CN105572174B - 一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途 - Google Patents

一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途 Download PDF

Info

Publication number
CN105572174B
CN105572174B CN201610024206.7A CN201610024206A CN105572174B CN 105572174 B CN105572174 B CN 105572174B CN 201610024206 A CN201610024206 A CN 201610024206A CN 105572174 B CN105572174 B CN 105572174B
Authority
CN
China
Prior art keywords
gas sensor
azo
acetic gas
acetic
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610024206.7A
Other languages
English (en)
Other versions
CN105572174A (zh
Inventor
路建美
贺竞辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University
Original Assignee
Suzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University filed Critical Suzhou University
Priority to CN201610024206.7A priority Critical patent/CN105572174B/zh
Publication of CN105572174A publication Critical patent/CN105572174A/zh
Priority to US15/405,358 priority patent/US10222345B2/en
Application granted granted Critical
Publication of CN105572174B publication Critical patent/CN105572174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明公开了一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途。具体而言,本发明的醋酸气体传感器包括叉指电极和镀膜材料,该镀膜材料为如式I所示的偶氮苯类化合物,其通过真空镀膜技术镀于叉指电极上,并且其厚度为100~200nm。本发明的醋酸气体传感器制备便捷,操作简单,选择性高,对于醋酸的传感强度远高于其他含有羟基的分子;另外,本发明的醋酸气体传感器在室温下即可完成检测,对环境温度的依赖度较低。

Description

一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和 用途
技术领域
本发明属于有机半导体材料技术领域,具体涉及一种基于偶氮苯类化合物的醋酸气体传感器,其制备方法,及其在空气质量检测中,特别是在醋酸气体检测中的用途。
背景技术
随着当今社会国防、环境监测和保护事业的发展,对于气体传感器的需求急剧增加。无论是日常生活中常见的加油加气站、食品厂、煤气站,还是在科学研究领域的实验环境中,都急需一种比现有传感器的性能及灵敏度更高的传感器件。
传统的无机金属氧化物传感器不仅对工作环境的温度要求较高,而且几乎对所有有机气体都有响应,暴露出其实用性差、选择性低的劣势。电化学气体传感器的应用范围仅限于能与贵金属电极发生催化电化学反应的气体,其检测种类较少,并且存在基线漂移、容易中毒等现象。相比而言,有机小分子膜气体传感器具有工作温度低、选择性高、薄膜器件容易设计和调控等优点,逐渐受到研究者的青睐。
发明内容
针对上述情况,本发明采用三种不同结构的偶氮苯类共轭小分子(分别命名为AZOC-2N、AZOC-3N、AZOC-4N,结构如下所示)来制备气体传感器,并且通过在不同气体浓度下观察传感器的I-V曲线变化来检测不同浓度的醋酸蒸气。为了检测传感器的选择性,本发明还在相同温度下对富含羟基的水和乙醇蒸气进行了检测,结果证明:本发明的传感器具有工作温度低、选择性高等优点。
具体而言,本发明采用如下技术方案:
如式(I)所示的偶氮苯类化合物在制备醋酸气体传感器中的用途。
上述基于偶氮苯类化合物的醋酸气体传感器包括叉指电极和镀膜材料,所述镀膜材料为上述如式(I)所示的偶氮苯类化合物,其通过真空镀膜技术镀于所述叉指电极上,并且其厚度为100~200 nm。
优选的,在上述基于偶氮苯类化合物的醋酸气体传感器中,所述叉指电极以自下而上依次为硅、二氧化硅(厚度为270~330 nm,优选300 nm)、铬(厚度为9~11 nm,优选10nm)的层状结构为基底,其上设置有金电极(厚度为90~110 nm,优选100 nm);所述叉指电极的叉指宽度为3~8 μm(优选5 μm),叉指间距为2~5 μm(优选3 μm)。
上述基于偶氮苯类化合物的醋酸气体传感器通过包括如下步骤的制备方法制得:
(1)清洁基板,并将叉指电极固定在所述基板上;
(2)将步骤(1)中固定有叉指电极的基板置于真空镀膜装置中,并向所述真空镀膜装置中装入作为镀膜材料的上述如式(I)所示的偶氮苯类化合物;
(3)按照如下条件设置真空镀膜参数:蒸镀速度为0.5~0.6 Å/s,蒸镀压力为1E-6~1E-5 mbar,蒸镀温度为120~140℃;
(4)参数设置完成后,开启减压装置来降低所述真空镀膜装置的腔内气压,当腔内气压小于5.0 mbar时,开启分子泵,当气压达到蒸镀压力时,开始蒸镀薄膜,直至镀膜达到所需的厚度,即得基于偶氮苯类化合物的醋酸气体传感器。
优选的,在上述制备方法中,步骤(1)中所述固定通过双面胶粘合的方式来完成。
优选的,在上述制备方法中,步骤(2)中所述真空镀膜装置为真空镀膜机。
优选的,在上述制备方法中,步骤(3)中所述真空镀膜参数设置如下:蒸镀速度为0.5 Å/s,蒸镀压力为1E-5 mbar,蒸镀温度为120℃。
优选的,在上述制备方法中,步骤(4)中所述减压装置为真空泵。
上述基于偶氮苯类化合物的醋酸气体传感器在空气质量检测中,特别是在醋酸气体检测中的用途。
与现有技术相比,采用上述技术方案的本发明具有如下优点:
(1)器件制备便捷,操作简单;
(2)选择性高,对于醋酸的传感强度远高于其他含有羟基的分子;
(3)在室温下即可完成检测,对环境温度的依赖度较低。
附图说明
图1为基于偶氮苯类化合物薄膜的气体传感器的结构示意图。
图2为基于AZOC-2N薄膜的气体传感器对浓度为6.8~27.0 ppm的醋酸蒸气的I-V曲线。
图3为基于AZOC-3N薄膜的气体传感器对浓度为6.8~27.0 ppm的醋酸蒸气的I-V曲线。
图4为基于AZOC-4N薄膜的气体传感器对浓度为6.8~27.0 ppm的醋酸蒸气的I-V曲线。
图5为基于AZOC-2N薄膜的气体传感器的可回复性实验结果。
图6为基于偶氮苯类化合物薄膜的气体传感器的选择性实验结果。
具体实施方式
下文将结合附图和具体实施例来进一步说明本发明的技术方案。除非另有说明,下列实施例中所使用的试剂、材料、仪器等均可通过商业手段获得。
实施例1:基于偶氮苯有机薄膜的气体传感器的制备。
(1)清洁玻璃基板,并通过双面胶将叉指电极粘合在基板上,该叉指电极以自下而上依次为硅、二氧化硅(300 nm)、铬(10 nm)的层状结构为基底,其上设置有金电极(100nm),叉指宽度为5 μm,叉指间距为3 μm;
(2)将步骤(1)中固定有叉指电极的基板置于真空镀膜机中,分别称取三种偶氮苯类化合物(AZOC-2N、AZOC-3N、AZOC-4N)各35 mg,置于石英坩埚内,并装入真空镀膜机中,备用;
(3)按照如下条件设置真空镀膜参数:蒸镀速度为0.5 Å/s,蒸镀压力为1E-5mbar,蒸镀温度为120℃;
(4)参数设置完成后,开启真空泵来降低真空镀膜机的腔内气压,当腔内气压小于5.0 mbar时,开启分子泵(如果分子泵开启时压力过大,则会直接损伤分子泵,使得镀膜压力达不到,导致镀膜质量过差),当气压达到1E-5 mbar时,开始蒸镀薄膜,直至镀膜厚度达到100 nm,即得基于偶氮苯类化合物的醋酸气体传感器,其结构示意图如图1所示。
从图1中可以看出,该器件分为五层,自下往上分别是硅、二氧化硅、铬、金电极和偶氮苯薄膜。
实施例2:三种有机薄膜传感器在不同气体浓度下的I-V曲线测定实验。
打开N2气瓶,向测试装置中通入纯N2,保持流量为3 L/min,通入时间达到5 min后,设定电压为0~40 V,测量叉指电极的I-V曲线背景基线。
通过动态配气装置来调节N2流量,并通过稀释15℃下的饱和醋酸蒸气来获得不同浓度的醋酸气体(6.8~27.0 ppm),通入测试仓后测量三种基于有机薄膜(AZOC-2N、AZOC-3N、AZOC-4N)的气体传感器在不同醋酸蒸气浓度下的I-V曲线数据,其结果如图2至图4所示。
从图2至图4中均可看出,对于不同浓度的醋酸蒸气而言,气体传感器的电流响应随气体浓度的增加而增加。
实施例3:基于AZOC-2N薄膜的气体传感器对于不同浓度醋酸蒸气的可回复性测试。
通过调控进气开关,交替向测试仓内送入醋酸蒸气与氮气,用于测试基于AZOC-2N薄膜的气体传感器的可回复性,其结果如图5所示。
从图5中可以看出,对于浓度不断增高的醋酸蒸气,电流也会随之增高;同时,当通入氮气时,电流值又开始下降。由此可以证明,基于AZOC-2N薄膜的气体传感器是可回复的,适合于长期且稳定地检测空气中的醋酸气体。
实施例4:三种有机薄膜传感器的选择性测试。
为了检测气体传感器的选择性,在相同温度下对富含羟基的水和乙醇蒸气进行检测,其结果如图6所示。
从图6中可以看出,三种薄膜材料对于每ppm的醋酸电流变化均远大于水和乙醇,具有良好的选择性,并且AZOC-2N对于醋酸的响应程度最高。
综上所述,制备基于AZOC-2N、AZOC-3N和AZOC-4N这三种偶氮苯类有机小分子薄膜的气体传感器能够实现对于醋酸分子的检测,其特点是可以在室温下实施检测,并且具有较高的选择性,相比于现有的传感器件,具有巨大的应用潜能。

Claims (10)

1.如式I所示的偶氮苯类化合物在制备醋酸气体传感器中的用途,
2.一种基于偶氮苯类化合物的醋酸气体传感器,其包括叉指电极和镀膜材料,所述镀膜材料通过真空镀膜技术镀于所述叉指电极上,其特征在于,所述镀膜材料为根据权利要求1所述的如式I所示的偶氮苯类化合物,并且所述镀膜材料的厚度为100~200 nm。
3.根据权利要求2所述的基于偶氮苯类化合物的醋酸气体传感器,其特征在于:
所述叉指电极以自下而上依次为硅、二氧化硅、铬的层状结构为基底,所述基底上设置有金电极;
所述二氧化硅的厚度为270~330 nm,所述铬的厚度为9~11 nm,所述金电极的厚度为90~110 nm。
4.根据权利要求2所述的基于偶氮苯类化合物的醋酸气体传感器,其特征在于:
所述叉指电极的叉指宽度为3~8 μm,叉指间距为2~5 μm。
5.一种根据权利要求2所述的基于偶氮苯类化合物的醋酸气体传感器的制备方法,其包括如下步骤:
1)清洁基板,并将叉指电极固定在所述基板上;
2)将步骤1)中固定有叉指电极的基板置于真空镀膜装置中,并向所述真空镀膜装置中装入作为镀膜材料的根据权利要求1所述的如式I所示的偶氮苯类化合物;
3)按照如下条件设置真空镀膜参数:蒸镀速度为0.5~0.6 Å/s,蒸镀压力为1E-6~1E-5mbar,蒸镀温度为120~140℃;
4)参数设置完成后,开启减压装置来降低所述真空镀膜装置的腔内气压,当腔内气压小于5.0 mbar时,开启分子泵,当气压达到蒸镀压力时,开始蒸镀薄膜,直至镀膜达到所需的厚度,即得基于偶氮苯类化合物的醋酸气体传感器。
6.根据权利要求5所述的制备方法,其特征在于:
步骤1)中所述固定通过双面胶粘合的方式来完成。
7.根据权利要求5所述的制备方法,其特征在于:
步骤2)中所述真空镀膜装置为真空镀膜机。
8.根据权利要求5所述的制备方法,其特征在于:
步骤3)中所述真空镀膜参数设置如下:蒸镀速度为0.5 Å/s,蒸镀压力为1E-5 mbar,蒸镀温度为120℃。
9.根据权利要求5所述的制备方法,其特征在于:
步骤4)中所述减压装置为真空泵。
10.根据权利要求2所述的基于偶氮苯类化合物的醋酸气体传感器在醋酸气体检测中的用途。
CN201610024206.7A 2016-01-14 2016-01-14 一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途 Active CN105572174B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610024206.7A CN105572174B (zh) 2016-01-14 2016-01-14 一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途
US15/405,358 US10222345B2 (en) 2016-01-14 2017-01-13 Acetic acid gas sensor based on azobenzene compound, preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610024206.7A CN105572174B (zh) 2016-01-14 2016-01-14 一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN105572174A CN105572174A (zh) 2016-05-11
CN105572174B true CN105572174B (zh) 2018-07-06

Family

ID=55882546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610024206.7A Active CN105572174B (zh) 2016-01-14 2016-01-14 一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途

Country Status (2)

Country Link
US (1) US10222345B2 (zh)
CN (1) CN105572174B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535333B (zh) * 2018-02-02 2020-06-19 苏州大学 基于方酸菁聚合物的氨气/一氧化氮双组份传感器及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012134257A1 (en) * 2011-03-14 2012-10-04 Mimos Berhad Carbon nanotube-modified electrode
CN103743644A (zh) * 2013-12-19 2014-04-23 中安高科检测科技(北京)有限公司 一种检测山西老陈醋的气敏传感器阵列的制备方法
CN104198532A (zh) * 2014-09-05 2014-12-10 中国石油大学(华东) 一种具有氨气敏感效应的二硫化钼薄膜器件及其制备方法和应用
CN104237325A (zh) * 2014-10-09 2014-12-24 扬州大学 一种基于染料敏化半导体的二氧化氮传感膜制备方法
CN104833701A (zh) * 2015-05-06 2015-08-12 江苏大学 一种纳米薄膜氨气传感器的制备方法
CN104977346A (zh) * 2015-06-28 2015-10-14 陆宇 氨气传感器
CN105181755A (zh) * 2015-08-24 2015-12-23 大连理工大学 氨气传感器及其制备工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743589A (en) * 1971-12-23 1973-07-03 Honeywell Inc Electrochemical vapor detector
JPH0664008B2 (ja) * 1988-03-02 1994-08-22 岡崎国立共同研究機構長 ガスセンサー及びその製造法
DE60119969T2 (de) * 2000-11-24 2007-01-04 Osmetech Plc Nachweis von infektionen durch nachweis von fettsäuren im kopfraum von flüssigkeitsproben
WO2002082977A2 (en) * 2001-04-17 2002-10-24 University Of Virginia Patent Foundation Breath test for assessing diseases, particularly asthma
GB0120062D0 (en) * 2001-08-17 2001-10-10 Osmetech Plc Detection of bacterial vaginosis
WO2005027199A2 (en) * 2003-02-18 2005-03-24 Northwestern University Nanodisk sensor and sensor array
US9052310B2 (en) * 2009-02-11 2015-06-09 Yanxiu Zhou Substrate imprinted universal sensors and sensors having nano-tunneling effect
CN108387618B (zh) * 2016-01-14 2020-05-08 苏州大学 一种基于方酸衍生物的氨气传感器的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012134257A1 (en) * 2011-03-14 2012-10-04 Mimos Berhad Carbon nanotube-modified electrode
CN103743644A (zh) * 2013-12-19 2014-04-23 中安高科检测科技(北京)有限公司 一种检测山西老陈醋的气敏传感器阵列的制备方法
CN104198532A (zh) * 2014-09-05 2014-12-10 中国石油大学(华东) 一种具有氨气敏感效应的二硫化钼薄膜器件及其制备方法和应用
CN104237325A (zh) * 2014-10-09 2014-12-24 扬州大学 一种基于染料敏化半导体的二氧化氮传感膜制备方法
CN104833701A (zh) * 2015-05-06 2015-08-12 江苏大学 一种纳米薄膜氨气传感器的制备方法
CN104977346A (zh) * 2015-06-28 2015-10-14 陆宇 氨气传感器
CN105181755A (zh) * 2015-08-24 2015-12-23 大连理工大学 氨气传感器及其制备工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Second-order nonlinear optical properties and polar order relaxation dynamics in a cyano-chromophore grafted polyurethane polymer;AleksandraApostoluk等;《Optics Communications》;20060715;第263卷(第2期);第337-341页 *
Second-order nonlinear optical susceptibilities in nonelectrically poled guest–host polymers with tricyanofuran chromophores;Kazuma Ito等;《Japanese Journal of Applied Physics》;20131231;第2-7页 *

Also Published As

Publication number Publication date
CN105572174A (zh) 2016-05-11
US20170205367A1 (en) 2017-07-20
US10222345B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
Karunagaran et al. TiO2 thin film gas sensor for monitoring ammonia
US9134265B2 (en) Gas sensitive material comprising microcrystalline selenium and gas sensor using same
CN105928995B (zh) 一种基于方酸菁聚合物的湿敏传感器及其制备方法和用途
JP4883624B2 (ja) 高感度ガスセンサ及びその製造方法
CN107091860B (zh) 基于金掺杂方酸菁聚合物的湿敏传感器及其制备和用途
CN105548277B (zh) 一种基于方酸衍生物的氨气传感器及其制备方法和用途
Kilinc Palladium and platinum thin films for low-concentration resistive hydrogen sensor: a comparative study
CN105572174B (zh) 一种基于偶氮苯类化合物的醋酸气体传感器及其制备方法和用途
Chou et al. Fabrication and application of ruthenium-doped titanium dioxide films as electrode material for ion-sensitive extended-gate FETs
US11009476B2 (en) Squaraine-polymer-based ammonium/nitrogen monoxide two-component sensor, as well as preparation method and application thereof
Ji et al. Interference suppression strategies for trace minor component of semiconductor gas sensor based on temperature modulation mode
CN109507252A (zh) 纳米氧化锌棒掺杂的聚合物分散液晶的气体传感器
CN115308270A (zh) 一种钯合金薄膜氢气传感器及其制备方法和使用方法
CN104897732A (zh) 一种甲醛气体传感器气敏膜的制备方法
CN207587696U (zh) 基于纳米片堆叠结构的生化传感器
CN113147106A (zh) 一种高防潮性稳定的室温气体传感器制备方法
CN106556634A (zh) 一种基于二维材料的柔性唾液葡萄糖传感器及制备方法
Banerjee et al. Chemocapacitive detection of ethylene using potassium permanganate/polyimide composite thin-films
JP2003222605A (ja) ガスセンサ
Sevastyanov et al. Acetone and Ethanol Sensors Based on Nanocrystalline SnO 2 Thin Films with Various Catalysts
Zaki et al. Sensitivity and selectivity of metal oxides based sensor towards detection of formaldehyde
Lee et al. based hydrogen peroxide sensors using porphyrin with central ions of Ti
US11327040B1 (en) Highly effective sensor for the vapors of volatile organic compounds
CN106383196A (zh) 一种石墨烯/铜颗粒混合结构的生物传感器及制备方法
Arshak et al. Development of a room temperature thin film In 2 O 3, ZnO and SnO 2 ozone sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Lu Jianmei

Inventor after: He Jinghui

Inventor before: Lu Jianmei

Inventor before: He Jinghui

Inventor before: Xiao Cuan

COR Change of bibliographic data
GR01 Patent grant
GR01 Patent grant