CN105617992B - 一种吸附丁醇的碳材料及其制备方法与应用 - Google Patents

一种吸附丁醇的碳材料及其制备方法与应用 Download PDF

Info

Publication number
CN105617992B
CN105617992B CN201610160828.2A CN201610160828A CN105617992B CN 105617992 B CN105617992 B CN 105617992B CN 201610160828 A CN201610160828 A CN 201610160828A CN 105617992 B CN105617992 B CN 105617992B
Authority
CN
China
Prior art keywords
biomass
drying
butanol
deionized water
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610160828.2A
Other languages
English (en)
Other versions
CN105617992A (zh
Inventor
应汉杰
季迎春
吴菁岚
周精卫
庄伟�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201610160828.2A priority Critical patent/CN105617992B/zh
Publication of CN105617992A publication Critical patent/CN105617992A/zh
Application granted granted Critical
Publication of CN105617992B publication Critical patent/CN105617992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4875Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种吸附丁醇的碳材料的制备方法,以生物质为原料,经机械粉碎后,与过氧化氢、去离子水超声混匀,加入到反应釜中进行水热反应,再自然冷却至室温;将所得产物采用去离子水反复抽滤清洗至洗涤液无色且洗涤液pH值为6,再烘干得到碳微球材料;将碳微球材料与氯化锌水溶液混合均匀后,静置,烘干,放入管式炉,通入氮气,在氮气保护下升温到600‑760℃,热处理1‑4h,自然冷却至室温;将得到的固体,用盐酸浸泡,搅拌,用去离子水反复抽滤洗涤至洗涤液pH值为6,干燥,即得。本发明所需原料廉价易得,制备方法简单,得到的碳材料吸附剂对于ABE发酵液中的丁醇具有较好吸附选择性以及较大的吸附量。

Description

一种吸附丁醇的碳材料及其制备方法与应用
技术领域
本发明涉及一种生物质类吸附剂及其制备方法与在化工、能源领域中的应用,具体涉及一种吸附丁醇的碳材料及其制备方法与应用。
背景技术
丁醇是一种重要的化工业原料,广泛应用于化工、食品、医药各个领域。丁醇可用于制造邻苯二甲酸、脂肪族二元酸及磷酸的正丁酯类增塑剂,因而广泛用于塑料和各种橡胶制品的生产。且丁醇具有亲水性弱,腐蚀性小,高辛烷值和热值,可以与汽油按一定比例混合等优势,是一种极具潜力的生物燃料。
生物丁醇的生产主要采用微生物发酵法,经过复杂的生物化学变化生成丙酮、乙醇、丁醇等产物,该发酵过程也称为ABE发酵。由于丁醇对菌体的毒性作用,整个发酵过程会发生严重的产物抑制,从而导致产物浓度较低。采用吸附法可有效地将产物丁醇及时从发酵液中移除出,从而提高发酵产率,降低工业成本。采用吸附法吸附分离丁醇,主要存在一些问题,一方面,一些吸附介质的吸附容量较低,另一方面,一些吸附介质吸附选择性差、吸附速率慢。DIJK(WO 2008/095896A1)等采取一种超高交联度的微孔树脂分离分离生物丁醇,但该树脂对丙酮、乙醇同时具有一定的吸附能力,增加了后期分离的成本。ArjanOudshoorn等(Biochemical Engineering Journal,2009,48:99-103)用沸石吸附分离生物丁醇,考察了CBV811、CBV910、CBV28014三种沸石对丁醇的吸附性能,但是,存在沸石对于生物丁醇的吸附容量不高,且沸石对于生物丁醇的吸附选择性较差等问题,造成后期分离费用的增加。因此,急需寻找一种吸附剂,提高对生物丁醇的吸附量,和对生物丁醇的吸附选择性。
发明内容
本发明针对树脂对丁醇吸附容量小、吸附速率慢、吸附选择性差的问题,提供了一种吸附丁醇的新型碳材料,该碳材料对丁醇具有吸附容量大、吸附速率快、吸附选择性好的特点,且原料可再生、污染小、价格低廉。
本发明还要解决的技术问题是提供上述吸附丁醇的碳材料的制备方法。
本发明最后要解决的技术问题是提供上述吸附丁醇的碳材料的应用。
为解决上述技术问题,本发明采用的技术方案如下:
一种吸附丁醇的碳材料的制备方法,包括如下步骤:
(1)以生物质为原料,经机械粉碎后,与过氧化氢、去离子水超声混匀,加入到反应釜中进行不完全水热反应,再自然冷却至室温;
(2)将步骤(1)所得产物采用去离子水反复抽滤清洗至洗涤液无色且洗涤液pH值为6,再烘干得到碳微球材料;
(3)将步骤(2)中得到的碳微球材料与氯化锌水溶液混合均匀后,静置,烘干,放入管式炉,通入氮气,在氮气保护下,以5-20℃/min的升温速率升温到600-760℃,再在该温度条件下热处理1-4h,自然冷却至室温;
(4)将步骤(3)得到的固体,用盐酸浸泡,搅拌0.5-2h(优选0.5h),用40-80℃的去离子水反复抽滤洗涤至洗涤液pH值为6,干燥,即得。
步骤(1)中,所述的生物质为农作物秸秆、玉米芯、稻草、树叶、树皮、木屑和藻类中的任意一种或几种的组合。
步骤(1)中,所述生物质与过氧化氢、去离子水的质量比为1:0.01-0.1:10,优选1:0.01:10。
步骤(1)中,水热反应的温度为180-220℃(优选200-220℃),反应时间16-24h。
步骤(2)中,所述的烘干条件为:相对真空度低于-0.09mbar,温度90-110℃(优选110℃),干燥时间为10-16h。
步骤(3)中,所述的氯化锌水溶液中氯化锌浓度为20-100g/L;碳微球材料与氯化锌的质量比为1-2:1-3,优选1:2。
步骤(3)中,静置时间为2-6h,优选4h;烘干温度为90-120℃(优选110℃),烘干时间为10-14h。
步骤(3)中,优选以5-10℃/min的升温速率升温到700-750℃,再在该温度条件下热处理2h。
步骤(4)中,所述盐酸浓度为0.1-0.5mol/l。
步骤(4)中,干燥条件为80-120℃(优选110℃)恒温干燥10-12h(优选12h)。
上述制备方法制备得到的碳材料也在本发明的保护范围之内。
上述碳材料在吸附丁醇中的应用也在本发明的保护范围之内。其中,所述的吸附丁醇是指从ABE发酵液中吸附丁醇。
有益效果:本发明与现有技术相比,具有有下列优点:
一、原料来源于大自然中广泛存在的木质纤维素,污染小、价格低廉、可再生;
二、制得的碳材料含有较大的比表面积(比表面积可达2000~3000m2/g)和较大的孔容(孔容可达0.8~2.0cm3/g),对丁醇选择性较好,丁醇与丙酮之间的分离因子在10左右,对丁醇的吸附容量达353.83mg/g。
附图说明
图1为生物质不完全水热碳化后的XRD衍射图。
图2为生物质不完全水热碳化得到碳微球的扫描电镜(SEM)图。
图3为水热碳微球经氯化锌活化后的宏观图。
图4为本发明制备的碳材料的氮气吸脱附等温线。
图5为本发明制备的碳材料的孔径分布。
具体实施方式
根据下述实施例,可以更好地理解本发明。然而,本领域的技术人员容易理解,实施例所描述的内容仅用于说明本发明,而不应当也不会限制权利要求书中所详细描述的本发明。
实施例1:以秸秆为原料制备碳材料吸附剂
(1)以秸秆为原料,经机械粉碎后,与过氧化氢、去离子水按1:0.01:10的质量比超声混匀,加入到反应釜中,将反应釜放入到220℃电热恒温鼓风干燥箱不完全水热反应24h,自然冷却至室温;
(2)将固体产物采用去离子水反复抽滤清洗至洗涤液无色,pH=6左右,将得到的固体产物在真空干燥箱110℃、真空度为-0.09mbar条件下烘干12h,水热后产物XRD图谱如图1;
(3)将步骤(2)中得到的碳微球材料(如图3,SEM图如图2)与28g/L氯化锌水溶液(碳微球与氯化锌质量比为1:3)混合均匀后,静置4h,110℃烘干12h,放入管式炉,通入氮气,在氮气保护下,升温速率为5℃/min,700℃下热处理2h,自然冷却至室温;
