CN105633005A - 铜互连结构的制作方法 - Google Patents

铜互连结构的制作方法 Download PDF

Info

Publication number
CN105633005A
CN105633005A CN201410604127.4A CN201410604127A CN105633005A CN 105633005 A CN105633005 A CN 105633005A CN 201410604127 A CN201410604127 A CN 201410604127A CN 105633005 A CN105633005 A CN 105633005A
Authority
CN
China
Prior art keywords
copper
layer
layers
mask layer
dry etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410604127.4A
Other languages
English (en)
Inventor
张海洋
胡敏达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Shanghai Corp
Original Assignee
Semiconductor Manufacturing International Shanghai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Shanghai Corp filed Critical Semiconductor Manufacturing International Shanghai Corp
Priority to CN201410604127.4A priority Critical patent/CN105633005A/zh
Publication of CN105633005A publication Critical patent/CN105633005A/zh
Pending legal-status Critical Current

Links

Abstract

一种铜互连结构的制作方法,包括:提供基底;在所述基底上形成介质层;在所述介质层上形成掩膜层,所述掩膜层内具有贯穿厚度的开口;沿所述开口刻蚀所述介质层,在所述介质层内形成通孔,所述通孔的底部露出基底;采用铜自流工艺在所述通孔内填充满铜层,所述铜层高于所述掩膜层;去除高于所述掩膜层的铜层,形成铜插塞。采用本发明的方法形成的铜插塞性能有所提高,且成本有所降低。

Description

铜互连结构的制作方法
技术领域
本发明涉及半导体领域,尤其涉及一种铜互连结构的制作方法。
背景技术
随着半导体制造技术的飞速发展,半导体器件为了达到更快的运算速度、更大的资料存储量以及更多的功能,半导体芯片向更高集成度方向发展。而半导体芯片的集成度越高,半导体器件的特征尺寸(CriticalDimension,CD)越小。相应的,半导体芯片中的互连结构尺寸也不断减小。
随着特征尺寸的逐渐减小,金属互连结构的RC延迟对器件运行速度的影响越来越明显,如何减小RC延迟是本领域技术人员研究的热点问题之一。对此,现在技术已经采用的一种方法是将铝金属层替换为铜金属层,降低金属层串联电阻。
现有技术中的一种铜互连结构的制作方法包括:
参考图1,提供基底100,所述基底100中形成有半导体元件(图未示)。在基底100上形成介质层101,在所述介质层101上形成图形化的掩膜层102,所述图形化的掩膜层102定义介质层101内通孔的位置与大小。
接着,以图形化的掩膜层102为掩膜刻蚀介质层101,在介质层101内形成通孔103,通孔103的底部露出基底100中的半导体元件。
结合参考图2和图3,采用化学气相沉积的方法在所述通孔103内填充铜层104,铜层104高于掩膜层102。
参考图4,采用化学机械研磨的方法将高于掩膜层102的铜层104去除,形成与基底上的半导体元件相连的铜插塞106。
采用现有技术的方法形成的铜插塞的成本高,形成的铜插塞的性能较差。
发明内容
本发明解决的问题是采用现有技术的方法形成的铜插塞的成本高,形成的铜插塞的性能较差。
为解决上述问题,本发明提供一种互连结构的制作方法,包括:
提供基底;
在所述基底上形成介质层;
在所述介质层上形成掩膜层,所述掩膜层内具有贯穿自身厚度的开口;
沿所述开口刻蚀所述介质层,在所述介质层内形成通孔,所述通孔的底部露出所述基底;
采用铜自流工艺在所述通孔内填充满铜层,所述铜层高于所述掩膜层;
去除高于所述掩膜层的铜层,形成铜插塞。
可选的,所述铜层为纯铜层、铜钒合金层、铜铌合金层、铜钯合金层中的一层或叠层。
可选的,所述铜自流工艺的条件包括:所述铜自流工艺的温度范围为30℃~400℃,所述铜自流工艺的真空压力范围为小于等于10-6Torr,所述铜自流工艺的时间为20min~40min。
可选的,所述铜层的表面还具有凹槽,所述凹槽的底部高于所述掩膜层,去除高于所述掩膜层的铜层的步骤包括:
在所述铜层上形成填充层,所述填充层填充满所述凹槽;
采用干法刻蚀的方法去除所述填充层和高于所述掩膜层的铜层,使所述铜层与所述掩膜层表面齐平。
可选的,所述铜层的表面还具有凹槽,所述凹槽的底部高于所述掩膜层,去除高于所述掩膜层的铜层的步骤包括:
在所述铜层上形成填充层,所述填充层填充满所述凹槽;
采用干法刻蚀的方法去除部分厚度铜层及全部填充层,使所述凹槽的高度降低;
继续多次依次重复所述填充及所述干法刻蚀的步骤,直到所述凹槽全部去除;
所述凹槽被全部去除后,采用干法刻蚀的方法将高于所述掩膜层的剩余铜层去除,使铜层与所述掩膜层表面齐平。
可选的,所述填充层材料为聚合物和氧化物。
可选的,形成所述聚合物为含氟聚合物。
可选的,形成所述填充层材料为聚合物时,形成所述填充层的方法为沉积。
可选的,形成所述填充层材料为氧化物时,形成所述填充层的方法为旋涂。
可选的,所述干法刻蚀的具体工艺条件包括:干法刻蚀压力为5~100mTorr;干法刻蚀功率为100~1000W;干法刻蚀的偏置电压为0~500V;干法刻蚀的温度为-100~50℃;干法刻蚀气体包括H2和Ar,所述H2的流量为10~500sccm;所述Ar的流量为100~1000sccm。
与现有技术相比,本发明的技术方案具有以下优点:
其中,采用铜自流工艺在通孔内填充铜层的过程中,反应气体分子之间的化学键不会被破坏掉,可以减小反应气体微观表面积,减小反应气体的微观表面自由能,从而减小反应气体的自主扩散。此时,反应气体分子会缓慢流入通孔中,并在通孔中累积形成铜层。因此,采用铜自流工艺使得通孔底部累积铜层的速度明显大于在掩膜层上累积铜层的速度,通孔底部累积的铜层的厚度明显大于在掩膜层上累积铜层的厚度。这样,采用铜自流的方法填充满通孔后,高于掩膜层的铜层厚度大大减小。节省了铜材料的成本,而且还大大节省了后续去除高于掩膜层的铜层的工艺成本。
另外,采用铜自流工艺形成的铜层的表面即使有凹槽,该凹槽的深度相对于现有技术会小很多,形貌规则很多。去除高于所述掩膜层的铜层形成铜插塞后,可以提高铜插塞表面的平整度,进而提高铜插塞的电迁移性能。
附图说明
图1~图4是现有技术中的铜互连结构的制作方法中各制作步骤的剖面结构示意图;
图5~图10是本发明具体实施例中的铜互连结构的制作方法中各制作步骤的剖面结构示意图。
具体实施方式
经过发现和分析,采用现有技术的方法形成的铜插塞的性能不佳,而且制作铜插塞的成本高的原因如下:
结合参考图2,现有技术是采用化学气相沉积的方法在通孔103内填充铜层104(参考图3)的。通孔103的深宽比较大,采用化学气相沉积的方法在通孔103内填充部分厚度的铜层104a过程中,通孔103底部沉积铜层104a的速度与在掩膜层102上沉积铜层104a的速度相同。因此,铜层还没有在通孔103内填充满时,通孔103底部沉积铜层104a的厚度y1与在掩膜层102上沉积铜层104a的厚度x1相同。这样,由于通孔103的深度较大,当铜层104填充满通孔103时,高于掩膜层102的铜层104的高度也会很大,为1000埃~1500埃。因此,后续去除高于掩膜层的铜层104的成本高。
另外,参考图3,采用化学气相沉积法填充通孔103的过程中,正是因为通孔103底部沉积铜层的速度与在掩膜层102上沉积铜层的速度相同,填充满通孔103后的铜层104的表面非常不平整,而且在铜层104的表面还会形成一个很大的凹陷105,该凹陷105处与所述通孔103的位置相对应,且形貌非常不规则。
参考图4,现有技术中,会采用化学机械研磨的方法将高于掩膜层的铜层104进行去除,形成铜插塞106。由于凹陷105的存在,多余的化学机械研磨液会流入凹陷105处,从而使得凹陷105处与其他铜层表面的研磨速度不相同。再加上,化学机械研磨的方法去除高于掩膜层102的铜层104的精度不高,会有100埃~200埃的研磨精度误差。这样,形成的铜插塞106的表面有的位置处至少高于掩膜层200埃,有的位置处至少低于掩膜层200埃。因此,形成的铜插塞的表面非常不平整。表面不平整的铜插塞整体的阻值不均匀,电迁移不稳定。,铜插塞的性能较差。
为了解决上述技术,本发明提供了一种铜互连结构的制作方法,采用本发明的互连结构的制作方法能够提高形成的铜插塞的性能。
下面结合附图对本发明的具体实施例做详细的说明。
参考图5,提供基底200。
所述基底200包括:形成有晶体管等半导体元件的衬底层(图未示),形成于衬底层上的金属层(图未示),形成于金属层上的阻挡层(图未示)。其中所述金属层用于通过本实施例形成的互连结构实现与其他器件的电连接。此处所述阻挡层用于防止金属层中金属的扩散。
具体地,金属层的材料为铜或铝。所述阻挡层的材料为掺氮的碳化硅(NitrogenDopedSiliconCarbon,NDC)。但是本发明对金属层和阻挡层的材料不作限制。
接着,继续参考图5,在基底200上形成介质层201。
本实施例中,通过二乙氧基甲基硅烷和原子转移自由基聚合形成所述介质材料。具体地,可以通过溶胶凝胶的方式形成所述介质材料。但是本发明对介质材料不作限制,对介质材料的形成方式也不作限制。此处所述介质材料还可以是SiO2、SiOF、SiCOH、SiO、SiCO、SiCON、黑金刚石中的一种或多种。可以通过化学气相沉积的方式沉积所述介质材料。
接着,继续参考图5,在介质层201上形成掩膜层202。掩膜层202的材料可以为光刻胶、氧化硅、氮化硅或氮化钛中一层或叠层。所述掩膜层202内具有贯穿其厚度的开口,沿所述开口刻蚀所述介质层201,在介质层201内形成通孔203。通孔203的底部露出基底200内的金属层。
本实施例中,通孔203的深宽比的范围是0.5~4。其中,通孔203的深度为100nm~3000nm。通孔203的深宽比太大或太小,后续的铜自流工艺填充通孔203的效果不佳,形成的铜层的性能不佳。
接着,结合参考图6和图7,采用铜自流工艺在所述通孔203内填充满铜层204,所述铜层204高于所述掩膜层202。
本实施例中,铜层204为纯铜层。其他实施例中,铜层204也可以为铜钒合金层、铜铌合金层或铜钯合金层,还可以为纯铜层、铜钒合金层、铜铌合金层和铜钯合金层中的任意两层或两层以上的叠层。
当铜层为合金铜层时,非铜成分占整个合金总成分的0.01%~2%,合金中其余的成分为纯铜。
本实施例中,所述铜自流工艺(CopperReflowProcess)的条件包括:铜自流工艺的温度范围为30℃~400℃,所述铜自流工艺的真空压力范围为小于等于10-12Torr,所述铜自流的时间为20min~40min。上述铜自流工艺的条件与上述通孔203的深宽比紧密相关。
高温会破坏铜元素的反应气体的分子之间的化学键。铜自流工艺的温度范围之所以为30℃~400℃,在这个温度范围内,含有铜元素的反应气体分子之间的化学键不会被破坏掉,可以减小铜元素的反应气体微观表面积,可以减小铜元素反应气体的微观表面自由能,可以减小铜元素反应气体的自主扩散。当铜反应气体分子遇到通孔203时,会缓慢流入通孔203中,并在通孔203中聚集累积。此时,通孔203底部累积铜层的速度明显大于在掩膜层202上沉积铜层的速度。当通孔203内填充部分厚度的铜层204a时,通孔203底部沉积铜层204a的厚度y2明显大于在掩膜层204a上沉积铜层204a的厚度x2(参考图6)。这样,采用上述温度下的铜自流的方法填充满通孔203后,高于掩膜层202的铜层204(参考图7)也只有200~300埃。其厚度远小于现有技术的高于掩膜层的铜层的厚度。因此,大大节省了铜材料的成本,而且还大大节省了后续去除高于掩膜层202的铜层的工艺成本。
另外,在上述温度条件下,含有铜元素的反应分子之间的化学键不会被破坏掉,这样,相对于被破坏化学键的铜元素的反应气体来说,铜元素的反应气体的粘性很大,同样可以降低铜元素反应气体的自主扩散。使得通孔203底部沉积铜层的速度明显大于在掩膜层上沉积铜层的速度。
铜自流工艺的温度范围太高,含有铜元素的反应气体分子之间的化学键容易断裂,从而增加反应气体分子之间的表面自由能,会使通孔203底部沉积铜层的速度与在掩膜层202上沉积铜层的速度相差不多。铜自流工艺的温度范围太低,无法实现在通孔203内沉积铜层的工艺。
本实施例中,当铜自流工艺的温度为150℃时,可以使得高于掩膜层202的铜层厚度最小,且填充通孔203的效果最好,形成的铜层204内部组织均匀,铜层204的表面平整度也最好,进而可以提高后续形成的铜插塞的表面平面平整度。
本实施例中,铜自流工艺的真空压力范围之所以为小于等于10-12Torr,而且含有铜元素的反应气体被氩气作为保护气体所保护,这样,可以有效的防止形成的铜层表面产生氧化层。因为氧化层会对铜自流反应的在通孔203底部累积铜层的速度产生抑制影响。再者形成的含有氧化层的铜插塞的性能也不佳。其他实施例中,氮气也可以为保护气体。
本实施中,铜自流工艺的真空压力不能太大,真空压力太大容易使得通孔203变形。
本实施例中,铜自流工艺的时间如果太长,后续形成的高于掩膜层202的铜层的厚度太大,不利于工艺成本的降低。铜自流的时间如果太短,无法填充满通孔203。
参考图7,采用本实施例所述的铜自流方法形成铜层204后,铜层204的表面平整度有很大提高,为后续形成的铜插塞表面的平整度的提高打下基础。需要说明的是,在铜层204的表面也会有一个凹槽205。该凹槽205的位置与被填满的通孔203的位置相对应。相对于现有技术来说,该凹槽205的深度小的多,形貌也规则很多。
当采用现有技术的化学机械研磨的方法去除高于所述掩膜层202的铜层204形成铜插塞后,可以提高铜插塞表面的平整度,进而提高铜插塞的电迁移性能。但是采用本发明的下述去除方法可以进一步提高铜插塞表面的平整度。具体如下:
接着,参考图8,在铜层204上形成填充层206,所述填充层206填充满所述凹槽205。
本实施例中,所述填充层206的材料为聚合物,具体为含氟聚合物。其他实施例中,所述填充层的材料为氧化物。
本实施例中,所述填充层206的材料为聚合物时,形成填充层的工艺为沉积,具体工艺条件包括:沉积压力为5~100mTorr;沉积功率为100~1000W;沉积的偏置电压为:0~500V;沉积温度为:0~100℃;沉积气体包括CH3F、CO2和Ar;所述CH3F气体的流量为10~200sccm;所述CO2气体的流量为:10~100sccm;所述Ar气体的流量为:100~1000sccm。
接着,参考图9,采用干法刻蚀的方法去除部分厚度铜层及全部填充层,使所述凹槽205的高度降低。
所述干法刻蚀的具体工艺条件包括:干法刻蚀压力为5~100mTorr;干法刻蚀功率为100~1000W;干法刻蚀的偏置电压为0~500V;干法刻蚀的温度为-100~50℃;干法刻蚀气体包括H2和Ar,所述H2的流量为10~500sccm;所述Ar的流量为100~1000sccm。
经过干法刻蚀工艺后,铜层204的高度和凹槽205的高度有所降低。参考图9,形成剩余的铜层204b和凹槽205a。
接着,参考图9,在剩余的铜层204b上再次形成填充层(图未示),填充层的材料为聚合物。所述填充层填充满所述高度降低的凹槽205a。
接着,采用干法刻蚀的方法去除再次形成的填充层和部分厚度的剩余的铜层204b后,铜层204和凹槽205的高度进一步降低。
接着,继续多次重复所述填充和所述干法刻蚀的步骤,直至所述凹槽205被去除。
参考图10,经过上述循环步骤之后,也就是说,凹槽205被去除后,最终剩余的铜层的表面也很平整。继续采用干法刻蚀方法将高于掩膜层202的最终剩余的铜层去除,形成铜插塞207,形成的铜插塞207的表面很平整。
本实施例中,之所以采用上述聚合物的形成条件来形成填充层,是因为:形成的填充层不仅对凹槽205的填充效果好,而且形成的填充层的表面也很平整。为后续得到平整的铜插塞表面打下基础。有利于后续的形成的铜插塞的电子迁移性能的提高。
本实施例中,干法刻蚀方法之所以为上述条件,原因如下:既可以刻蚀材料为聚合物的填充层又可以刻蚀铜层204,而且刻蚀后的得到的铜层表面平整。
另外,本实施例中的循环次数为5次~10次。在去除高于掩膜层的铜层的工艺成本及效率得到保证的前提下,得到的铜插塞207的表面的平整度最好。循环次数太多,去除高于掩膜层202的铜层的工艺成本太高,而且去除高于掩膜层202的铜层的工艺效率太低。循环次数太少,得到的铜插塞207表面的平整度略差。
其他实施例中,形成铜层后,铜层表面会有凹槽。在铜层上形成填充层,填充层填充满凹槽后,直接采用上述干法刻蚀的方法将填充层层和高于掩膜层上的铜层一起去除,形成铜插塞,也属于本发明的保护范围。只是,形成的铜插塞的表面的平整度略差,但是比现有技术的铜插塞表面的平整度好很多。
其他实施例中,当填充层的材料为氧化物时,填充层的形成方法为旋涂。之所以采用旋涂,原因如下:采用旋涂方法形成的氧化层的表面非常平整。为后续干法刻蚀得到平整的铜插塞表面打下基础。需要说明的是,氧化层的形成不能采用化学气相沉积,因为化学气相沉积法形成的氧化层的顶部不平整,还会形成凹陷。即使用本实施例中的干法刻蚀,也无法得到平整的铜插塞表面。去除材料为氧化物的填充层和高于掩膜层的铜层的方法为上述干法刻蚀。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

1.一种铜互连结构的制作方法,其特征在于,包括:
提供基底;
在所述基底上形成介质层;
在所述介质层上形成掩膜层,所述掩膜层内具有贯穿自身厚度的开口;
沿所述开口刻蚀所述介质层,在所述介质层内形成通孔,所述通孔的底部露出所述基底;
采用铜自流工艺在所述通孔内填充满铜层,所述铜层高于所述掩膜层;
去除高于所述掩膜层的铜层,形成铜插塞。
2.如权利要求1所述的制作方法,其特征在于,所述铜层为纯铜层、铜钒合金层、铜铌合金层、铜钯合金层中的一层或叠层。
3.如权利要求1所述的制作方法,其特征在于,所述铜自流工艺的条件包括:所述铜自流工艺的温度范围为30℃~400℃,所述铜自流工艺的真空压力范围为小于等于10-6Torr,所述铜自流工艺的时间为20min~40min。
4.如权利要求1所述的制作方法,其特征在于,所述铜层的表面还具有凹槽,所述凹槽的底部高于所述掩膜层,去除高于所述掩膜层的铜层的步骤包括:
在所述铜层上形成填充层,所述填充层填充满所述凹槽;
采用干法刻蚀的方法去除所述填充层和高于所述掩膜层的铜层,使所述铜层与所述掩膜层表面齐平。
5.如权利要求1所述的制作方法,其特征在于,所述铜层的表面还具有凹槽,所述凹槽的底部高于所述掩膜层,去除高于所述掩膜层的铜层的步骤包括:
在所述铜层上形成填充层,所述填充层填充满所述凹槽;
采用干法刻蚀的方法去除部分厚度铜层及全部填充层,使所述凹槽的高度降低;
继续多次依次重复所述填充及所述干法刻蚀的步骤,直到所述凹槽全部去除;
所述凹槽被全部去除后,采用干法刻蚀的方法将高于所述掩膜层的剩余铜层去除,使铜层与所述掩膜层表面齐平。
6.如权利要求4或5所述的制作方法,其特征在于,所述填充层材料为聚合物和氧化物。
7.如权利要求6所述的制作方法,其特征在于,形成所述聚合物为含氟聚合物。
8.如权利要求7所述的制作方法,其特征在于,形成所述填充层材料为聚合物时,形成所述填充层的方法为沉积。
9.如权利要求6所述的制作方法,其特征在于,形成所述填充层材料为氧化物时,形成所述填充层的方法为旋涂。
10.如权利要求4或5所述的制作方法,其特征在于,所述干法刻蚀的具体工艺条件包括:干法刻蚀压力为5~100mTorr;干法刻蚀功率为100~1000W;干法刻蚀的偏置电压为0~500V;干法刻蚀的温度为-100~50℃;干法刻蚀气体包括H2和Ar,所述H2的流量为10~500sccm;所述Ar的流量为100~1000sccm。
CN201410604127.4A 2014-10-30 2014-10-30 铜互连结构的制作方法 Pending CN105633005A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410604127.4A CN105633005A (zh) 2014-10-30 2014-10-30 铜互连结构的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410604127.4A CN105633005A (zh) 2014-10-30 2014-10-30 铜互连结构的制作方法

Publications (1)

Publication Number Publication Date
CN105633005A true CN105633005A (zh) 2016-06-01

Family

ID=56047793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410604127.4A Pending CN105633005A (zh) 2014-10-30 2014-10-30 铜互连结构的制作方法

Country Status (1)

Country Link
CN (1) CN105633005A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021552A (zh) * 2018-01-09 2019-07-16 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876223A (en) * 1987-10-21 1989-10-24 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor devices
US5618381A (en) * 1992-01-24 1997-04-08 Micron Technology, Inc. Multiple step method of chemical-mechanical polishing which minimizes dishing
CN1788340A (zh) * 2003-03-14 2006-06-14 兰姆研究有限公司 用于改进了的全面双重镶嵌平坦化的系统、方法和设备
US20080206949A1 (en) * 2007-02-28 2008-08-28 Semiconductor Technology Academic Research Center Apparatus for forming conductor, method for forming conductor, and method for manufacturing semiconductor device
CN103081066A (zh) * 2010-08-20 2013-05-01 美光科技公司 半导体构造和在开口内提供导电材料的方法
JP2014086537A (ja) * 2012-10-23 2014-05-12 Ulvac Japan Ltd Cu層形成方法及び半導体装置の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876223A (en) * 1987-10-21 1989-10-24 Kabushiki Kaisha Toshiba Method of manufacturing semiconductor devices
US5618381A (en) * 1992-01-24 1997-04-08 Micron Technology, Inc. Multiple step method of chemical-mechanical polishing which minimizes dishing
CN1788340A (zh) * 2003-03-14 2006-06-14 兰姆研究有限公司 用于改进了的全面双重镶嵌平坦化的系统、方法和设备
US20080206949A1 (en) * 2007-02-28 2008-08-28 Semiconductor Technology Academic Research Center Apparatus for forming conductor, method for forming conductor, and method for manufacturing semiconductor device
CN103081066A (zh) * 2010-08-20 2013-05-01 美光科技公司 半导体构造和在开口内提供导电材料的方法
JP2014086537A (ja) * 2012-10-23 2014-05-12 Ulvac Japan Ltd Cu層形成方法及び半導体装置の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张亚非等: "《半导体集成电路制造技术》", 30 June 2006, 高等教育出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110021552A (zh) * 2018-01-09 2019-07-16 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法
CN110021552B (zh) * 2018-01-09 2022-03-25 中芯国际集成电路制造(上海)有限公司 半导体器件的形成方法

Similar Documents

Publication Publication Date Title
US20160225664A1 (en) Semiconductor Device and Fabricating Process for the Same
CN104733378A (zh) 半导体结构及其制造方法
CN100403517C (zh) 双镶嵌结构、内连结构及其制造方法
US10553539B2 (en) Interconnect structure with porous low k dielectric and barrier layer
JP2009528690A (ja) 誘電材料における金属配線
JP2008502140A (ja) 空隙を有する半導体デバイスの形成方法および該方法によって形成された構造
WO2007132879A1 (ja) 半導体装置、半導体装置の製造方法及び半導体製造装置
US20080251929A1 (en) Semiconductor Device and Semiconductor Device Manufacturing Method
US9698095B2 (en) Interconnect structure
US20150318207A1 (en) Back-end-of-line (beol) interconnect structure
US11942362B2 (en) Surface modification layer for conductive feature formation
US20080188074A1 (en) Peeling-free porous capping material
WO2005071752A1 (en) Gradient deposition of low-k cvd materials
CN105633005A (zh) 铜互连结构的制作方法
TWI564422B (zh) 釕薄膜的化學氣相沉積及其應用
CN103515292B (zh) 半导体结构的形成方法
CN104851835A (zh) 金属互连结构及其形成方法
JP2004259753A (ja) 半導体装置およびその製造方法
TW202213456A (zh) 半導體結構的製作方法
CN104299958B (zh) 互连结构及互连结构的形成方法
JP2005129937A (ja) 低k集積回路相互接続構造
CN102693935A (zh) 互连结构的制造方法
KR100571404B1 (ko) 반도체 소자의 금속 플러그 제조 방법
KR0149468B1 (ko) 반도체 장치의 제조방법
CN1536642A (zh) 制作钨插塞的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination