CN1056375C - 高纯度蛋黄磷脂的精制工艺 - Google Patents

高纯度蛋黄磷脂的精制工艺 Download PDF

Info

Publication number
CN1056375C
CN1056375C CN96120082A CN96120082A CN1056375C CN 1056375 C CN1056375 C CN 1056375C CN 96120082 A CN96120082 A CN 96120082A CN 96120082 A CN96120082 A CN 96120082A CN 1056375 C CN1056375 C CN 1056375C
Authority
CN
China
Prior art keywords
purity
extractor
refining
supercritical
carbonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN96120082A
Other languages
English (en)
Other versions
CN1179426A (zh
Inventor
赖炳森
毛中兴
沈晓京
路萍
孙树秦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING MEDICAL HIGHER TECHNICAL COLLEGE PLA
Original Assignee
BEIJING MEDICAL HIGHER TECHNICAL COLLEGE PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING MEDICAL HIGHER TECHNICAL COLLEGE PLA filed Critical BEIJING MEDICAL HIGHER TECHNICAL COLLEGE PLA
Priority to CN96120082A priority Critical patent/CN1056375C/zh
Publication of CN1179426A publication Critical patent/CN1179426A/zh
Application granted granted Critical
Publication of CN1056375C publication Critical patent/CN1056375C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Meat, Egg Or Seafood Products (AREA)
  • Fats And Perfumes (AREA)

Abstract

本发明涉及高纯度蛋黄磷脂的制备方法。该法是以蛋黄粉为原料,置于萃取器中,向萃取器中通入超临界的二氧化碳。在超临界条件下除去甘油三酯和胆固醇,向盛有除去了甘油三酯和胆固醇的蛋黄粉的萃取器中,通入含有乙醇的超临界二氧化碳,在超临界条件下分离出蛋黄磷脂。本法设备简化,易于操作,产品纯度及回收率高。产品中不含有胆固醇。本法可生产出三种产品使蛋黄粉得以综合利用。

Description

高纯度蛋黄磷脂的精制工艺
本发明涉及高纯度磷脂的制备方法,更确切地说是高纯蛋黄磷脂的制备方法。
磷脂是一类含磷酸根的脂类,是组织细胞的基本组成成分,具有重要的生物学功能。磷脂中含高度不饱和脂肪酸,是人体多烯酸的重要来源。它具有降低血中的胆固醇(Ch)和甘油三酯(TG)含量,改善脂类代谢和动脉硬化的功能。磷脂分子是典型的兼溶性分子,具有较好的乳化功能,是脂质体的基本组成成分,又是全静脉营养乳剂的重要成分。它具有较高的医用价值,有健脑、美容、抗衰、降血脂、保肝补血等作用,在化工、轻工、食品工业等各各领域有着广泛的应用。
动物、植物中卵黄含磷脂最多达18%,大豆为1.82%,前者是后者的9.9倍,提取磷脂的主要原料为大豆(提取大豆磷脂)和蛋黄(蛋黄磷脂)。磷脂中最主要的成分是卵磷脂(PC),蛋黄磷脂中含PC 72.6%,大豆磷脂中含PC 16~21%。
人体所需的磷脂主要来自蛋黄和大豆等天然食物,但是随着科学技术的发展及生活水平的提高,食物精加工后使磷脂减少,而机体对磷脂的需求量却增多,因而易导致磷脂营养相对不足,所以发达国家中磷脂是不受限制的食品添加剂。随着我国人民生活水平的不断提高,磷脂的需求量越来越大。
从天然食品中提取磷脂的方法有二种:一种是化学萃取法,第二种是物理萃取法。
所说的化学萃取法就是利用乙醇、乙醚、氯仿、丙酮等有机溶剂反复萃取提取磷脂的方法。化学萃取法虽可以获取较高纯度的磷脂,但是步骤繁多,过程冗长,使得磷脂在萃取过程中易被氧化水解,其稳定性降低,从而导致磷脂的质量下降。另外,化学萃取法要加入较多的化学试剂,其中包括大量的有机溶剂。由于磷脂多用于医药、食品及化妆品中,因此必须将其除去,但仍存有微量有机溶剂影响磷脂的质量。再者,用化学萃取法制备的蛋黄磷脂,其中胆固醇的含量仍较高,即使用丙酮处理,蛋黄磷脂中的胆固醇的含量也难低于2.5%。而且,化学萃取法又不可避免地造成一定的环境污染,有损于实验人员的健康。
所说的物理萃取法就是超临界流体萃取法(SFE)。
超临界流体(SCF)是指在临界压力和临界温度以上相区的气体。由于处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称超临界流体(SCF)。
早在1897年J.B.Hannay等发现在超临界状态下气体对固体物质具有溶解作用,也就是说超临界流体和液体一样,能够溶解固体。而且这种超临界流体作为“溶剂”时,对物质的溶解作用受压力、温度的影响,通过改变温度和压力而达到将不同物质分离的目的,这样就形成了所说的物理萃取法(超临界流体萃取法),常用的超临界萃取溶剂有氨、二氧化碳、丁烷、乙烷等。
由于二氧化碳(CO2)是一种不活泼的气体。它的临界温度(Tc:31.1℃),近于常温水平,临界压力(Pc 7.30MPa)也不很高,而且具有无毒、价廉、易得,易挥发,无致癌性等特点,又不与被萃取物发生化学反应。所以二氧化碳广泛应用于超临界流体萃取法中作为超临界萃取溶剂,用于医药、食品、香料及化妆品等领域的物质分离中。以二氧化碳作为超临界萃取溶剂有许多优点,由于用二氧化碳作为超临界萃取溶剂使产品中不含有害的有机溶剂,不污染环境。超临界二氧化碳萃取是在二氧化碳环境中、常温下进行,可以防止产品中高度不饱和脂肪酸氧化,提高了产品的质量,而且萃取与分离同时进行,从而大大提高了反应效率,操作简单。二氧化碳又可以循环使用,降低了产品的成本。其缺点是固定投资较大。
近些年来关于磷脂的提取方面的报导日益增多,中国专利文献CN1047083A(申请号89103233.9)用大豆混合磷脂为原料,通过萃取分离将卵磷脂与脑磷脂分开,然后用盐析、溶解吸附和脱脂等工艺,对卵磷脂进行进一步处理制取了口服级和注射级卵磷脂乳化剂。
德国专利文献DE2,833,371报导了用化学萃取法,以蛋黄为原料制取高纯度卵磷脂的方法,将2千克蛋黄与5.5千克甲醚混合,在28℃,5.7公斤/平方厘米的条件下搅拌30分钟,过滤除去蛋白质,将滤液于40℃的条件下蒸发,除去甲醚后得787克残留物,按此法反复处理7次,后在50℃,10公斤/平方厘米的条件下蒸发,再通过5000转/分离心10分钟,取得较高纯度的卵磷脂。
日本专利文献特开平3-133991报导了以粗制的卵磷脂为原料来制取纯度为90~99.0%的卵磷脂的方法。该法是将一定量的原料粗制卵磷脂装入注入器中,温度保持在32~70℃,从注入器的喷嘴,呈丝状,以0.5-10克/小时的速度注入到提取槽中,与此同时将温度为32-70℃,压力为80-600公斤/平方厘米的超临界状态的二氧化碳或上述温度、压力的超临界状态的二氧化碳中含有CO2总量0.1-4%(重量百分数)的乙醇、丙酮其中的一种的混合物,以3-3000升/小时的速度进入到提取槽中,使超临界状态的二氧化碳与粗制卵磷脂接触,原料粗制卵磷脂和超临界状态的二氧化碳注入完毕后,再向提取槽注入超临界状态的二氧化碳10-60分钟。该法的优点是有的制取卵磷脂的工艺流程制出的卵磷脂的纯度高,其不足之处是回收率低,进料设备复杂,不易操作,进料速度慢,单位时间内的产量低。
本发明的目的就在于研究出从天然的原料中提取磷脂的方法,使得制出的磷脂纯度高,回收率也高,设备有所简化,又易操作,单位时间的产量有较大的提高。
本发明的高纯度蛋黄磷脂的精制工艺,以蛋黄粉为原料,将蛋黄粉装入萃取器中,向盛有原料蛋黄粉的萃取器中通入超临界二氧化碳,在萃取器中于萃取压力30-45MPa,温度35-55℃的超临界条件下连续萃取,在分离器中收集甘油三酯(TG)和胆固醇(Ch),连续萃取至不再分离出甘油三酯和胆固醇为止;向盛有除去了甘油三酯和胆固醇的蛋黄粉的萃取器中通入含有乙醇的超临界二氧化碳,在萃取器中于萃取压力30~45MPa,温度35-55℃的超临界条件下连续萃取,在分离器中收集蛋黄磷脂的乙醇溶液,连续萃取至蛋黄磷脂的乙醇溶液在分离器中收集完全为止,在含有乙醇的超临界二氧化碳中乙醇与二氧化碳的摩尔比为1∶5~15,萃取器中的残余物为蛋白粉。
作为原料的蛋黄粉中一般含有的水份为10%(重量百分数,下同)以下,以含有水份1-10%为好,又以含有1-5%为更佳。将蛋黄粉装入萃取器中后,向盛有原料蛋黄粉的萃取器中通入超临界二氧化碳,在萃取器中于萃取压力30~45MPa,温度35-55℃的超临界条件下连续萃取,又以在萃取器中于萃取压力35-42MPa,温度36-48℃的超临界条件下连续萃取为好。超临界的二氧化碳的平均流量保持在0.5~50升/分为佳,又以保持在2.5-20升/分为更佳。在分离器中收集甘油三酯(TG)和胆固醇(Ch)至不再分离出甘油三酯和胆固醇为止。通入临界二氧化碳将甘油三酯和胆固醇在分离器中收集完全的时间一般在0.5~10小时之间。将甘油三酯和胆固醇分离收集完全后,得到甘油三酯和胆固醇产品。向盛有除去了甘油三酯和胆固醇的蛋黄粉的萃取器中通入含有乙醇的超临界二氧化碳,在萃取器中于萃取压力30-45MPa,温度35-55℃的超临界条件下连续萃取,又以在萃取器中于萃取压力35~42MPa,温度36-48℃的超临界条件下连续萃取为好。含有乙醇的超临界二氧化碳的平均流量保持在0.5-50升/分为好,又以保持在2-20升/分为更好。在分离器中收集蛋黄磷脂的乙醇溶液,在分离器中收集蛋黄磷脂的乙醇溶液收集完全所需时间为0.1-2小时,又以0.5-2小时为好。在萃取器中残余物为蛋白粉。在含有乙醇的超临界二氧化碳中乙醇与超二氧化碳的摩尔比为1∶5~15,其摩尔比又以1∶6~13为佳。所用的超临界二氧化碳的纯度为92-100%(纯度92-100%即二氧化碳中含有二氧化碳为92-100%,体积百分数,下同),以95~98%为佳,又以99-99.5为最佳。国产的二氧化碳的纯度一般为95~99.5%,经再提纯后可达到99~100%的纯度,所用乙醇中乙醇的含量为90~100%(重量百分数),以95~99.7%为好。市售无水乙醇中乙醇的含量为99.7%。
在分离器中所收集到的蛋黄磷脂的乙醇溶液经减压蒸馏,回收乙醇,而得到蛋黄磷脂固体产品。减压蒸馏控制的压力为0.06~0.08MPa,控制的温度为40-80℃。减压蒸馏所制得的蛋黄磷脂于20-30Pa的压力,-15~-35℃的温度下进行低温干燥。低温干燥后的蛋黄磷脂于-15~-40℃的温度下进行贮藏。
从分离器中出来的二氧化碳可以回收,循环使用。在本发明的方法中也可以用丙酮、石油醚等有机溶剂来代替乙醇与超临界二氧化碳来萃取蛋黄粉中的蛋黄磷脂,但以乙醇为佳。
超临界流体二氧化碳萃取蛋黄磷脂的流程示意图见图1。图1中A为二氧化碳贮罐用于贮存二氧化碳。二氧化碳贮罐A中的二氧化碳经阀门开关G进入制冷装置F中,使二氧化碳再一次液化进行提纯。若二氧化碳贮罐中的二氧化碳的纯度为95~98%时,经制冷装置F再一次的液化后二氧化碳的纯度为可达99~99.5%。液态二氧化碳在柱塞泵B中加压到30-45MPa,又以加压到35-42MPa为佳。柱塞泵B上有流量针,由流量计控制二氧化碳的流量,使其达到所需要的二氧化碳的流量,进入萃取器C中进行萃取,除去蛋黄粉中的甘油三酯和胆固醇。使甘油三酯和胆固醇收集到分离器D中,二氧化碳从分离器D中出来再回到二氧化碳贮罐A中使二氧化碳得以回收。
若用含有乙醇的临界二氧化碳来萃取分离蛋黄磷脂时,在改性剂泵E中将乙醇加压到8~10MPa,改性剂泵上设有流量计,控制乙醇的流量,将需要量的乙醇和来自制冷装置F的二氧化碳形成含有乙醇的二氧化碳,使乙醇与二氧化碳的摩尔比为1∶5~15,又以其摩尔比1∶6~13为好,含有乙醇的二氧化碳进入柱塞泵B中,加压到30~45MPa,又以加压到35~42MPa为好,形成含有乙醇的超临界二氧化碳进入萃取器C中,萃取分离蛋黄磷脂,使蛋黄磷脂收集到分离器D中,二氧化碳从分离室D回到二氧化碳贮罐A中,在萃取器C中留下残余物蛋白粉。
以200克蛋黄粉为原料,用本发明的工艺制得的三种产品,它们是甘油三酯和胆固醇、蛋黄磷脂、蛋白粉。通过分析天平测出这三种产品的重量和所占的重量百分数见表1。
          表1  三种产品的重量和所占的重量百分数产品名称              重量(克)             所占的重量百分数(%)甘油三酯和              82.7                      41.4胆固醇蛋黄磷脂                27.7                      13.9蛋白粉                 86.0                      43.0
从表1中可以看出蛋黄粉中的蛋黄磷脂的含量为13.9%,符合一般的含有14%左右的文献记载。
用磷钼酸法测定了用本发明的工艺制得的蛋黄磷脂、化学萃取法制得的蛋黄磷脂和市售的蛋黄磷脂中的磷,用微量凯氏定氮法测定了它们的含氮量,并计算出了N/P的克分子比,其结果见表2。
       表2  三种蛋黄磷脂中氮、磷含量及N/P克分子比产品            P(%)           N(%)          N/P(克分子比)本发明工艺制       3.77            1.71              1.003得的蛋黄磷脂化学萃取法制       3.79            1.78              1.038得的蛋黄磷脂市售蛋黄磷脂       3.49            1.85             1.196
注:P、N的百分数均为重量百分数。
从表2可以看出三种产品中磷、氮的含量的分析结果。本发明的工艺制得的产品中磷含量值与化学萃取法制得的产品中的磷含量值相似,均高于市售产品中的磷含量值。本发明工艺生产的蛋黄磷脂的N/P(克分子比)非常接近1.000理论值。这就表明化学萃取法生产出来的蛋黄磷脂中可能存在除蛋黄磷脂以外的含氮化合物。
        表3  三种产品中蛋黄磷脂的重量百分含量产品               按P计算(%)             按N计算(%)本发明的工艺             95.0                    95.0生产的蛋黄磷脂化学萃取法生产出的       95.4                    98.8蛋黄磷脂市售蛋黄磷脂             86.1                   102.4
用薄层层析法对蛋黄磷脂进行了定性分析,其图谱见图2。从定性分析的结果表明,用本发明的工艺方法生产出来的蛋黄磷脂至少有四种磷脂∶磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、神经鞘磷脂(SM)、溶血卵磷脂(LPS)。
用本发明的工艺生产出的蛋黄磷脂经薄层层析后,用岛津CS-930双波长薄层层析扫描仪扫描定量,结果见表4。
     表4  本发明工艺生产的蛋黄磷脂中四种磷脂的含量组份               平均含量(%)              CV(%)PC                   75.44                  1.18SM                    2.82                  3.14LPS                   6.64                  2.50PE                   12.40                  2.31
从表4中可以看出这四种磷脂的含量各不相等,以PC(磷脂酰胆碱)含量最高,占蛋黄磷脂量的75.44%,其后依次是PE(磷脂酰乙醇胺)含量为12.4%,LPS(溶血卵磷脂)为6.64%,SM(神经鞘磷脂)为2.82%,此结果与文献报导卵黄磷脂中PC占70%左右的结果相似。
用GC/MS法(气相色谱-质谱法)分析鉴定了用本发明的工艺制出的蛋黄磷脂样品。分析结果表明样品中含有8种脂肪酸,它们是软脂酸、硬脂酸、棕榈油酸、油酸、亚油酸,花生四烯酸、DHA、未确定不饱和脂肪酸,其中不饱和脂肪酸占52%,饱和脂肪酸占48%。不饱和脂肪酸中营养必需脂肪酸量约为20%。
通过内标法测定了本发明工艺生产的蛋黄磷脂样品中花生四烯酸含量为6.27%,DHA为2.52%,而且不含胆固醇。
用本发明的工艺生产出来的蛋黄膦脂溶于无水乙醇中,浓度为0.1%,用紫外分光光度计测定其吸收光谱,其最大吸收峰位于214nm,与文献报导非常相近。
用电感耦合等离子体原子发射光谱法及化学法测定了用本发明工艺生产出来的蛋黄磷脂样品中的各种元素的含量,结果见表5。
            表5  蛋黄磷脂中各种元素的含量元素名称        含量(μg/g)         元素名称         含量(μg/g)钙(Ca)          181.0              镍(Ni)            4.06铁(Fe)           66.5              砷(As)            0.095钠(Na)         2105.0              铅(Pb)            0.178钾(K)           465.0              钒(V)             5.25铜(Cu)            2.90             汞(Hg)            0.0046锌(Zn)            8.03             铝(Al)            63.10锰(Mn)            1.18             镉(Cd)            0.0012硼(B)             6.70             磷(P)            37400.0钴(Co)            0.57
本发明的高纯度蛋黄磷脂的精制工艺的优点就在于:
1.本发明的工艺除了具有超临二氧化碳萃取法所有的特点外,还具有其自己的优点,本发明的工艺设备简化,尤其是供料设备得以简化,易于操作,萃取与分离同时进行,易于操作,产品纯度和回收率高。制出的产品蛋黄磷脂不含胆固醇和乙醇,乙醇和二氧化碳可循环使用,降低了产品的成本。
2.用本发明的工艺生产出的蛋黄磷脂由于不含有害的有机溶剂,可用于临床和食品工业中。
3.本发明的工艺由于二氧化碳、乙醇循环使用,不污染环境,不损害实验工作人员的健康。
4.本发明的工艺可以生产出甘油三酯和胆固醇、蛋黄磷脂和蛋白粉三种产品,除蛋黄磷脂外,其他二种产品亦有应用开发价值,对蛋黄粉原料进行了综合利用。
图1为超临界流体二氧化碳萃取蛋黄磷脂流程示意图。
图2为超临界流体二氧化碳萃取出的蛋黄磷脂的薄层层析图谱
PC(磷脂酰胆碱),PE(磷脂酰乙醇胺),SM(神经鞘磷脂),LPS(溶血卵磷脂)。
用以下实施例对本发明的工艺作进一步的说明,将有助于对本发明及其优点的进一步理解,而不作为对本发明的限定,本发明的保护范围由权利要求书来决定,
实施例1
以150克蛋黄粉为原料,将蛋黄粉装入萃取器C中,二氧化碳从二氧化碳贮罐A中经阀门开关G直接导入柱塞泵B中,将二氧化碳加压到31MPa形成超临界二氧化碳进入到萃取器C中,在萃取器C中于萃取压力31MPa和50℃的超临界条件下连续萃取,在分离器D中收集甘油三酯和胆固醇产品,至不再分离出甘油三酯和胆固醇为止,二氧化碳从分离器D中回收二氧化碳到二氧化碳贮罐A中得到回收。收集完甘油三酯和胆固醇产品后,来自二氧化碳贮罐A的纯度为95%的二氧化碳和来自改性剂泵E中加压到8MPa的乙醇直接导入柱塞泵B中加压到44MPa,形成含有乙醇的超临界二氧化碳进入盛有除去了甘油三酯和胆固醇的蛋黄粉的萃取器C中,乙醇与二氧化碳的摩尔比为1∶5.5,在萃取器C中于萃取压力44MPa,48℃的超临界条件下连续萃取,萃取至蛋黄磷脂的乙醇溶液完全收集在分离器D中为止。二氧化碳从分离器D中回到二氧化碳贮罐A中。萃取器C中的残留物为蛋白粉产品。将蛋黄磷脂经减压蒸馏得蛋黄磷脂产品20.10克,其含磷量(重量百分数,下同)为3.76%,蛋黄磷脂的纯度为94.7%,回收率为95.7%。
实施例2
其设备与操作过程同实施例1,唯不同的是以250克蛋黄粉为原料,将二氧化碳加压到38MPa,形成超临界二氧化碳,进入到萃取器C中,在萃取器C中于萃取压力38MPa和40℃的超临界条件下连续萃取,二氧化碳平均流量保持在1.5升/分,得到甘油三酯和胆固醇。来自二氧化碳贮罐A的二氧化碳和来自改性剂泵E的纯度为93%的乙醇在柱塞泵B中加压到32MPa形成乙醇与二氧化碳的摩尔比为1∶14.5的含乙醇的超临界二氧化碳进入到萃取器C中,于萃取压力32MPa,温度38℃的超临界条件下连续萃取。含乙醇的超临界二氧化碳的平均流量保持在1.5升/分。收集蛋黄磷脂的乙醇溶液于分离器D中。得到产品蛋黄磷脂33.75克,其含磷量(重量百分数,下同)为3.74%,蛋黄磷脂的纯度为94.2%,回收率为96.4%。
实施例3
以含水份为3%的200克蛋黄粉为原料,将蛋黄粉装入萃取器C中,所用的二氧化碳为市售的纯度为96.5%的二氧化碳。纯度为96.5%的二氧化碳从二氧化碳贮罐A中经阀门开关G进入制冷装置F中。在制冷装置F中使二氧化碳再一次液化进行提纯,经提纯后的二氧化碳的纯度为99.5%,提纯到99.5%的二氧化碳导入柱塞泵B中,将纯度99.5%的二氧化碳加压到42MPa形成超临界二氧化碳进入到萃取器C中。在萃取器C中于萃取压力42MPa和48℃的超临界条件下连续萃取,二氧化碳的平均流量保持在4升/分,萃取6小时,至不再分离出甘油三酯和胆固醇。在分离器D中将甘油三酯(TG)和胆固醇(Ch)收集完全。二氧化碳从分离器D中回收二氧化碳到二氧化碳贮罐A中。在改性剂泵E中将乙醇加压到9MPa,乙醇的含量为99.7%的乙醇。纯度为96.5%的二氧化碳从二氧化碳贮罐A中经阀门开关G进入到制冷装置F中,使CO2再一次液化进行提纯,经提纯使其纯度为99.5%的二氧化碳。控制来自改性剂泵E的加压到9MPa的乙醇的流量与经提纯使其纯度为99.5%的二氧化碳形成乙醇与二氧化碳的摩尔比为1∶10的含乙醇的二氧化碳,进入到柱塞泵B中加压到42MPa形成含乙醇的超临界二氧化碳,进入到盛有除去了甘油三酯和胆固醇的蛋黄粉的萃取器C中,在萃取器C中于萃取压力42MPa,温度45℃的超临界条件下连续萃取,含有乙醇的超临界二氧化碳的平均流量为5升/分。在分离器D中收集蛋黄磷脂的乙醇溶液,收集时间为0.5小时。分离器D中的二氧化碳回收到二氧化碳贮罐A中。萃取器C中留下的残余物为蛋白粉。在分离器D中收集到的蛋黄磷脂的乙醇溶液于0.07MPa,48℃的温度下进行减压蒸馏后,再于25Pa,-25℃的条件下进行低温干燥,干燥后的蛋黄磷脂于-40℃的温度下进行贮藏。得到的蛋黄磷脂产品27.80克,其含磷量(重量百分数,下同)为3.83%,蛋黄磷脂的纯度为96.5%,回收率为99.3%。
实施例4
其设备与操作过程同实施例3,唯不同的是以含水份5%的100克新鲜蛋黄粉(北京禽蛋厂)为原料,装在萃取器C中。所用二氧化碳的纯度为99.5%(北京酒精厂生产),经制冷装置F进行液化提纯到100%,在柱塞泵B中将100%的二氧化碳加压到42MPa形成临界二氧化碳进入萃取器C中,在萃取器C中于萃取压力42MPa和49℃的超临界条件下连续萃取,二氧化碳的平均流量保持在3升/分,萃取8小时。在分离器D中将甘油三酯和胆固醇收集完全。在改性剂泵E中将乙醇含量为95%的乙醇加压到8MPa,将乙醇与经提纯使其纯度为100%的二氧化碳形成乙醇与二氧化碳的摩尔比为1∶8.33的含乙醇的二氧化碳进入到柱塞泵B中加压到42MPa,形成含乙醇的超临界二氧化碳进入到萃取器C中,在萃取器C中于萃取压力42MPa,温度42℃的超临界条件下连续萃取,含有乙醇的超临界二氧化碳的平均流量为3升/分、在分离器D中收集蛋黄磷脂的乙醇溶液,收集时间为0.7小时。分离器D中的二氧化碳回收到二氧化碳贮罐A中。萃取器C中留下残余物为蛋白粉,于0.065MPa,60℃的温度下进行减压蒸馏,于20Pa的压力,-20℃的温度下进行低温干燥,于-25℃的温度下贮藏。得到的蛋黄磷脂产品为14.10克,其含磷量(重量百分数,下同)为3.82%,蛋黄磷脂的纯度为96.2%,回收率为100%。
实施例5
其设备与操作同实施例3,唯不同的是以含水份7%的200克蛋黄粉为原料,装在萃取器C中,所用二氧化碳的纯度为95%,经制冷装置F进行液化提纯到99%,在柱塞泵B中将纯度99%的二氧化碳加压到38MPa形成临界二氧化碳,进入萃取器C中。在萃取器C中于萃取压力38MPa,55℃的超临界条件下连续萃取,超临界二氧化碳的平均流量为2升/分,萃取4小时。在分离器D中将甘油三酯和胆固醇收集完全。在改性剂泵E中将乙醇含量为95%的乙醇加压到10MPa,将乙醇与经提纯使其纯度为99%的二氧化碳形成乙醇与二氧化碳的摩尔比为1∶10的含有乙醇的二氧化碳进入到柱塞泵B中加压到38MPa,形成含乙醇的超临界二氧化碳,进入到萃取器C中。在萃取器C中于萃取压力38MPa,55℃的超临界条件下连续萃取,含有乙醇的超临界二氧化碳的平均流量为2升/分。在分离器D中收集蛋黄磷脂的乙醇溶液,收集时间为0.5小时。分离器D中的二氧化碳回收到二氧化碳贮罐A中。萃取器C中留有的残余物为蛋白粉,于0.07MPa,45℃的温度下进行减压蒸馏,于25Pa,-30℃的条件下进行低温干燥,于-30℃的温度下贮藏。得到的蛋黄磷脂产品为27.40克,其含磷量(重量百分数,下同)为3.77%,蛋黄磷脂的纯度为95.0%,回收率为97.9%。
实施例6
其设备与操作同实施例3,唯不同的是以含水份2%的100克蛋黄粉为原料,装在萃取器C中,所用二氧化碳的纯度为95%,经制冷装置F进行液化提纯到99%,在柱塞泵B中将纯度99%的二氧化碳加压到42MPa形成临界二氧化碳,进入萃取器C中。在萃取器C中于萃取压力42MPa,45℃的超临界条件下连续萃取,超临界二氧化碳的平均流量为2.5升/分,萃取10小时,在分离器D中将甘油三酯和胆固醇收集完全,在改性剂泵中将乙醇含量为95%的乙醇加压到9MPa,将乙醇与经提纯使其纯度为99%的二氧化碳形成乙醇与二氧化碳的摩尔比为1∶6.67的含有乙醇的二氧化碳进入到柱塞泵B中,加压到42MPa,形成含有乙醇的超临界二氧化碳,进入到萃取器C中,在萃取器C中于萃取压力42MPa,45℃的超临界条件下连续萃取,含有乙醇的超临界二氧化碳的平均流量为2升/分。在分离器D中收集蛋黄磷脂的乙醇溶液,收集的时间为0.5小时。萃取器C中留有的残余物为蛋白粉。于0.07MPa,58℃的条件下进行减压蒸馏。于25Pa,-30℃的条件下进行低温干燥,于-35℃的温度下贮藏,得到的蛋黄磷脂产品为13.80克,其含磷量(重量百分数,下同)为3.79%,蛋黄磷脂的纯度为95.5%,回收率为98.5%。
实施例7
其设备与操作同实施例3,唯不同的是以含水份4%的200克的蛋黄粉为原料,装在萃取器C中。所用二氧化碳的纯度为95%,经制冷装置F进行液化提纯到99.5%。在柱塞泵B中将纯度99.5%的二氧化碳加压到40MPa形成临界二氧化碳,进入萃取器C中。在萃取器C中于萃取压力40MPa,45℃的超临界条件下连续萃取。超临界二氧化碳的平均流量为3升/分,萃取6小时。在分离器D中将甘油三酯和胆固醇分离完全。在改性剂泵E中将乙醇含量为95%的乙醇加压到9MPa。将乙醇与经提纯使其纯度为99.5%的二氧化碳形成乙醇与二氧化碳的摩尔比为1∶10的含乙醇的二氧化碳进入到柱塞泵B中,加压到40MPa,形成含乙醇的超临界二氧化碳进入到萃取器C中。在萃取器C中于萃取压力40MPa,45℃的超临界条件下连续萃取,含有乙醇的超临界二氧化碳的平均流量为3升/分。在分离器D中收集蛋黄磷脂的乙醇溶液,收集的时间为0.5小时。在萃取器C中留有残余物为蛋白粉,于0.07MPa,50℃的条件下进行减压蒸馏。于25Pa,-30℃的条件下进行低温干燥,于-35℃的温度下贮藏。得到的蛋黄磷脂产品为27.80克,其含磷量(重量百分数,下同)为3.80%,蛋黄磷脂的纯度为95.7%,回收率为99.3%。
实施例8
其设备与操作同实施例3。唯不同的是以含水份6%的100克蛋黄粉为原料,装在萃取器C中。所用二氧化碳的纯度为95%,经制冷装置F进行液化提纯到99.5%。在柱塞泵B中将纯度99.5%的二氧化碳加压到41MPa形成临界二氧化碳进入萃取器C中。在萃取器C中于萃取压力41MPa,46℃的超临界条件下连续萃取,超临界二氧化碳的平均流量为2.5升/分,萃取4小时。在分离器D中将甘油三酯和胆固醇分离完全。在改性剂泵E中把乙醇含量为95%的乙醇加压到9MPa后,把加压到9MPa的乙醇与经提纯使其纯度为99.5%的二氧化碳形成乙醇与二氧化碳的摩尔比为1∶10的含乙醇的二氧化碳进入到柱塞泵B中,加压到41MPa,形成含乙醇的超临界二氧化碳进入到萃取器C中。在萃取器C中于萃取压力41MPa,46℃的超临界条件下连续萃取。含有乙醇的超临界二氧化碳的平均流量为2.5升/分,在分离器D中收集蛋黄磷脂的乙醇溶液,收集的时间为0.5小时。在萃取器C中留有的残余物为蛋白粉。于0.07MPa,50℃的条件下进行减压蒸馏,于25Pa,-30℃的条件下进行低温干燥。于-35℃的温度下贮藏,得到的蛋黄磷脂产品为13.60克,其含磷量(重量百分数,下同)为3.77%,蛋黄磷脂的纯度为95.0%,回收率为97.1%。

Claims (16)

1.一种高纯度蛋黄磷脂的精制工艺,其特征是,以蛋黄粉为原料,将蛋黄粉装入萃取器中,向盛有蛋黄粉的萃取器中通入超临界二氧化碳,在萃取器中于萃取压力30~45MPa,温度35~55℃的超临界条件下连续萃取,在分离器中收集甘油三酯和胆固醇,连续萃取至不再分离出甘油三酯和胆固醇为止;向盛有除去了甘油三酯和胆固醇的蛋黄粉的萃取器中通入含有乙醇的超临界二氧化碳,在萃取器中于萃取压力30~45MPa,温度35~55℃的超临界条件下连续萃取,在分离器中收集蛋黄磷脂的乙醇溶液,连续萃取至蛋黄磷脂的乙醇溶液在分离器中收集完全为止,在含有乙醇的超临界二氧化碳中,乙醇与二氧化碳的摩尔比为1∶5~15,萃取器中的残余物为蛋白粉。
2.根据权利要求1的一种高纯度蛋黄磷脂的精制工艺,其特征是,原料蛋黄粉中含有水份10%重量百分数以下。
3.根据权利要求2的一种高纯度蛋黄磷脂的精制工艺,其特征是,原料蛋黄粉中含有水份1~10%重量百分数。
4.根据权利要求3的一种高纯度蛋黄磷脂的精制工艺,其特征是,原料蛋黄粉中含有水份1~5%重量百分数。
5.根据权利要求1的一种高纯度蛋黄磷脂的精制工艺,其特征是,向盛有原料蛋黄粉的萃取器中通入超临界二氧化碳,在萃取器中于萃取压力35-42MPa,温度36~48℃的超临界条件下连续萃取。
6.根据权利要求1的一种高纯度蛋黄磷脂的精制工艺,其特征是,向盛有除去了甘油三酯和胆固醇的蛋黄粉的萃取器中通入含有乙醇的超临界二氧化碳,在萃取器中于萃取压力35-42MPa,温度36~48℃的超临界条件下连续萃取。
7.根据权利要求1或6的一种高纯度蛋黄磷脂的精制工艺,其特征是,在含有乙醇的超临界二氧化碳中乙醇与二氧化碳的摩尔比为1∶6~13。
8.根据权利要求1的一种高纯度蛋黄磷脂的精制工艺,其特征是,超临界二氧化碳的平均流量保持在0.5-50升/分。
9.根据权利要求8的一种高纯度蛋黄磷脂的精制工艺,其特征是,超临界二氧化碳的平均流量保持在2.5-20升/分。
10.根据权利要求1的一种高纯度蛋黄磷脂的精制工艺,其特征是,含有乙醇的超临界二氧化碳的平均流量保持在0.5-50升/分。
11.根据权利要求10的一种高纯度蛋黄磷脂的精制工艺,其特征是,含有乙醇的超临界二氧化碳的平均流量保持在2-20升/分。
12.根据权利要求1的一种高纯度蛋黄磷脂的精制工艺,其特征是,二氧化碳的纯度为92~100%体积百分数。
13.根据权利要求12的一种高纯度蛋黄磷脂的精制工艺,其特征是,二氧化碳的纯度为95~98%体积百分数。
14.根据权利要求12的一种高纯度蛋黄磷脂的精制工艺,其特征是,二氧化碳的纯度为99~99.5%体积百分数。
15.根据权利要求1或3或5或6或8或10或12的一种高纯度蛋黄磷脂的精制工艺,其特征是,收集的蛋黄磷脂的乙醇溶液于0.06~0.08MPa,温度40-80℃的条件下减压蒸馏。
16.根据权利要求15的一种高纯度蛋黄磷脂的精制工艺,其特征是,减压蒸馏后得到的蛋黄磷脂于20-30Pa,-15~-35℃的温度下进行低温干燥。
CN96120082A 1996-10-15 1996-10-15 高纯度蛋黄磷脂的精制工艺 Expired - Fee Related CN1056375C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN96120082A CN1056375C (zh) 1996-10-15 1996-10-15 高纯度蛋黄磷脂的精制工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN96120082A CN1056375C (zh) 1996-10-15 1996-10-15 高纯度蛋黄磷脂的精制工艺

Publications (2)

Publication Number Publication Date
CN1179426A CN1179426A (zh) 1998-04-22
CN1056375C true CN1056375C (zh) 2000-09-13

Family

ID=5126125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN96120082A Expired - Fee Related CN1056375C (zh) 1996-10-15 1996-10-15 高纯度蛋黄磷脂的精制工艺

Country Status (1)

Country Link
CN (1) CN1056375C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102151416A (zh) * 2011-02-25 2011-08-17 重庆市润东油脂有限公司 安全型临界二氧化碳萃取工艺
CN103392969B (zh) * 2013-07-28 2015-06-17 吉林大学 一种含卵磷脂的肠内营养乳剂及其制备方法
CN107397146A (zh) * 2017-06-22 2017-11-28 安徽王家坝生态农业有限公司 一种蛋黄多肽制品的制作方法
CN116268409A (zh) * 2022-12-29 2023-06-23 广州白云山汉方现代药业有限公司 一种蛋黄卵磷脂在辅助降血清甘油三酯的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812233A (en) * 1985-10-15 1989-03-14 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Apparatus for separating a solid substance from a liquid mixture of substances
JPH03133991A (ja) * 1989-10-19 1991-06-07 Green Cross Corp:The レシチンの精製方法
US5229000A (en) * 1990-03-31 1993-07-20 Fried. Krupp Gmbh Apparatus and method for the separation of a viscous mixture
CN1108258A (zh) * 1994-03-07 1995-09-13 中国科学院山西煤炭化学研究所 超临界co2抽提高纯度卵黄磷脂的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4812233A (en) * 1985-10-15 1989-03-14 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Apparatus for separating a solid substance from a liquid mixture of substances
US4828702A (en) * 1985-10-15 1989-05-09 Fried. Krupp Gesellschaft Mit Beschrankter Haftung Process for separating a solid substance from a liquid mixture of substances
JPH03133991A (ja) * 1989-10-19 1991-06-07 Green Cross Corp:The レシチンの精製方法
US5229000A (en) * 1990-03-31 1993-07-20 Fried. Krupp Gmbh Apparatus and method for the separation of a viscous mixture
CN1108258A (zh) * 1994-03-07 1995-09-13 中国科学院山西煤炭化学研究所 超临界co2抽提高纯度卵黄磷脂的方法

Also Published As

Publication number Publication date
CN1179426A (zh) 1998-04-22

Similar Documents

Publication Publication Date Title
ZA200202200B (en) Method for extracting compounds of furan lipids and polyhydroxylated fatty alochols of avocado, composition based on said compounds and use of said compounds in therapy, cosmetics and food.
US4814111A (en) Process for purification of phospholipids
CN1056375C (zh) 高纯度蛋黄磷脂的精制工艺
CN1775867A (zh) 一种番茄红素的制备方法
US5077202A (en) Process for producing a glycolipid having a high eicosapentaenoic acid content
CN111393470A (zh) 一种蛋黄卵磷脂及其制备方法
CN111363626A (zh) 一种全息玫瑰精油及其绿色制备方法
JPS63119489A (ja) リン脂質の混合物からホスファチジルコリンを回収する方法
US20070134354A1 (en) Process for producing a grape seed extract having a low content of monomeric polyphenols
KR100558382B1 (ko) 초임계 유체 추출법을 이용한 은행잎 추출물의 제조 방법
CN1179967C (zh) 一种高纯大豆卵磷脂的制备方法
CA2288469A1 (en) Production process, used in particular for obtaining lecithin from dehydrated egg
CN1306079A (zh) 低温低压干式蒸馏提取花椒芳香油的制备方法
CN1244566C (zh) 一种从种植红豆杉叶枝中制备紫杉醇的方法
CN1091106C (zh) 超临界流体提取浓缩天然维生素e的工艺
KR100522206B1 (ko) 초임계유체추출기술을 이용한 참기름의 추출방법
KR830000794B1 (ko) 유(油)함유 고순도 포스파티딜콜린의 제조방법
KR100520315B1 (ko) 해양성 와편모조류 린구로디늄 폴리에드룸으로부터 디에이치에이 및 이피에이의 제조방법
CN1047083A (zh) 大豆混合磷脂的分离提纯方法
RU2349333C1 (ru) Способ комплексной переработки сырья эхинацеи пурпурной
RU2034557C1 (ru) Способ переработки подорожника
RU2138541C1 (ru) Комплексная переработка кедрового ореха
RU2223776C2 (ru) Способ получения эфирного масла из коры хвойных растений
CN108383884B (zh) 一种不稳定西红花苷的分离纯化方法
CN1502619A (zh) 分离制备卵磷脂的方法及实施该方法的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee