CN105582806B - 一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用 - Google Patents

一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用 Download PDF

Info

Publication number
CN105582806B
CN105582806B CN201510943512.6A CN201510943512A CN105582806B CN 105582806 B CN105582806 B CN 105582806B CN 201510943512 A CN201510943512 A CN 201510943512A CN 105582806 B CN105582806 B CN 105582806B
Authority
CN
China
Prior art keywords
methane
adsorption
crystal compound
low concentration
dimensional crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510943512.6A
Other languages
English (en)
Other versions
CN105582806A (zh
Inventor
周爱国
刘凡凡
刘宝忠
胡前库
王李波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN201510943512.6A priority Critical patent/CN105582806B/zh
Publication of CN105582806A publication Critical patent/CN105582806A/zh
Application granted granted Critical
Publication of CN105582806B publication Critical patent/CN105582806B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0211Compounds of Ti, Zr, Hf
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二维晶体化合物Ti2C作为吸附剂在吸附低浓度瓦斯中甲烷的应用。二维晶体化合物Ti2C具有类石墨烯的二维层状结构,由上下表面的钛原子与中间的碳原子层组成。这种材料具有高比表面积和光催化性能。可以吸附低浓度瓦斯中的甲烷分子,并且在甲烷压强下降时,吸附的甲烷分子不会重新进入到环境中。材料的光催化性能可以把具有危害性的甲烷分解为无害的二氧化碳和水。这种新型吸附分解材料为低浓度瓦斯的无害化处理提供了一种新的有效途径。

Description

一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯 中甲烷的应用
技术领域
本发明属于环保新材料领域,具体涉及一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用。
背景技术
瓦斯是有机质在煤化作用过程中生成的、主要以吸附状态储存于煤层及其围岩中的可燃气体,其主要成分是甲烷,化学式为CH4,瓦斯是威胁煤矿安全的一种有害气体。虽然纯净的甲烷气体是一种清洁能源,但是由于大量煤井瓦斯中的甲烷浓度很低,无法得到有效利用。这些大量存在的低浓度瓦斯留在矿井之中,如果富集到一定程度,会对煤矿的安全生产造成极大的危害。如果排到大气中,甲烷是一种非常有害的温室气体,温室效应比二氧化碳高25倍。
常见的甲烷处理方法是用活性炭进行吸附,由于活性炭具有非常高的比表面积、孔隙率高、化学稳定性好、成本低廉,因此是非常常见的甲烷吸附材料。但由于活性炭对瓦斯气体(甲烷)的吸附为纯吸附,吸附的甲烷在一定的条件下又回到大气中。所以甲烷的危害性并没有解决。因此,有必要寻找新的吸附材料,在吸附甲烷的同时可以留存甲烷,甚至完成对甲烷的无害化处理。
发明内容
本发明的目的是提供一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯(甲烷体积浓度:6% ~ 25%)中甲烷的应用。
基于上述目的,本发明采取了如下技术方案:
一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用。
二维晶体化合物Ti2C通过选择性刻蚀层状陶瓷材料Ti2AlC粉体而制备,Ti2C用作吸附剂吸附甲烷气体分子,在吸附甲烷分子的同时,在甲烷压强下降时可以留存甲烷,在5MPa的甲烷压强、室温条件下,甲烷的吸附量为:6~20 cm3/g;甲烷压强下降至0.1~0.8MPa、室温条件下,甲烷的吸附量为:4~10 cm3/g,甲烷分子不会重新释放到环境中。
二维碳化钛(Ti2C)是二维晶体MXene的一种,具有与石墨烯类似的结构。其晶体结构是2层钛原子层夹着1层碳原子层。因为二维结构,该材料具有较高的比表面积以及良好的吸附性能。因为表面的钛原子层以及表面上少量因为氧化产生的二氧化钛颗粒的作用,该材料具有良好的光催化性能,可以把有机物转变成无害的水与二氧化碳。
本发明二维晶体化合物Ti2C纳米粉体作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用时,具有下述优点:甲烷压强高时,吸附大量甲烷分子到材料的微孔结构中;甲烷压强下降,吸附的甲烷分子不会重新释放进入环境中。因为Ti2C对有机物的光催化特性,吸附的甲烷分子会通过光催化作用分解为二氧化碳和水。
附图说明
图1为本发明实施例1用氟化铵和盐酸的混合溶液刻蚀Ti2AlC 制备的二维晶体化合物Ti2C的XRD图;
图2为实施例1制得的二维晶体化合物Ti2C的场发射扫描电镜照片;
图3为实施例1制得的二维晶体化合物Ti2C的甲烷吸附性能测试结果;
图4为实施例1制得的二维晶体化合物Ti2C的光催化性能测试结果。
具体实施方式
以下结合具体实施例对本发明的技术方案作进一步详细说明,但本发明的保护范围并不局限于此。
实施例1
二维晶体化合物Ti2C纳米粉体的制备,包括如下步骤:
(1) 配制氟化铵和盐酸的混合溶液
量取20 ml浓度为36 wt%的盐酸,加入20 ml去离子水,稀释成浓度约为6 mol/L的盐酸。称取2 g氟化铵(也可以是氟化钠、氟化钾或氟化锂)粉末溶解于上述稀释后的盐酸中,超声10分钟,使氟盐粉末充分溶解在盐酸中,即得到6 mol/L 的氟盐溶液;
(2) 二维晶体化合物Ti2C的制备
将粒径为500目的2 g Ti2AlC粉末浸没于40 ml 步骤 (1) 的氟盐溶液中,在40℃下搅拌48 h,倒入离心管中,以6000转每分钟的速度将混合溶液离心,离心后,吸出上层溶液,加入去离子水洗涤后离心,如此反复数次至离心管中的溶液呈中性,吸出上层溶液,将离心管底部留下的样品放于真空干燥箱中80℃下干燥12 h,得到二维晶体化合物Ti2C, 为黑色粉末,其X射线衍射图谱见图1,场发射扫描电镜照片见图2,由图2可以看出,Ti2C层间距为20-150 nm,层的厚度在20-80 nm。
甲烷吸附脱附性能:
利用北京金埃谱公司生产的高温高压气体吸附仪测试甲烷吸附性能。在5 MPa的纯甲烷压强下,室温条件下甲烷的吸附量为:6~20 cm3/g,压强下降到常压,甲烷的吸附量仍然保持在 4~10 cm3/g。
称取质量不少于0.1 g实施例1所制备的二维晶体化合物Ti2C,放入样品管中,采用北京金埃谱公司生产的高温高压气体吸附仪,以氦气为标定气体类型,在纯甲烷氛围、5MPa、 80℃下进行样品预处理120分钟。然后将处理后的样品在压强为 0到5 MPa之间、室温条件下进行甲烷吸附性能的测试:测试结果见图3,根据吸附曲线,甲烷压强上升时,甲烷吸附量持续上升,在5MPa的甲烷压强、室温条件下,对应的吸附量为8.5 cm3/g STP;当甲烷压强下降时,可以从脱附曲线看出,甲烷的吸附量下降的非常缓慢;当甲烷压强下降至0.5MPa、室温条件下,甲烷的吸附量仍然达到6.2 cm3/g STP;相对于最高吸附量,73%的甲烷在实验结束时仍然留存于Ti2C吸附材料中。
样品对罗丹明B的光催化性能测试:
利用TU-1901紫外可见分光光度计测试Ti2C的光催化性能。因为甲烷以及甲烷的分解产物二氧化碳与水都是无色无味,本专利使用常见的有机物染色剂罗丹明B的分解来表征Ti2C对有机物光催化分解的性能。配置罗丹明B的水溶液,加入Ti2C粉体,测试在紫外光下照射不同时间后,溶液样品的吸光度来表征Ti2C样品光催化分解性能。
将质量为0.1 g 的Ti2C粉体与体积为100 ml、浓度为20 mg/L 的罗丹明B溶液避光混合搅拌30 min,同时开启温度为10℃的循环冷凝水,30 min后,开启紫外灯,然后每隔5min,10 min,15 min,20 min,30 min,40 min,50 min,60 min分别取样标号。采用紫外可见分光光度计依次测试所取样品的紫外光波长,研究Ti2C的光催化降解性能,测试结果见图4,由图4可知: 随着紫外光照射时间的增加,在550nm处紫外吸光度的波峰逐渐减弱,罗丹明B逐渐降解完全,表明Ti2C对于有机物具有显著的光催化分解性能。
最后要说明的是,以上实例的说明只是用于帮助理解本发明的方法及其核心思想。并非用以限定本发明的实质技术内容范围,本领域的技术人员可以在此基础上对本发明做出各种改进来优化本方案。在不脱离本发明原理得前提下,进行的任何修改和修饰等均应包含在本发明权利要求的范围内。

Claims (3)

1.一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用,其特征在于:Ti2C具有光催化性,可催化降解吸附的甲烷为无害的水与二氧化碳。
2.根据权利要求1所述的二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用,其特征在于:甲烷压强上升,甲烷吸附量增加,在5MPa 的纯甲烷压强、室温条件下,甲烷的吸附量为:6~20 cm3/g。
3.根据权利要求1所述的二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用,其特征在于:甲烷压强下降至0.1~0.8 MPa、室温条件下,甲烷的吸附量为:4~10cm3/g,被吸附的甲烷分子不会重新释放到环境中。
CN201510943512.6A 2015-12-16 2015-12-16 一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用 Expired - Fee Related CN105582806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510943512.6A CN105582806B (zh) 2015-12-16 2015-12-16 一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510943512.6A CN105582806B (zh) 2015-12-16 2015-12-16 一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用

Publications (2)

Publication Number Publication Date
CN105582806A CN105582806A (zh) 2016-05-18
CN105582806B true CN105582806B (zh) 2018-01-05

Family

ID=55922929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510943512.6A Expired - Fee Related CN105582806B (zh) 2015-12-16 2015-12-16 一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用

Country Status (1)

Country Link
CN (1) CN105582806B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106563479B (zh) * 2016-10-19 2019-02-12 河南理工大学 一种二维碳化物负载稀土氟化物纳米粉体、制备方法及其应用
CN107128922A (zh) * 2017-04-27 2017-09-05 陕西科技大学 一种碳化钛柔性纸及其制备方法
CN109397825B (zh) * 2018-12-03 2020-07-03 武汉市银莱制衣有限公司 具备矿井尘毒气体警报及过滤功能的MXene基复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406324A (zh) * 1999-08-11 2003-03-26 赫纳拉投资有限公司 在具有剥落薄层的吸附剂上进行气体储存
CN104528721A (zh) * 2014-12-23 2015-04-22 陕西科技大学 一种薄片二维纳米碳化钛纳米材料的制备方法
CN104587947A (zh) * 2014-12-23 2015-05-06 陕西科技大学 有效吸附六价铬离子的二维纳米吸附剂碳化钛制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1406324A (zh) * 1999-08-11 2003-03-26 赫纳拉投资有限公司 在具有剥落薄层的吸附剂上进行气体储存
CN104528721A (zh) * 2014-12-23 2015-04-22 陕西科技大学 一种薄片二维纳米碳化钛纳米材料的制备方法
CN104587947A (zh) * 2014-12-23 2015-05-06 陕西科技大学 有效吸附六价铬离子的二维纳米吸附剂碳化钛制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Density-Functional Calculation of Methane Adsorption on Graphenes;Xian-Ping Chen et al;《IEEE ELECTRON DEVICE LETTERS》;20151120;第36卷(第12期);1366-1368 *

Also Published As

Publication number Publication date
CN105582806A (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
Lin et al. Facile generation of carbon quantum dots in MIL-53 (Fe) particles as localized electron acceptors for enhancing their photocatalytic Cr (vi) reduction
Jiménez et al. CO2 capture in different carbon materials
Feng et al. Adsorption of hydrogen sulfide onto activated carbon fibers: effect of pore structure and surface chemistry
CN104843665B (zh) 一种单层及多层空心碳纳米球、制备及其应用
CN104226255B (zh) 一种金属有机骨架-氧化石墨烯复合材料的制备方法
CN105582806B (zh) 一种二维晶体化合物Ti2C作为吸附剂在吸附分解低浓度瓦斯中甲烷的应用
CN104525119B (zh) 一种g-C3N4/ZnO/活性炭的功能性炭吸附材料及其制备方法
Wu et al. A novel molecular sieve supporting material for enhancing activity and stability of Ag3PO4 photocatalyst
CN107185493A (zh) 石墨烯改性的复合介孔碳微球空气净化剂制备方法
Serafin et al. Activated carbons from the Amazonian biomass andiroba shells applied as a CO2 adsorbent and a cheap semiconductor material
Balta et al. Insights into the photocatalytic behavior of carbon-rich shungite-based WO3/TiO2 catalysts for enhanced dye and pharmaceutical degradation
Kong et al. All-cellulose-based freestanding porous carbon nanocomposites and their versatile applications
CN107694605A (zh) 碳量子点@卟啉基金属有机骨架催化剂及制备方法和应用
Wang et al. A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core–shell non-metallic photocatalysts
Song et al. Comparison for adsorption of tetracycline and cefradine using biochar derived from seaweed Sargassum sp
Balakumar et al. A simple tactic synthesis of hollow porous graphitic carbon nitride with significantly enhanced photocatalytic performance
Maimaiti et al. Synthesis and photocatalytic CO 2 reduction performance of aminated coal-based carbon nanoparticles
CN112516815A (zh) 一种柔性自支撑mof-go膜及其制备方法与其在离子分离和染料去除方面的应用
Shao et al. Construction of hierarchical porous carbon with mesopores-enriched from sodium lignosulfonate by dual template strategy and their diversified applications for CO2 capture, radioactive iodine adsorption, and RhB removal
Che Othman et al. Polyethyleneimine-impregnated activated carbon nanofiber composited graphene-derived rice husk char for efficient post-combustion CO2 capture
Duan et al. Adsorptivity and kinetics for low concentration of gaseous formaldehyde on bamboo-based activated carbon loaded with ammonium acetate particles
CN111821948B (zh) 一种基于面粉的除氟吸附剂的制备方法
Santhosh et al. Harnessing deep eutectic solvents for upcycling waste membranes into high-performance adsorbents and energy storage materials
Liu et al. One-step synthesis of modified graphene aerogels for the adsorption of chloroform, toluene, and gasoline using pine wood chips as raw material
Liu et al. Removal of mercury from flue gas using sewage sludge-based adsorbents

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180105

Termination date: 20211216