氧化钛相变且抑制晶粒长大的方法,其特征在于,具体包括以下步骤:
(1)将所得的纳米TiO2粉末放入内壁及垫片有脱模剂的石墨模具中;
(2)将石墨模具放入热压烧结炉中,进行1-7h的气氛热压烧结,保温结束后降温过程中,加速气氛的流通量,使样品快速冷却得到二氧化钛陶瓷。
2.根据权利要求1所述的促进二氧化钛相变且抑制晶粒长大的方法,其特征在于:热压烧结时温度为400-700℃。
3.根据权利要求1所述的促进二氧化钛相变且抑制晶粒长大的方法,其特征在于:纳米TiO2粉末的粒度为20~100nm。
4.根据权利要求1所述的促进二氧化钛相变且抑制晶粒长大的方法,其特征在于:所得粉体在热压烧结炉中的压力不得小于粉末粒径所对应“阈值”0.5GPa~2GPa。
5.根据权利要求1所述的促进二氧化钛相变且抑制晶粒长大的方法,其特征在于:所述气氛为H2、Cl2和Ar等。
6.根据权利要求1所述的促进二氧化钛相变且抑制晶粒长大的方法,其特征在于:所述纳米TiO2粉末由以下方法制备得到:
(1)按前驱体钛酸四丁酯与无水乙醇体积比为1:1.9~2.1的比例,将前驱体钛酸四丁酯与无水乙醇在磁力搅拌下混合后超声10~20min作为A液;
(2)按质量百分比浓度为65%~70%的HNO3、去离子水、无水乙醇的体积比为1:3:16~18的比例将HNO3、去离子水、无水乙醇混合后作为B液;
(3)若有掺杂,将掺杂物溶于B液,并利用超声振荡器使其完全溶解;
(4)在磁力搅拌器中,将B液缓慢滴加入A液后直至PH值为4.7~5.2,之后继续搅拌1小时并超声10~20min;将该溶胶在室温下静置陈化18~30小时,然后放入干燥箱中于70~90℃下干燥85~105小时;取出干凝胶在玛瑙研钵中进行研磨。
CN201610001912.XA 2016-01-06 2016-01-06 一种促进二氧化钛相变且抑制晶粒长大的方法 Pending CN105645951A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610001912.XA CN105645951A (zh) 2016-01-06 2016-01-06 一种促进二氧化钛相变且抑制晶粒长大的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610001912.XA CN105645951A (zh) 2016-01-06 2016-01-06 一种促进二氧化钛相变且抑制晶粒长大的方法

Publications (1)

Publication Number Publication Date
CN105645951A true CN105645951A (zh) 2016-06-08

Family

ID=56491301

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610001912.XA Pending CN105645951A (zh) 2016-01-06 2016-01-06 一种促进二氧化钛相变且抑制晶粒长大的方法

Country Status (1)

Country Link
CN (1) CN105645951A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503150A (zh) * 2018-12-04 2019-03-22 海南中航特玻科技有限公司 一种氧化气氛下的金红石二氧化钛陶瓷烧结方法
CN110256065A (zh) * 2019-07-19 2019-09-20 陕西科技大学 一种致密氧化钛纳米陶瓷及其制备方法和应用
CN111205085A (zh) * 2020-02-03 2020-05-29 河南理工大学 一种超高介电常数低介电损耗的二氧化钛基陶瓷的制备方法
RU2753684C2 (ru) * 2016-12-20 2021-08-19 Сэн-Гобэн Сантр Де Решерш Э Д'Этюд Эропеен Пористые керамические продукты из субоксидов титана

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351962A (zh) * 2001-11-23 2002-06-05 清华大学 一种低温制备纳米金红石相二氧化钛的方法
CN104645963A (zh) * 2015-02-05 2015-05-27 昆明理工大学 一种抑制二氧化钛相变的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1351962A (zh) * 2001-11-23 2002-06-05 清华大学 一种低温制备纳米金红石相二氧化钛的方法
CN104645963A (zh) * 2015-02-05 2015-05-27 昆明理工大学 一种抑制二氧化钛相变的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. WEIBEL ET AL.: "Hot pressing of nanocrystalline TiO2 (anatase) ceramics with controlled microstructure", 《JOURNAL OF THE EUROPEAN CERAMIC SOCIETY》 *
S.-C. LIAO ET AL.: "THE EFFECT OF HIGH PRESSURE ON PHASE TRANSFORMATION OF NANOCRYSTALLINE TiO2 DURING HOT-PRESSING", 《NANOSTRUCTURED MATERIALS》 *
SHIH-CHIEH LIAO ET AL.: "High pressure and low temperature sintering of bulk nanocrystalline TiO2", 《MATERIALS SCIENCE AND ENGINEERING》 *
水淼等: "二氧化钛相变的原理、动力学和条件依赖性", 《化学通报(网络版)》 *
荣雪荃等: "铈掺杂二氧化钛的化学态分析", 《人工晶体学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2753684C2 (ru) * 2016-12-20 2021-08-19 Сэн-Гобэн Сантр Де Решерш Э Д'Этюд Эропеен Пористые керамические продукты из субоксидов титана
CN109503150A (zh) * 2018-12-04 2019-03-22 海南中航特玻科技有限公司 一种氧化气氛下的金红石二氧化钛陶瓷烧结方法
CN110256065A (zh) * 2019-07-19 2019-09-20 陕西科技大学 一种致密氧化钛纳米陶瓷及其制备方法和应用
CN111205085A (zh) * 2020-02-03 2020-05-29 河南理工大学 一种超高介电常数低介电损耗的二氧化钛基陶瓷的制备方法
CN111205085B (zh) * 2020-02-03 2021-07-27 河南理工大学 一种超高介电常数低介电损耗的二氧化钛基陶瓷的制备方法

Similar Documents

Publication Publication Date Title
CN105645951A (zh) 一种促进二氧化钛相变且抑制晶粒长大的方法
CN107151029B (zh) 一种四方相钛酸钡粉体的溶胶-水热法制备工艺
CN102923770B (zh) 一种钇稳定纳米二氧化锆粉体的制备方法
CN105217676B (zh) 具有纳米片及纳米多孔结构的氧化钛气凝胶及其制备方法
CN101134586A (zh) 一种纳米氧化铝空心球的制备方法
CN102285686A (zh) 快速溶胶凝胶制备铁-氮共掺杂介孔纳米二氧化钛的方法
CN106178981A (zh) 一种低温制备氧化钛陶瓷超滤膜的方法
Wang et al. Coprecipitation Synthesis of MgO‐Doped ZrO2 Nano Powder
CN102976400A (zh) 一种四方相纳米钛酸钡的制备方法
CN105272269A (zh) 一种氮化硅/六方氮化硼纳米复相陶瓷的制备方法
CN107522169A (zh) 一种常温制备纳米氧化物的纯有机均相沉积法
Das et al. Chemical synthesis of fine powder of lead magnesium niobate using niobium tartarate complex
CN106145999B (zh) 一种块状La2O3-Al2O3复合气凝胶的制备方法
CN105859272B (zh) 低温烧结制备纳米负膨胀陶瓷LiAlSiO4的方法
CN105821476B (zh) 一种高长径比水合及无水硼酸钙纳米晶须的温和水热-热转化合成方法
CN108530057A (zh) 溶胶-凝胶法制备应用于储能的形貌可控CaTiO3陶瓷的方法
CN109336572A (zh) 一种制备氧化物陶瓷的冷压烧结方法
CN104370472A (zh) 玻璃负载纳米TiO2膜的制备方法
CN106115708A (zh) 一种蜂窝状三维连续多孔硅材料及其制备方法
CN102964128A (zh) 一种Yb2Si2O7粉体的溶胶凝胶制备方法
Mahato et al. Perspective chapter: Sol-gel science and technology in context of nanomaterials–Recent advances
CN103408330B (zh) 采用铝溶胶对陶瓷表面进行修饰的方法
CN101456561B (zh) 一种纳米莫来石粉体的制备方法
Erol et al. HIPed TiO2 dense pellets with improved photocatalytic performance
Chu et al. Synthesis and characterization of novel coral spherical bismuth oxide

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160608

RJ01 Rejection of invention patent application after publication