CN105551934B - 一种含硅量子点碳硅基薄膜材料制备方法 - Google Patents

一种含硅量子点碳硅基薄膜材料制备方法 Download PDF

Info

Publication number
CN105551934B
CN105551934B CN201510910126.7A CN201510910126A CN105551934B CN 105551934 B CN105551934 B CN 105551934B CN 201510910126 A CN201510910126 A CN 201510910126A CN 105551934 B CN105551934 B CN 105551934B
Authority
CN
China
Prior art keywords
quantum dot
gas
frequency
film material
vapour deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510910126.7A
Other languages
English (en)
Other versions
CN105551934A (zh
Inventor
姜礼华
肖业权
谭新玉
孙宜华
向鹏
肖婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201510910126.7A priority Critical patent/CN105551934B/zh
Publication of CN105551934A publication Critical patent/CN105551934A/zh
Application granted granted Critical
Publication of CN105551934B publication Critical patent/CN105551934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02527Carbon, e.g. diamond-like carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种含硅量子点碳硅基薄膜材料制备方法,步骤为:采用标准RCA清洗技术清洗单晶硅基片;采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积非化学计量比碳化硅薄膜,硅量子点在非化学计量比碳化硅薄膜沉积过程中形成;采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜;依次上述重复,制备周期性多层膜。经过上述步骤所制备的含硅量子点碳硅基薄膜材料具有制备工艺简单、能耗小、薄膜面积大、均匀性好、缺陷态少以及载流子遂穿势垒低等优点。本发明所提供的方法在硅量子点光电器件制备与应用方面有很好的应用前景。

Description

一种含硅量子点碳硅基薄膜材料制备方法
技术领域
本发明属于薄膜材料制备技术领域,具体涉及一种含硅量子点碳硅基薄膜材料制备方法。
技术背景
由于硅量子点纳米薄膜材料能大大提高硅基太阳能电池的光电转换效率,因此它在高效率太阳能电池方面有广阔的应用前景。此外,众所周知,在硅材料上发展起来的集成电路己成为发展电子计算机、通信和自动控制等信息技术的关键。随着信息技术的发展,对信息传递速度、储存能力、处理功能提出更高要求,但硅基集成电路受到器件尺寸和电子运动速度的限制。如果能在硅芯片中引入光电子技术,用光波代替电子作为信息载体,则可大大地提高信息传输速度和处理能力,使电子计算机、通信和显示等信息技术发展到一个全新的阶段。然而硅是间接带隙半导体, 电子不能直接由导带底跃迁到价带顶发出光子。为满足动量守恒原理,它只能通过发射或吸收一个声子,间接跃迁到价带顶,这种间接跃迁的几率非常小, 所以硅的发光效率很低。目前发光器件主要采用砷化镓、磷化铟等III-V族化合物半导体材料, 它们的发光效率远大于体硅材料,但是砷化镓、磷化铟等III-V族化合物的化学和物理特性与硅大不相同, 与硅集成工艺也无法兼容。为了能实现在一块硅片上集成电子器件和发光器件,也就是光电子集成,研制硅基发光材料和器件成为21世纪科学家需要解决的一项重要任务。多年来,为了克服硅材料发光效率低的问题,科学家进行了大量的努力,已提出和研究了多种硅基发光材料。其中,硅量子点纳米薄膜材料是解决光电子技术问题的一种主要基础硅基发光材料,它可利用硅量子点的量子限制效应进行高效率发光。因此,采用简单有效的工艺大面积制备光电性能优异的硅量子点纳米薄膜材料对硅基太阳能电池效率的提高和在硅芯片中引入光电子技术十分必要。
发明内容
等离子体增强化学气相沉积技术是本领域惯常使用的技术,其英文名称为plasmaenhanced chemical vapor deposition,等离子体增强化学气相沉积(PECVD)技术的基本原理是在高频或直流电场作用下,使源气体电离形成等离子体,利用低温等离子体作为能量源,通入适量的反应气体,利用等离子体放电,使反应气体激活并使含有薄膜组成的气态物质发生化学反应,从而实现薄膜材料生长的一种新的制备技术。由于PECVD 技术是通过应气体放电来制备薄膜的,有效地利用了非平衡等离子体的反应特征,从根本上改变了反应体系的能量供给方式。
本发明所要解决的技术问题是提供一种含硅量子点纳米薄膜材料制备方法,具体涉及一种含硅量子点碳硅基薄膜材料制备方法。此方法所制备的含硅量子点碳硅基薄膜材料具有制备工艺简单、能耗小、薄膜面积大、均匀性好、缺陷态少以及载流子遂穿势垒低等优点。本发明所提供的方法在硅量子点光电器件制备与应用方面有很好的应用前景。一种含硅量子点碳硅基薄膜材料制备方法包括以下步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率50~100W,射频频率13.56MHz,基片温度180~250℃,腔体压强60~90Pa,使用氢气稀释到体积浓度为5%~10% 的SiH4 气体30~40sccm,纯度为99.999% 的CH4气体20~30sccm,镀膜时间3~7分钟;
“含有硅量子点的非化学计量比碳化硅薄膜”是指硅量子点镶嵌在非化学计量比碳化硅薄膜内。非化学计量比碳化硅薄膜是指碳化硅薄膜中Si原子和C原子的个数比不满足1:1,失去了化学计量比。
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率60~80W,射频频率13.56MHz,基片温度180~250℃,腔体压强80~140Pa,纯度为99.999% 的CH4气体30~55sccm,镀膜时间3~7分钟,得到非晶碳薄膜;非晶碳薄膜是一种呈非晶结构的碳薄膜,即通过碳原子的无序排列而形成的一种功能薄膜材料。
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复10~20次。
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
本发明采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,然后在非化学计量比碳化硅薄膜上沉积非晶碳薄膜作为硅量子点的限制生长层,通过以非化学计量比碳化硅薄膜和非晶碳薄膜为一个周期,制备周期性多层膜。这种多层膜结构主要是通过势垒较低的非晶碳薄膜限制生长层取代当前势垒较高的氮化硅、氧化硅和碳化硅等薄膜限制生长层,从而降低载流子的隧穿势垒高度和提高硅量子点光电器件的性能。(这种以非晶碳薄膜作为硅量子点限制生长层的多层膜结构目前还没有报道)
在本发明中,作为硅量子点限制生长层的非晶碳薄膜光学带隙小于2.0eV,而传统的硅量子点限制生长层氮化硅、氧化硅和碳化硅的光学带隙分别为5.3eV、9.0 eV和2.5eV。从光学带隙数值比较可以看出,本发明中非晶碳薄膜作为硅量子点限制生长层可明显降低载流子的隧穿势垒高度。
具体实施方式
实施例1
一种含硅量子点碳硅基薄膜材料制备方法,该方法包括以下步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率50W,射频频率13.56MHz,基片温度180℃,腔体压强60Pa,使用氢气稀释到体积浓度为10%的SiH4 气体30sccm,纯度为99.999%的CH4气体20sccm,镀膜时间3分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率60W,射频频率13.56MHz,基片温度180℃,腔体压强80Pa,纯度为99.999% 的CH4气体30sccm,镀膜时间3分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复10次。
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
实施例2
一种含硅量子点碳硅基薄膜材料制备方法,该方法包括以下步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率100W,射频频率13.56MHz,基片温度250℃,腔体压强90Pa,使用氢气稀释到体积浓度为10%的SiH4 气体40sccm,纯度为99.999%的CH4气体25sccm,镀膜时间5分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率80W,射频频率13.56MHz,基片温度250℃,腔体压强140Pa,纯度为99.999% 的CH4气体55sccm,镀膜时间5分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复15次。
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
实施例3
一种含硅量子点碳硅基薄膜材料制备方法,该方法包括以下步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率75W,射频频率13.56MHz,基片温度220℃,腔体压强70Pa,使用氢气稀释到体积浓度为5%的SiH4 气体25sccm,纯度为99.999%的CH4气体20sccm,镀膜时间7分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率70W,射频频率13.56MHz,基片温度220℃,腔体压强100Pa,纯度为99.999% 的CH4气体40sccm,镀膜时间5分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复20次。
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
实施例4
一种含硅量子点碳硅基薄膜材料制备方法,该方法包括以下步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率90W,射频频率13.56MHz,基片温度230℃,腔体压强80Pa,使用氢气稀释到体积浓度为5%的SiH4 气体35sccm,纯度为99.999%的CH4气体25sccm,镀膜时间6分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率75W,射频频率13.56MHz,基片温度230℃,腔体压强120Pa,纯度为99.999% 的CH4气体50sccm,镀膜时间6分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复17次。
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
实施例5
一种含硅量子点碳硅基薄膜材料制备方法,该方法包括以下步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率80W,射频频率13.56MHz,基片温度240℃,腔体压强80Pa,使用氢气稀释到体积浓度为10%的SiH4 气体40sccm,纯度为99.999%的CH4气体25sccm,镀膜时间4分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率70W,射频频率13.56MHz,基片温度240℃,腔体压强120Pa,纯度为99.999% 的CH4气体45sccm,镀膜时间4分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复12次。
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
以上所述为本发明较佳实施例而已,但本发明不应该局限于该实施实施例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (5)

1.一种含硅量子点碳硅基薄膜材料制备方法,其特征在于,该方法包括下述步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率50W,射频频率13.56MHz,基片温度180℃,腔体压强60Pa,使用氢气稀释到体积浓度为10%的SiH4 气体30sccm,纯度为99.999% 的CH4气体20sccm,镀膜时间3分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率60W,射频频率13.56MHz,基片温度180℃,腔体压强80Pa,纯度为99.999% 的CH4气体30sccm,镀膜时间3分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复10次;
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
2.一种含硅量子点碳硅基薄膜材料制备方法,其特征在于,该方法包括下述步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率100W,射频频率13.56MHz,基片温度250℃,腔体压强90Pa,使用氢气稀释到体积浓度为10%的SiH4 气体40sccm,纯度为99.999% 的CH4气体25sccm,镀膜时间5分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率80W,射频频率13.56MHz,基片温度250℃,腔体压强140Pa,纯度为99.999% 的CH4气体55sccm,镀膜时间5分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复15次;
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
3.一种含硅量子点碳硅基薄膜材料制备方法,其特征在于,该方法包括下述步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率75W,射频频率13.56MHz,基片温度220℃,腔体压强70Pa,使用氢气稀释到体积浓度为5%的SiH4 气体25sccm,纯度为99.999% 的CH4气体20sccm,镀膜时间7分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率70W,射频频率13.56MHz,基片温度220℃,腔体压强100Pa,纯度为99.999% 的CH4气体40sccm,镀膜时间5分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复20次;
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
4.一种含硅量子点碳硅基薄膜材料制备方法,其特征在于,该方法包括下述步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率90W,射频频率13.56MHz,基片温度230℃,腔体压强80Pa,使用氢气稀释到体积浓度为5%的SiH4 气体35sccm,纯度为99.999% 的CH4气体25sccm,镀膜时间6分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率75W,射频频率13.56MHz,基片温度230℃,腔体压强120Pa,纯度为99.999% 的CH4气体50sccm,镀膜时间6分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复17次;
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
5.一种含硅量子点碳硅基薄膜材料制备方法,其特征在于,该方法包括下述步骤:
(1)采用标准RCA清洗技术清洗单晶硅基片;
(2)采用等离子体增强化学气相沉积技术在单晶硅基片表面沉积含有硅量子点的非化学计量比碳化硅薄膜,制备工艺参数为:射频功率80W,射频频率13.56MHz,基片温度240℃,腔体压强80Pa,使用氢气稀释到体积浓度为10%的SiH4 气体40sccm,纯度为99.999% 的CH4气体25sccm,镀膜时间4分钟;
(3)采用等离子体增强化学气相沉积技术在非化学计量比碳化硅薄膜上沉积非晶碳薄膜,制备工艺参数为:射频功率70W,射频频率13.56MHz,基片温度240℃,腔体压强120Pa,纯度为99.999% 的CH4气体45sccm,镀膜时间4分钟;
(4)依次重复步骤(2)与步骤(3),制备周期性多层膜,循环重复12次;
经过上述步骤,一种含硅量子点的碳硅基薄膜材料便制备完成。
CN201510910126.7A 2015-12-10 2015-12-10 一种含硅量子点碳硅基薄膜材料制备方法 Active CN105551934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510910126.7A CN105551934B (zh) 2015-12-10 2015-12-10 一种含硅量子点碳硅基薄膜材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510910126.7A CN105551934B (zh) 2015-12-10 2015-12-10 一种含硅量子点碳硅基薄膜材料制备方法

Publications (2)

Publication Number Publication Date
CN105551934A CN105551934A (zh) 2016-05-04
CN105551934B true CN105551934B (zh) 2017-12-08

Family

ID=55831049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510910126.7A Active CN105551934B (zh) 2015-12-10 2015-12-10 一种含硅量子点碳硅基薄膜材料制备方法

Country Status (1)

Country Link
CN (1) CN105551934B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498364A (zh) * 2016-10-24 2017-03-15 三峡大学 一种含碳化硅纳米粒子薄膜材料的制备方法
CN107916411B (zh) * 2017-11-21 2019-12-03 三峡大学 一种固态荧光碳量子点的制备方法
CN108461386B (zh) * 2018-03-16 2020-02-11 三峡大学 一种含硅量子点多层膜及其制备方法
CN109338336B (zh) * 2018-09-30 2020-06-12 韩山师范学院 利用等离子体原位和实时诊断发光量子点衰退的方法
CN111129477B (zh) * 2019-12-10 2022-09-20 同济大学 一种制备超组装的硅纳米点嵌入碳骨架储锂材料的方法
CN114479850B (zh) * 2020-10-26 2023-09-01 韩山师范学院 无损伤包覆提高钙钛矿量子点稳定性和发光效率的方法
CN116904959A (zh) * 2023-07-13 2023-10-20 淮安捷泰新能源科技有限公司 一种碳化硅薄膜制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840941A (zh) * 2010-03-05 2010-09-22 清华大学 具有光伏和光电导效应的掺铁碳薄膜材料及其制备方法
CN101950762A (zh) * 2010-07-27 2011-01-19 上海太阳能电池研究与发展中心 硅基太阳能电池及其制备方法
CN103094390A (zh) * 2013-01-15 2013-05-08 河北师范大学 一种用于薄膜太阳能电池的碳基光子晶体背反射器及其制备方法
CN103700576A (zh) * 2013-12-17 2014-04-02 西安文理学院 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101840941A (zh) * 2010-03-05 2010-09-22 清华大学 具有光伏和光电导效应的掺铁碳薄膜材料及其制备方法
CN101950762A (zh) * 2010-07-27 2011-01-19 上海太阳能电池研究与发展中心 硅基太阳能电池及其制备方法
CN103094390A (zh) * 2013-01-15 2013-05-08 河北师范大学 一种用于薄膜太阳能电池的碳基光子晶体背反射器及其制备方法
CN103700576A (zh) * 2013-12-17 2014-04-02 西安文理学院 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法

Also Published As

Publication number Publication date
CN105551934A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105551934B (zh) 一种含硅量子点碳硅基薄膜材料制备方法
CN103311803B (zh) 石墨烯增强氧化锌紫外激光微腔及其制备方法
CN104617165A (zh) 一种二硫化钼/缓冲层/硅n-i-p太阳能电池器件及其制备方法
CN102403376B (zh) 含有硅量子点的n-i-p异质结太阳能电池及其制备方法
CN102915926B (zh) 一种基于AlN衬底的石墨烯转移退火方法及制造的器件
TWI809987B (zh) 用於製造異質結太陽能電池的方法及異質結太陽能電池
CN101882642A (zh) 一种异质结太阳电池及其制备方法
CN103258919B (zh) 非晶硅与多晶硅薄膜界面钝化及制备spa结构hit电池的方法
CN107644805A (zh) 空穴钝化隧穿薄膜、制备方法及其在太阳电池中的应用
CN1944308B (zh) 一种在玻璃基板上沉积氢化非晶硅碳合金薄膜的方法
Kabongo et al. Advanced development of sustainable pecvd semitransparent photovoltaics: a review
CN102709399A (zh) 一种高效纳米天线太阳能电池的制作方法
CN110875170B (zh) 基于氮化硼中间层远程外延生长二硫化铪的方法
CN103855229B (zh) 一种增强光电效应的石墨烯基半导体光电器件及其制备方法
CN207441751U (zh) 一种同质结钙钛矿薄膜太阳能电池
CN105399099A (zh) 一种掺杂纳米硅材料的制备方法及其在光超级电容器领域的应用
CN102157636B (zh) 一种增强硅基薄膜电致发光的方法
CN106449850A (zh) 一种高效硅基异质结双面电池及其制备方法
CN107516691A (zh) 一种非晶碳薄膜/单晶硅异质结太阳能电池及其制备方法
CN104332512A (zh) 一种微晶硅薄膜太阳能电池及其制备方法
CN103474541A (zh) 提高氮化硅基薄膜发光二极管发光效率的器件及制备方法
CN102220568A (zh) 一种含硅纳米粒子的氮化硅薄膜制备方法
CN103915348B (zh) 一种制备石墨烯纳米线器件的方法
CN102157594A (zh) nc-Si:H/SiNx超晶格量子阱太阳电池
CN102593282A (zh) 一种ZnO纳米线阵列的掺杂方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20160504

Assignee: YICHANG CSG POLYSILICON Co.,Ltd.

Assignor: CHINA THREE GORGES University

Contract record no.: X2023980030328

Denomination of invention: A preparation method of carbon-silicon based thin film material containing silicon quantum dots

Granted publication date: 20171208

License type: Common License

Record date: 20230115

EE01 Entry into force of recordation of patent licensing contract