(4)将步骤(3)中得到的固体,用0.5mol/L HCl溶液浸泡,磁力搅拌0.5h,用50℃热去离子水反复抽滤洗涤,pH=6左右,于110℃恒温干燥12h,即得到最终产物;
(5)实验显示,本实施制备的碳材料吸附剂,对25mL的ABE发酵液(丁醇12g/L,丙酮6g/L,乙醇2g/L)进行静态摇瓶吸附,0.25g该吸附剂在25min中内吸附达到饱和,对丁醇吸附量为280.22mg/g。根据图4氮气吸脱附曲线可得出,吸附剂的比表面积为2122m2/g,孔容1.0cm3/g,丁醇与丙酮之间的分离因子为6,根据图5孔径分布图可看出微孔与介孔占据主导地位。
实施例2:以脱落树皮为原料制备碳材料吸附剂
(1)以脱落树皮为原料,经机械粉碎后,与过氧化氢、去离子水按1:0.01:10的质量比超声混匀,加入到反应釜中,将反应釜放入到200℃电热恒温鼓风干燥箱不完全水热反应16h,自然冷却至室温;
(2)将固体产物采用去离子水反复抽滤清洗至洗涤液无色,pH=6左右,将得到的固体产物在真空干燥箱110℃、真空度为-0.09mbar条件下烘干10h;
(3)将步骤(2)中得到的碳微球材料与40g/L氯化锌水溶液(碳微球与氯化锌质量比为1:2)混合均匀后,静置4h,110℃烘干13h,放入管式炉,通入氮气,在氮气保护下,升温速率为10℃/min,750℃下热处理2h,自然冷却至室温;
(4)将步骤(3)中得到的固体,用0.5mol/L HCl溶液浸泡,磁力搅拌0.5h,用60℃热去离子水反复抽滤洗涤,pH=6左右,于110℃恒温干燥12h,即得到最终产物;
(5)实验显示,本实施制备的碳材料吸附剂,对25mL的ABE发酵液(丁醇12g/L,丙酮6g/L,乙醇2g/L)进行静态摇瓶吸附,0.25g该吸附剂在25min中内吸附基本达到饱和,对丁醇吸附量为250.22mg/g。吸附剂的比表面积为2176m2/g,孔容1.0cm3/g,丁醇与丙酮之间的分离因子为8。
实施例3:以玉米芯为原料制备碳材料吸附剂
(1)以玉米芯为原料,经机械粉碎后,与过氧化氢、去离子水按1:0.01:10的质量比超声混匀,加入到反应釜中,将反应釜放入到200℃电热恒温鼓风干燥箱不完全水热反应20h,自然冷却至室温;
(2)将固体产物采用去离子水反复抽滤清洗至洗涤液无色,pH=6左右,将得到的固体产物在真空干燥箱110℃、真空度为-0.09mbar条件下烘干11h;
(3)将步骤(2)中得到的碳微球材料与60g/L氯化锌水溶液(碳微球与氯化锌质量比为1:2)混合均匀后,静置4h,110℃烘干14h,放入管式炉,通入氮气,在氮气保护下,升温速率为8℃/min,720℃下热处理2h,自然冷却至室温;
(4)将步骤(3)中得到的固体,用0.5mol/L HCl溶液浸泡,磁力搅拌0.5h,用70℃热去离子水反复抽滤洗涤,pH=6左右,于110℃恒温干燥12h,即得到最终产物;
(5)实验显示,本实施制备的碳材料吸附剂,对25mL的ABE发酵液(丁醇12g/L,丙酮6g/L,乙醇2g/L)进行静态摇瓶吸附,0.25g该吸附剂在25min中内吸附基本达到饱和,对丁醇吸附量为353.83mg/g。吸附剂的比表面积为2602m2/g,孔容1.6cm3/g,丁醇与丙酮之间的分离因子为10.1。
实施例4:以玉米芯为原料制备碳材料吸附剂
(1)以玉米芯为原料,经机械粉碎后,与过氧化氢、去离子水按1:0.05:10的质量比超声混匀,加入到反应釜中,将反应釜放入到180℃电热恒温鼓风干燥箱不完全水热反应13h,自然冷却至室温;
(2)将固体产物采用去离子水反复抽滤清洗至洗涤液无色,pH=6左右,将得到的固体产物在真空干燥箱100℃、真空度为-0.09mbar条件下烘干12h;
(3)将步骤(2)中得到的碳微球材料与55g/L氯化锌水溶液(碳微球与氯化锌质量比为1:0.5)混合均匀后,静置6h,105℃烘干14h,放入管式炉,通入氮气,在氮气保护下,升温速率为5℃/min,725℃下热处理2h,自然冷却至室温;
(4)将步骤(3)中得到的固体,用0.1mol/L HCl溶液浸泡,磁力搅拌1.5h,用60℃热去离子水反复抽滤洗涤,pH=6左右,于120℃恒温干燥12h,即得到最终产物;
(5)实验显示,本实施制备的碳材料吸附剂,对25mL的ABE发酵液(丁醇12g/L,丙酮6g/L,乙醇2g/L)进行静态摇瓶吸附,0.25g该吸附剂在25min中内吸附基本达到饱和,对丁醇吸附量为230.22mg/g。吸附剂的比表面积为2002m2/g,孔容0.8cm3/g,丁醇与丙酮之间的分离因子为8。
实施例5:以玉米芯为原料制备碳材料吸附剂
(1)以玉米芯为原料,经机械粉碎后,与过氧化氢、去离子水按1:0.1:10的质量比超声混匀,加入到反应釜中,将反应釜放入到220℃电热恒温鼓风干燥箱不完全水热反应11h,自然冷却至室温;
(2)将固体产物采用去离子水反复抽滤清洗至洗涤液无色,pH=6左右,将得到的固体产物在真空干燥箱110℃、真空度为-0.09mbar条件下烘干12h,;
(3)将步骤(2)中得到的碳微球材料与80g/L氯化锌水溶液(碳微球与氯化锌质量比为1:3)混合均匀后,静置6h,105℃烘干14h,放入管式炉,通入氮气,在氮气保护下,升温速率为20℃/min,745℃下热处理2h,自然冷却至室温;
(4)将步骤(3)中得到的固体,用0.25mol/L HCl溶液浸泡,磁力搅拌2.0h,用60℃热去离子水反复抽滤洗涤,pH=6左右,于80℃恒温干燥12h,即得到最终产物;
(5)实验显示,本实施制备的碳材料吸附剂,对25mL的ABE发酵液(丁醇12g/L,丙酮6g/L,乙醇2g/L)进行静态摇瓶吸附,0.25g该吸附剂在25min中内吸附基本达到饱和,对丁醇吸附量为330.22mg/g。吸附剂的比表面积为2480m2/g,孔容1.65cm3/g,丁醇与丙酮之间的分离因子为9.0。

