CN105633236A - 发光二极管及其制作方法 - Google Patents

发光二极管及其制作方法 Download PDF

Info

Publication number
CN105633236A
CN105633236A CN201610002739.5A CN201610002739A CN105633236A CN 105633236 A CN105633236 A CN 105633236A CN 201610002739 A CN201610002739 A CN 201610002739A CN 105633236 A CN105633236 A CN 105633236A
Authority
CN
China
Prior art keywords
light emitting
oxide
emitting diode
current extending
ito
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610002739.5A
Other languages
English (en)
Other versions
CN105633236B (zh
Inventor
王绘凝
许圣贤
彭康伟
林素慧
徐宸科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Sanan Semiconductor Technology Co Ltd
Original Assignee
Xiamen Sanan Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Sanan Optoelectronics Technology Co Ltd filed Critical Xiamen Sanan Optoelectronics Technology Co Ltd
Priority to CN201610002739.5A priority Critical patent/CN105633236B/zh
Publication of CN105633236A publication Critical patent/CN105633236A/zh
Priority to PCT/CN2016/111660 priority patent/WO2017118298A1/zh
Priority to US15/817,216 priority patent/US10205061B2/en
Application granted granted Critical
Publication of CN105633236B publication Critical patent/CN105633236B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种发光二极管及其制作方法,从下至上依次包括:衬底;发光外延层,由半导体材料层堆叠而成,形成于衬底之上;掺有导电性的金属纳米基团的电流扩展层,形成于所述发光外延层之上;对可见光具有高透过率的金属纳米基团,形成于所述电流扩展层之上。掺有导电性的金属纳米基团,分散于所述电流扩展层的内部,减小电流扩展层的横向电阻,以提高电流横向扩展的均匀性;对可见光具有高透过率的金属纳米基团,分布于所述电流扩展层上表面,起到粗化的效果,以增加光的提取效率。

Description

发光二极管及其制作方法
技术领域
本发明涉及半导体技术领域,更具体的是发光二极管及其制作方法。
背景技术
发光二极管(LED)经过多年的发展,III-V族化合物是当前主流的用于制作发光二极管的半导体材料,其中以氮化镓基和铝镓铟磷基材料最为普遍。传统的P型III-V族半导体材料电流扩展性能一般较差,为了使电流能够均匀地注入发光层,需要在P型材料层上加一电流扩展层。在众多可作为电流扩展层(TCL)材料中,诸如:氧化铟锡(ITO)、氧化镉锡(CTO)、氧化铟(InO)和氧化锌(ZnO)等,均可使用于提高电流分散效果,其中ITO是被最广泛应用的一种,其具有对可见光的高透过率(>80%),低电阻率(10-3~10-4Ω•cm),较宽的带隙(3.6~3.9eV)以及较高的折射率(1.8~2.0),是一种光电性能优异的半导体功能材料。
然而,如图1所示,以正装发光二极管(LED)为例,由于ITO折射率(1.8~2.0)与封装用的环氧树脂(1.5~1.55)的差异以及ITO本身的吸收和表面的反射,从多量子阱(MQWs)中发出的光提取效率仍然不足。此外,流过ITO薄膜的电流大部分集中在电极的附近(图示箭头为电流传输通道),导致MQWs的有效发光区域很小,横向电流的扩展仍然有很大的提升空间。
发明内容
为解决上述发光二极管的所存在的问题,本发明旨在提供一种基于掺杂电流扩展层的透明电极的发光二极管及其制作方法。
根据本发明的第一个方面,发光二极管,从下至上依次包括:衬底;发光外延层,由半导体材料层堆叠而成,形成于所述衬底之上;掺有导电性的金属纳米基团的电流扩展层,形成于所述发光外延层之上;对可见光具有高透过率的金属纳米基团,形成于所述电流扩展层之上。
进一步地,所述导电性的金属纳米基团为Ag氧化物或Zn氧化物或Sn氧化物或Ti氧化物或前述任意组合之一;所述对可见光具有高透过率的金属纳米基团为Al氧化物或Mg氧化物或Ga氧化物或前述任意组合之一。
进一步地,所述电流扩展层为氧化铟锡(ITO)或氧化锌(ZnO)或氧化镉锡(CTO)或氧化铟(InO)或铟(In)掺杂氧化锌(ZnO)或铝(Al)掺杂氧化锌(ZnO)或镓(Ga)掺杂氧化锌(ZnO)或前述任意组合之一。
进一步地,对可见光的高透过率优选>70%,更优的是>80%。
根据本发明的第二个方面,发光二极管,从下至上依次包括:衬底;发光外延层,由半导体材料层堆叠而成,形成于所述衬底之上;掺有导电性的Ag纳米基团的ITO电流扩展层,形成于所述发光外延层之上;Al纳米基团,形成于ITO电流扩展层之上。
进一步地,所述Ag纳米基团包括Ag2O或AgInO2或二者组合,分散于所述ITO电流扩展层的内部,减小电流扩展层的横向电阻,以提高电流横向扩展的均匀性。
进一步地,所述Al纳米基团包括存在间隔的Al2O3颗粒,分布于所述ITO电流扩展层上表面,起到粗化的效果,以增加光的提取效率。
进一步地,所述Al纳米基团呈不连续分布。
进一步地,所述发光二极管还包括与发光外延层和/或电流扩展层实现电性导通的电极。
根据本发明的第三个方面,发光二极管的制作方法,包括工艺步骤:
(1)提供一衬底,外延生长发光外延层,由半导体材料层堆叠而成;
(2)在发光外延层上形成掺有导电性金属的电流扩展层;
(3)在所述电流扩展层上形成对金属层;
(4)进行一次性退火热处理。
进一步地,所述导电性金属为Ag或Zn或Sn或Ti或前述任意组合之一;所述金属层为Al或Mg或Ca或前述任意组合之一。
进一步地,所述电流扩展层为氧化铟锡(ITO)或氧化锌(ZnO)或氧化镉锡(CTO)或氧化铟(InO)或铟(In)掺杂氧化锌(ZnO)或铝(Al)掺杂氧化锌(ZnO)或镓(Ga)掺杂氧化锌(ZnO)或前述任意组合之一。
进一步地,对可见光的高透过率优选>70%,更优的是>80%。
根据本发明的第四个方面,发光二极管的制作方法,包括工艺步骤:
(1)提供一衬底,外延生长发光外延层,由半导体材料层堆叠而成;
(2)在发光外延层上形成掺有导电性的Ag金属的ITO电流扩展层;
(3)在所述ITO电流扩展层上形成Al金属层;
(4)进行一次性退火热处理。
进一步地,所述掺有导电性的Ag金属的ITO电流扩展层通过采用同时磁控溅射法形成,Al金属层通过采用电子束蒸镀法形成。
进一步地,经退火热处理后,所述Ag金属被氧化形成具有导电性的Ag纳米基团,并分散在ITO电流扩展层的内部。
进一步地,经退火热处理后,所述Al金属层被氧化成不连续分布的Al纳米基团。
进一步地,一次性退火热处理条件为:在550~600℃下进行有氧快速退火,退火时间为200~300s,保持15~30sccm的氧气通入量,使得掺入的Al、Ag金属同时充分地被氧化。
进一步地,在发光外延层和/或电流扩展层上形成实现电性导通的电极。
与现有技术相比,本发明至少包括以下技术效果:
(1)对LED器件的电流扩展有着很好的改善效果。在高温氧气氛围下退火以后,导电金属在电流扩展层内部形成具有导电性的氧化物基团,可以减小电流扩展层的横向电阻,从而使电流的横向扩展得以加强,发光层的有效发光区域变大,增加发光效率。
(2)对LED器件的光提取效率有着增加的效果。在高温氧气氛围下退火以后,电流扩展层表面形成对可见光具有高透过率的金属纳米基团,其折射率介于电流扩展层和环氧树脂(1.5~1.55)之间,利于光的提取,并且在电流扩展层表面起到粗化的效果,可以增加出光效率;同时,由于对可见光具有高透过率的金属纳米基团不会形成连续的膜,因此不影响电极与电流扩展层的接触。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1为常规正装的发光二极管的结构示意图。
图2为根据本发明实施的具有透明电极的发光二极管芯片的结构示意图。
图3为根据本发明实施的具有透明电极的发光二极管芯片的流程示意图。
图中各标号表示:
100:衬底;101:第一限制层;102:发光层;103:第二限制层;104:ITO电流扩展层;105:Ag纳米基团;106:Al纳米基团;107:P电极;108:N电极。
具体实施方式
下面将结合示意图对本发明进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
以下列举所述LED结构及其制作方法的实施例,以清楚说明本发明的内容,应当明确的是,本发明的内容并不限制于以下实施例,其他通过本领域普通技术人员的常规技术手段的改进亦在本发明的思想范围之内。
实施例
以下请参考图2,其为本发明实施例的LED结构的结构截面图,包括:衬底100,发光外延层(第一限制层101、发光层102和第二限制层103),掺有导电性的Ag纳米基团105的ITO电流扩展层104,Al纳米基团106及金属电极层(P电极107和N电极108)。
具体来说,在本实施例中,衬底100可以从以下一组材料中选出,该组材料包括:蓝宝石衬底、碳化硅衬底、硅衬底、氮化镓衬底及氧化锌衬底,在较佳的实施例中,衬底100选取蓝宝石衬底。
外延层沉积在衬底100上,外延层的材料可以包括氮化镓基材料、磷化镓基材料、镓氮磷基材料或氧化锌基材料。在本实施例中,外延层为氮化镓基材料,外延层包括自下至上依次层叠设置的第一限制层101、发光层102和第二限制层103,其中,第一限制层101为N型氮化镓(GaN)层结构,发光层102为氮化铝镓(AlGaN)多量子阱有源层,第二限制层103为P型AlGaN层。本实施例中的外延层结构并不限于缓冲层-N型GaN层结构-AlGaN多量子阱有源层-P型AlGaN层,其它可以激发出光的外延层结构,如N型GaN层-(InGaN)/GaN多量子阱有源层-P型GaN层也在本发明的思想范围内。
掺有导电性的Ag纳米基团105的ITO电流扩展层104,形成于第二限制层103之上, ITO的厚度为500~5000Å,本实施例的Ag纳米基团105优选包括Ag2O和AgInO2,粒径为1~30nm,分散于ITO电流扩展层的内部,减小电流扩展层的横向电阻,以提高电流横向扩展的均匀性。
Al纳米基团106,形成于ITO电流扩展层104之上,本实施例的Al纳米基团106优选存在间隔的Al2O3颗粒,粒径为1~10nm,其折射率(1.76左右)介于ITO的折射率(1.8~2.0)和封装用环氧树脂的折射率(1.5~1.55)之间,利于光的提取,并且在ITO电流扩展层上表面起到粗化的效果,以增加光的提取效率。
P电极107和N电极108,分别位于ITO电流扩展层104表面和露出的第一限制层101表面上,作为电性导通的电极,用于为发光外延层提供电流注入。另外,当本实施例的LED为垂直结构时,N电极可直接设置在衬底的背面,此时衬底为导电型的,如Si片等。
以下说明本实施例LED的制备方法。参考图3,其为本发明实施例的LED制作方法的流程图。
首先进行步骤S11,提供衬底100,采用金属有机化合物化学气相沉淀(MOCVD)在衬底101的表面上外延生长发光外延层。外延层包括自下至上依次层叠设置的第一限制层101、发光层102和第二限制层103。
再进行步骤S12,在发光外延层形成掺有导电性的Ag纳米基团105的ITO电流扩展层104,ITO的厚度为500~5000Å,镀膜方法优选采用同时磁控溅射法形成,镀膜速率为0.1~1Å/s。由于Ag金属纳米颗粒是要掺杂在ITO内部,所以Ag和ITO同时利用磁控溅射溅镀,可以达到更好的掺杂效果,同时没有额外增加制程步骤和时间,简化工艺流程,提高作业效率。
接着进行步骤S13,在ITO电流扩展层104上形成Al金属层105,厚度为1~10nm,由于蒸镀的Al层非常薄,并不会形成连续分布的薄膜,因此不会给后续的金属电极与ITO的接触带来影响;镀膜方法优选采用电子束蒸镀法形成,镀膜速率为0.1~1Å/s。由于Al的原子质量比较小,所以利用电子束蒸镀可以很好地在ITO电流扩展层表面形成纳米基团。
然后进行步骤S14,进行一次性退火热处理,工艺条件为:在550~600℃下进行有氧快速退火,退火时间为200~300s,保持15~30sccm的氧气通入量,使得掺入的Ag、Al金属同时充分地被氧化。经退火热处理后,Ag金属被氧化形成具有导电性的Ag纳米基团(如Ag2O和AgInO2),一方面Ag和ITO内部的氧结合形成具有导电性的Ag2O和AgInO2,另一方面Ag和氧的结合会使ITO电流扩展层内部的氧组分减少,产生更多的氧空位和电子,使得载流子浓度增加,降低了ITO的体电阻,以提高电流横向扩展的均匀性(如图2中虚线箭头所示),使得发光层的有效发光区域变大,增加发光效率;Al金属层被氧化成不连续分布的Al纳米基团(如Al2O3颗粒),其具有较高的折射率(~1.76),介于ITO的折射率(1.8~2.0)和封装用环氧树脂的折射率(1.5~1.55)之间,利于光的提取,并且在ITO电流扩展层形成表面起到粗化的效果,藉由折射率差改变光的临界角,可以增加光的提取效率(如图2中实线箭头所示)。
最后进行步骤S15,在发光外延层和/或电流扩展层制作金属电极层,本实施例优选分别在ITO电流扩展层104表面和露出的第一限制层101表面上,形成P电极107和N电极108,材料选用金(Au)。
需要说明的是,上述实施例虽然示出了先进行一次性热退火处理后再制作金属电极,也可以是先制作金属电极,再进行一次性热退火处理。导电性的金属纳米基团除了上述实施例中的Ag纳米基团,还可以选用Zn氧化物或Sn氧化物或Ti氧化物或前述任意组合之一;对可见光具有高透过率的金属纳米基团除了上述实施例中的Al纳米基团,还可以选用Mg氧化物或Ga氧化物或前述任意组合之一。电流扩展层还除了上述实施例中的氧化铟锡(ITO),可以选用氧化锌(ZnO)或氧化镉锡(CTO)或氧化铟(InO)或铟(In)掺杂氧化锌(ZnO)或铝(Al)掺杂氧化锌(ZnO)或镓(Ga)掺杂氧化锌(ZnO)或前述任意组合之一。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (15)

1.发光二极管,从下至上依次包括:衬底;发光外延层,由半导体材料层堆叠而成,形成于所述衬底之上;掺有导电性的金属纳米基团的电流扩展层,形成于所述发光外延层之上;对可见光具有高透过率的金属纳米基团,形成于所述电流扩展层之上。
2.根据权利要求1所述的发光二极管,其特征在于:所述导电性的金属纳米基团为Ag氧化物或Zn氧化物或Sn氧化物或Ti氧化物或前述任意组合之一;所述对可见光具有高透过率的金属纳米基团为Al氧化物或Mg氧化物或Ga氧化物或前述任意组合之一。
3.根据权利要求1所述的发光二极管,其特征在于:所述电流扩展层为氧化铟锡(ITO)或氧化锌(ZnO)或氧化镉锡(CTO)或氧化铟(InO)或铟(In)掺杂氧化锌(ZnO)或铝(Al)掺杂氧化锌(ZnO)或镓(Ga)掺杂氧化锌(ZnO)或前述任意组合之一。
4.发光二极管,从下至上依次包括:衬底;发光外延层,由半导体材料层堆叠而成,形成于所述衬底之上;掺有导电性的Ag纳米基团的ITO电流扩展层,形成于所述发光外延层之上;对可见光具有高透过率的Al纳米基团,形成于所述ITO电流扩展层之上。
5.根据权利要求1所述的发光二极管,其特征在于:所述Ag纳米基团包括Ag2O或AgInO2或二者组合,分散于所述ITO电流扩展层的内部,减小电流扩展层的横向电阻,以提高电流横向扩展的均匀性。
6.根据权利要求1所述的发光二极管,其特征在于:所述Al纳米基团包括存在间隔的Al2O3颗粒,分布于所述ITO电流扩展层上表面,起到粗化的效果,以增加光的提取效率。
7.发光二极管的制作方法,包括工艺步骤:
(1)提供一衬底,外延生长发光外延层,由半导体材料层堆叠而成;
(2)在发光外延层上形成掺有导电性金属的电流扩展层;
(3)在所述电流扩展层上形成对金属层;
(4)进行一次性退火热处理。
8.根据权利要求7所述的发光二极管的制作方法,其特征在于:所述导电性金属为Ag或Zn或Sn或Ti或前述任意组合之一;所述金属层为Al或Mg或Ca或前述任意组合之一。
9.根据权利要求7所述的发光二极管的制作方法,其特征在于:所述电流扩展层为氧化铟锡(ITO)或氧化锌(ZnO)或氧化镉锡(CTO)或氧化铟(InO)或铟(In)掺杂氧化锌(ZnO)或铝(Al)掺杂氧化锌(ZnO)或镓(Ga)掺杂氧化锌(ZnO)或前述任意组合之一。
10.发光二极管的制作方法,包括工艺步骤:
(1)提供一衬底,外延生长发光外延层,由半导体材料层堆叠而成;
(2)在发光外延层上形成掺有导电性的Ag金属的ITO电流扩展层;
(3)在所述ITO电流扩展层上形成Al金属层;
(4)进行一次性退火热处理。
11.根据权利要求10所述的发光二极管的制作方法,其特征在于:所述掺有导电性的Ag金属的ITO电流扩展层通过采用同时磁控溅射法形成,所述Al金属层通过采用电子束蒸镀法形成。
12.根据权利要求10所述的发光二极管的制作方法,其特征在于:经退火热处理后,所述Ag金属被氧化形成具有导电性的Ag纳米基团,并分散在所述ITO电流扩展层的内部。
13.根据权利要求10所述的发光二极管的制作方法,其特征在于:经退火热处理后,所述Al金属层被氧化成不连续分布的Al纳米基团。
14.根据权利要求10所述的发光二极管的制作方法,其特征在于:采用高温一次性退火热处理,并且在退火热处理过程中通氧,使得掺入的Al、Ag金属同时充分地被氧化。
15.根据权利要求10所述的发光二极管的制作方法,其特征在于:所述一次性退火热处理条件为:在550~600℃下进行有氧快速退火,退火时间为200~300s,保持15~30sccm的氧气通入量。
CN201610002739.5A 2016-01-06 2016-01-06 发光二极管及其制作方法 Active CN105633236B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610002739.5A CN105633236B (zh) 2016-01-06 2016-01-06 发光二极管及其制作方法
PCT/CN2016/111660 WO2017118298A1 (zh) 2016-01-06 2016-12-23 发光二极管及其制作方法
US15/817,216 US10205061B2 (en) 2016-01-06 2017-11-19 Light emitting diode and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610002739.5A CN105633236B (zh) 2016-01-06 2016-01-06 发光二极管及其制作方法

Publications (2)

Publication Number Publication Date
CN105633236A true CN105633236A (zh) 2016-06-01
CN105633236B CN105633236B (zh) 2019-04-05

Family

ID=56047969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610002739.5A Active CN105633236B (zh) 2016-01-06 2016-01-06 发光二极管及其制作方法

Country Status (3)

Country Link
US (1) US10205061B2 (zh)
CN (1) CN105633236B (zh)
WO (1) WO2017118298A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118298A1 (zh) * 2016-01-06 2017-07-13 厦门市三安光电科技有限公司 发光二极管及其制作方法
CN108183151A (zh) * 2018-01-09 2018-06-19 湘能华磊光电股份有限公司 一种led芯片及其制作方法
CN109950378A (zh) * 2017-12-20 2019-06-28 大连德豪光电科技有限公司 Led芯片及其制备方法
CN110148657A (zh) * 2019-05-29 2019-08-20 福建兆元光电有限公司 带有纳米颗粒涂层的led芯片及制造方法
CN111354843A (zh) * 2020-03-06 2020-06-30 山西中科潞安紫外光电科技有限公司 一种ito表面粗化的制备方法
CN112133803A (zh) * 2020-09-21 2020-12-25 厦门乾照光电股份有限公司 一种发光二极管及其制作方法
CN113421953A (zh) * 2021-06-24 2021-09-21 马鞍山杰生半导体有限公司 深紫外发光二极管及其制作方法
CN115663087A (zh) * 2022-12-09 2023-01-31 江西兆驰半导体有限公司 一种发光二极管及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116072780B (zh) * 2023-03-09 2023-06-16 江西兆驰半导体有限公司 发光二极管外延片及其制备方法、发光二极管

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909256A (zh) * 2005-08-03 2007-02-07 三星电机株式会社 全向反射器和采用其的发光二极管
TW200913307A (en) * 2007-09-13 2009-03-16 Delta Electronics Inc Light-emitting diode apparatus and its manufacturing method
KR20120059060A (ko) * 2010-11-30 2012-06-08 삼성엘이디 주식회사 나노파티클을 구비한 적층구조 및 이를 포함하는 발광소자
CN102593305A (zh) * 2012-03-21 2012-07-18 电子科技大学 发光二极管表面金属周期性亚波长结构及其制备方法
CN102760812A (zh) * 2011-04-26 2012-10-31 台湾积体电路制造股份有限公司 具有纳米图案化衬底的led的方法和结构
CN102800773A (zh) * 2011-05-24 2012-11-28 三星电子株式会社 半导体发光器件及其制造方法
CN202712251U (zh) * 2012-06-25 2013-01-30 合肥彩虹蓝光科技有限公司 一种纳米级发光二极管
CN103618037A (zh) * 2013-11-25 2014-03-05 华中科技大学 一种掺杂硅量子点发光二极管器件及其制备方法
KR101483230B1 (ko) * 2008-11-18 2015-01-16 삼성전자주식회사 질화물 반도체 발광 소자
CN104769733A (zh) * 2012-07-24 2015-07-08 株式会社Lg化学 用于形成金属颗粒层的方法以及用所述金属颗粒层制造的发光器件
KR101559194B1 (ko) * 2012-09-14 2015-10-12 한양대학교 산학협력단 전도성 산화물 나노입자를 이용한 표면 플라즈몬 공명 광학 소재, 이의 제조방법 및 이를 포함하는 광학 소자

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6420736B1 (en) * 2000-07-26 2002-07-16 Axt, Inc. Window for gallium nitride light emitting diode
EP1548852B1 (en) * 2003-12-22 2013-07-10 Samsung Electronics Co., Ltd. Top-emitting nitride-based light emitting device and method of manufacturing the same
KR100853851B1 (ko) * 2006-10-30 2008-08-22 삼성전기주식회사 질화물 반도체 발광소자
US8513688B2 (en) * 2009-12-02 2013-08-20 Walsin Lihwa Corporation Method for enhancing electrical injection efficiency and light extraction efficiency of light-emitting devices
KR101798231B1 (ko) * 2010-07-05 2017-11-15 엘지이노텍 주식회사 발광 소자
WO2012149531A2 (en) * 2011-04-29 2012-11-01 The Regents Of The University Of California High indium uptake and high polarization ratio for group-iii nitride optoelectronic devices fabricated on a semipolar (20-2-1) plane of a gallium nitride substrate
JP2013008818A (ja) * 2011-06-24 2013-01-10 Toshiba Corp 半導体発光素子
CN102891256B (zh) 2011-07-18 2015-04-08 吉林师范大学 基于Cu(I)配合物的可见盲区有机紫外光探测器件
US8558344B2 (en) * 2011-09-06 2013-10-15 Analog Devices, Inc. Small size and fully integrated power converter with magnetics on chip
CN102891265B (zh) * 2012-09-28 2015-10-07 昆山工研院新型平板显示技术中心有限公司 Oled阳极的增反结构和oled阴极的增反结构
CN102881797B (zh) * 2012-10-18 2015-02-25 安徽三安光电有限公司 具有电流扩展结构的氮化镓基发光二极管
CN102916100B (zh) * 2012-11-08 2015-04-08 安徽三安光电有限公司 发光二极管及其制作方法
TWI535055B (zh) * 2012-11-19 2016-05-21 新世紀光電股份有限公司 氮化物半導體結構及半導體發光元件
CN104078616A (zh) * 2013-03-29 2014-10-01 海洋王照明科技股份有限公司 有机电致发光器件及其制备方法
CN104659167A (zh) * 2015-02-11 2015-05-27 山东浪潮华光光电子股份有限公司 一种高可靠性GaN基LED芯片及其制备方法
CN105633236B (zh) * 2016-01-06 2019-04-05 厦门市三安光电科技有限公司 发光二极管及其制作方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1909256A (zh) * 2005-08-03 2007-02-07 三星电机株式会社 全向反射器和采用其的发光二极管
TW200913307A (en) * 2007-09-13 2009-03-16 Delta Electronics Inc Light-emitting diode apparatus and its manufacturing method
KR101483230B1 (ko) * 2008-11-18 2015-01-16 삼성전자주식회사 질화물 반도체 발광 소자
KR20120059060A (ko) * 2010-11-30 2012-06-08 삼성엘이디 주식회사 나노파티클을 구비한 적층구조 및 이를 포함하는 발광소자
CN102760812A (zh) * 2011-04-26 2012-10-31 台湾积体电路制造股份有限公司 具有纳米图案化衬底的led的方法和结构
CN102800773A (zh) * 2011-05-24 2012-11-28 三星电子株式会社 半导体发光器件及其制造方法
CN102593305A (zh) * 2012-03-21 2012-07-18 电子科技大学 发光二极管表面金属周期性亚波长结构及其制备方法
CN202712251U (zh) * 2012-06-25 2013-01-30 合肥彩虹蓝光科技有限公司 一种纳米级发光二极管
CN104769733A (zh) * 2012-07-24 2015-07-08 株式会社Lg化学 用于形成金属颗粒层的方法以及用所述金属颗粒层制造的发光器件
KR101559194B1 (ko) * 2012-09-14 2015-10-12 한양대학교 산학협력단 전도성 산화물 나노입자를 이용한 표면 플라즈몬 공명 광학 소재, 이의 제조방법 및 이를 포함하는 광학 소자
CN103618037A (zh) * 2013-11-25 2014-03-05 华中科技大学 一种掺杂硅量子点发光二极管器件及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOON JONG-MIN,ETC.: ""Enhancement of hole injection using ozone treated Ag nanodots dispersed on indium tin oxide anode for organic light emitting diodes"", 《APPLIED PHYSICS LETTERS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118298A1 (zh) * 2016-01-06 2017-07-13 厦门市三安光电科技有限公司 发光二极管及其制作方法
CN109950378A (zh) * 2017-12-20 2019-06-28 大连德豪光电科技有限公司 Led芯片及其制备方法
CN108183151A (zh) * 2018-01-09 2018-06-19 湘能华磊光电股份有限公司 一种led芯片及其制作方法
CN108183151B (zh) * 2018-01-09 2019-08-06 湘能华磊光电股份有限公司 一种led芯片及其制作方法
CN110148657A (zh) * 2019-05-29 2019-08-20 福建兆元光电有限公司 带有纳米颗粒涂层的led芯片及制造方法
CN111354843A (zh) * 2020-03-06 2020-06-30 山西中科潞安紫外光电科技有限公司 一种ito表面粗化的制备方法
CN112133803A (zh) * 2020-09-21 2020-12-25 厦门乾照光电股份有限公司 一种发光二极管及其制作方法
CN113421953A (zh) * 2021-06-24 2021-09-21 马鞍山杰生半导体有限公司 深紫外发光二极管及其制作方法
CN115663087A (zh) * 2022-12-09 2023-01-31 江西兆驰半导体有限公司 一种发光二极管及其制备方法

Also Published As

Publication number Publication date
US20180102461A1 (en) 2018-04-12
WO2017118298A1 (zh) 2017-07-13
CN105633236B (zh) 2019-04-05
US10205061B2 (en) 2019-02-12

Similar Documents

Publication Publication Date Title
CN105633236B (zh) 发光二极管及其制作方法
CN100550446C (zh) 以传导纳米棒作为透明电极的发光装置
CN1606177B (zh) 氮化物基发光器件及其制造方法
CN101714599B (zh) 第ⅲ族氮化物半导体发光器件及其制造方法
US7816700B2 (en) Light emitting diode employing an array of nanorods and method of fabricating the same
US20190044031A1 (en) Optoelectronic semiconductor chip
WO2001073858A1 (en) Group-iii nitride compound semiconductor device
CN101764186A (zh) 半导体发光器件
KR101257572B1 (ko) 반도체 발광 소자
CN101276872B (zh) 形成第ⅲ族氮化物化合物半导体发光器件用的电极的方法
TW201110413A (en) Light emitting device, production method, lamp, electronic equipment and mechanical equipment
CN102916100B (zh) 发光二极管及其制作方法
CN102237455B (zh) 发光二极管结构
TWI497767B (zh) Ⅲ-ⅴ族發光二極體之電極
DE102010035966A1 (de) Optoelektronischer Halbleiterchip und Verfahren zur Herstellung eines optoelektronischen Halbleiterchips
TWI713233B (zh) 發光二極體
KR20140017432A (ko) 금속입자층 형성 방법 및 이를 이용하여 제조된 발광소자
TWI315106B (en) Gallium nitride-based compound semiconductor light-emitting device
CN102498585A (zh) 半导体发光器件
JP4212599B2 (ja) 半導体素子及び半導体素子の製造方法
CN103515505A (zh) 第iii族氮化物半导体发光器件及其制造方法
KR20060007948A (ko) 탑에미트형 질화물계 발광소자 및 그 제조방법
CN107706277B (zh) 一种透明导电层的制作方法及其发光二极管
KR102000271B1 (ko) 질화갈륨 계열 발광 다이오드의 제조방법 및 이로부터 제조된 질화갈륨 계열 발광 다이오드
KR20150034565A (ko) 발광 소자 및 그 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231101

Address after: Yuanqian village, Shijing Town, Nan'an City, Quanzhou City, Fujian Province

Patentee after: QUANZHOU SAN'AN SEMICONDUCTOR TECHNOLOGY Co.,Ltd.

Address before: 361009 no.1721-1725, Luling Road, Siming District, Xiamen City, Fujian Province

Patentee before: XIAMEN SANAN OPTOELECTRONICS TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right