Claims (7)

1.一种碳材料用于ABE发酵液中吸附分离丁醇的应用,所述碳材料通过如下步骤制备:
(1)以生物质为原料,经机械粉碎后,与过氧化氢、去离子水超声混匀,加入到反应釜中进行水热反应,再自然冷却至室温;
(2)将步骤(1)所得产物采用去离子水反复抽滤清洗至洗涤液无色且洗涤液pH值为6,再烘干得到碳微球材料;
(3)将步骤(2)中得到的碳微球材料与氯化锌水溶液混合均匀后,静置,烘干,放入管式炉,通入氮气,在氮气保护下,以5-20℃/min的升温速率升温到600-760℃,再在该温度条件下热处理1-4h,自然冷却至室温;
(4)将步骤(3)得到的固体,用盐酸浸泡,搅拌0.5-2h,用40-80℃的去离子水反复抽滤洗涤至洗涤液pH值为6,干燥,即得。
2.根据权利要求1所述的应用,其特征在于,步骤(1)中,所述的生物质为农作物秸秆、玉米芯、稻草、树叶、树皮、木屑和藻类中的任意一种或几种的组合。
3.根据权利要求1所述的应用,其特征在于,步骤(1)中,所述生物质与过氧化氢、去离子水的质量比为1∶0.01-0.1∶10,水热反应的温度为180-220℃,反应时间16-24h。
4.根据权利要求1所述的应用,其特征在于,步骤(2)中,所述的烘干条件为:相对真空度低于-0.09mbar,温度90-110℃,干燥时间为10-16h。
5.根据权利要求1所述的应用,其特征在于,步骤(3)中,所述的氯化锌水溶液中氯化锌浓度为20-100g/L;碳微球材料与氯化锌的质量比为1-2∶1-3。
6.根据权利要求1所述的应用,其特征在于,步骤(3)中,静置时间为2-6h;烘干温度为90-120℃,烘干时间为10-14h。
7.根据权利要求1所述的应用,其特征在于,步骤(4)中,所述盐酸浓度为0.1-0.5mol/1,干燥条件为80-120℃恒温干燥10-12h。
CN201610160828.2A 2016-03-21 2016-03-21 一种吸附丁醇的碳材料及其制备方法与应用 Active CN105617992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610160828.2A CN105617992B (zh) 2016-03-21 2016-03-21 一种吸附丁醇的碳材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610160828.2A CN105617992B (zh) 2016-03-21 2016-03-21 一种吸附丁醇的碳材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105617992A CN105617992A (zh) 2016-06-01
CN105617992B true CN105617992B (zh) 2018-03-02

Family

ID=56033565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610160828.2A Active CN105617992B (zh) 2016-03-21 2016-03-21 一种吸附丁醇的碳材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105617992B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354802A (zh) * 2019-06-27 2019-10-22 江汉大学 一种以烟蒂为原材料制备重金属吸附材料的方法
CN113053675B (zh) * 2021-03-11 2023-07-28 深圳今为科技有限公司 一种应用于超级电容器的电极复合材料的制备方法
CN113149006B (zh) * 2021-05-12 2021-11-02 广西科学院 一种以富含木质素的生物质为原料制备电容炭的方法
CN116041989A (zh) * 2023-01-10 2023-05-02 聚能新材料科技(荆门)有限公司 一种生物质碳球、其制备方法、抗静电复合材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994573A (zh) * 2012-12-19 2013-03-27 大连理工大学 利用活性炭原位吸附在线分离提纯发酵液中丁醇、丙酮和乙醇的方法
CN104843670A (zh) * 2015-04-28 2015-08-19 江苏省农业科学院 一种利用玉米芯制备大颗粒泡沫炭的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015066816A1 (en) * 2013-11-07 2015-05-14 B.W. Bioenergy Inc. Generation of high quality birch-based activated carbons for adsorption of heavy metals and pah from water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102994573A (zh) * 2012-12-19 2013-03-27 大连理工大学 利用活性炭原位吸附在线分离提纯发酵液中丁醇、丙酮和乙醇的方法
CN104843670A (zh) * 2015-04-28 2015-08-19 江苏省农业科学院 一种利用玉米芯制备大颗粒泡沫炭的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption";N. Qureshi et al.;《Bioprocess Biosyst Eng》;20050303;第27卷(第4期);第217页 *
"Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications";Akshay Jain et al.;《CHEMICAL ENGINEERING JOURNAL 》;20150328;第273卷;第623-624、626页 *

Also Published As

Publication number Publication date
CN105617992A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN105617992B (zh) 一种吸附丁醇的碳材料及其制备方法与应用
Bedia et al. A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water
Siregar et al. Structural stability of Ni/Al layered double hydroxide supported on graphite and biochar toward adsorption of congo red
Zhang et al. Agar aerogel containing small-sized zeolitic imidazolate framework loaded carbon nitride: a solar-triggered regenerable decontaminant for convenient and enhanced water purification
KR101751370B1 (ko) 고활성 표면적을 갖는 활성탄
Li et al. Adsorptive Removal of Dyes from Aqueous Solution by KMnO4‐Modified Rice Husk and Rice Straw
CN105727736B (zh) 以金属有机骨架材料制备催化剂用于脱除二氧化硫的方法
CN107021483A (zh) 一种基于生物质水热合成片状多孔碳的方法
Sule et al. MOFs-carbon hybrid nanocomposites in environmental protection applications
CN108722371A (zh) 一种磁性生物炭的制备方法
CN107265434A (zh) 一种竹制纳米纤维素/还原氧化石墨烯复合碳气凝胶的制备方法及其应用
CN105502385A (zh) 一种吸附二氧化碳的玉米秸秆基多孔碳材料及其制备方法
CN108862274A (zh) 一种纤维素基层次多孔碳材料的制备方法及其应用
CN106582587A (zh) 一种用于吸附二氧化碳的微藻基含氮炭材料及其制备方法
CN105540726A (zh) 一种磁性壳聚糖/生物炭复合材料去除废水中五价砷的方法
CN106824100A (zh) 一种高效捕获碘的锌‑mof微孔材料及其制备方法与应用
CN108404860A (zh) 一种无机重金属离子吸附材料的制备方法
CN106492754A (zh) 一种吸附剂的制备方法、改性方法与应用
CN111408358A (zh) 一种双配体构筑水稳定微孔染料吸附剂及制备方法
CN107266711A (zh) 氧化石墨烯杂化物阻燃剂及其制备方法
CN108786723A (zh) 利用活化蒙脱石生物炭复合材料去除水体中雌激素的方法
JP2015013767A (ja) 多孔質炭素材料の製造方法
Qin et al. New insight into remarkable tetracycline removal by enhanced graphitization of hierarchical porous carbon aerogel: performance and mechanism
Maleki et al. A critical review on MOFs and COFs-based heterogeneous catalysts in biodiesel generation: Synthesis methods, structural features, mechanisms, kinetic, economic/environmental evaluation, and their performance
CN111690144A (zh) 多级孔UiO-66材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant