CN107916411B - 一种固态荧光碳量子点的制备方法 - Google Patents

一种固态荧光碳量子点的制备方法 Download PDF

Info

Publication number
CN107916411B
CN107916411B CN201711165336.3A CN201711165336A CN107916411B CN 107916411 B CN107916411 B CN 107916411B CN 201711165336 A CN201711165336 A CN 201711165336A CN 107916411 B CN107916411 B CN 107916411B
Authority
CN
China
Prior art keywords
quantum dot
carbon quantum
preparation
reaction chamber
monocrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711165336.3A
Other languages
English (en)
Other versions
CN107916411A (zh
Inventor
姜礼华
李明明
孙宜华
谭新玉
肖婷
向鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Three Gorges University CTGU
Original Assignee
China Three Gorges University CTGU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Three Gorges University CTGU filed Critical China Three Gorges University CTGU
Priority to CN201711165336.3A priority Critical patent/CN107916411B/zh
Publication of CN107916411A publication Critical patent/CN107916411A/zh
Application granted granted Critical
Publication of CN107916411B publication Critical patent/CN107916411B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges

Abstract

本发明提供了一种固态荧光碳量子点的制备方法。具体步骤包括将石英片或者单晶硅片置于丙酮无水乙醇中超声清洗后用去离子水超声冲洗,氮气吹干;在200‑300℃条件下对反应室预抽真空,至压强低于10‑4Pa;以甲烷为工作气体,采用等离子体增强化学气相沉积技术在反应室内于石英片或者单晶硅片上制备嵌有碳量子点的薄膜。该方法制备的碳量子点具有工艺简单、效率高、周期短、绿色环保等特点,所生长的碳量子点具有纯度高、粒度小、荧光发光效率高等特性。本发明所制备的荧光碳量子点在医学影像、光致发光材料以及各种半导体发光器件等方面有很好的潜在应用。

Description

一种固态荧光碳量子点的制备方法
技术领域
本发明属于纳米材料制备技术领域,具体涉及一种嵌有碳量子点荧光碳薄膜材料的制备方法。
背景技术
进入新世纪以来,纳米材料已经逐渐的进入到我们生活的各个领域。到目前为止,多种碳基荧光纳米材料已被合成并应用,包括:碳纳米点、荧光碳纳米管、石墨烯氧化物、聚合物点、石墨烯量子点和纳米金刚石等。而碳纳米点(也叫碳量子点或碳纳米晶)自上世纪被发现后得到了大量的关注。因碳量子点具有优异的水溶性,分散性、化学稳定性、低毒性、生物相容性、以及荧光特性好等特点在医学影像、光催化、生物传感器和各种光电器件中有广泛的应用。然而在目前碳量子点制备技术方面,不管是自上而下还是自下而上的制备方法都存在一定的技术难度。对于前者利用激光切除、电弧放电和粒子刻蚀等方法从石墨烯、碳纳米管,碳纤维、碳棒或者蜡烛烟灰等大分子中剥离时,虽取材方便,可大量制备,但制备步骤复杂,尤其是后期分离程序更加困难。而后者就是利用富含-OH、-COOH、-C=O或-NH2基团的有机分子(葡萄糖、蔗糖等)在高温下脱水碳化形成碳纳米点或者聚合物点。这些方法一般包括浓硫酸水热合成法,微波反应碳化法、等离子水热法等,这些合成方法所用的原始材料虽然简单易得,能制备多分散系的碳量子点,但是制备过程不易控制,所合成的碳纳米点常常分散在溶液中,不利于运输保存。面对上述困难,寻找一种制备过程安全可控、操作简单,且所制备的碳量子点分散性好、纯度高、粒度小、荧光特性优异的制备方法显得非常有意义。
发明内容
本发明提供了一种嵌有碳量子点薄膜材料的制备方法,该方法所制备的嵌有碳量子点薄膜材料具有制备工艺简单、效率高、周期短、绿色环保,所形成的碳量子点具有分散性好、纯度高、粒度小、荧光特性优良等特点。一种嵌有碳量子点薄膜材料的制备方法包括以下步骤:
(1)清洗并干燥基板。先将石英片或者单晶硅片置于丙酮中超声清洗5~10分钟,之后利用去离子水对石英片或者单晶硅片超声冲洗5~10分钟,然后再置于无水乙醇中超声清洗5~10分钟,接着利用去离子水对石英片或者单晶硅片再次超声冲洗5~10分钟,最后用氮气吹干;
(2)反应室预抽真空,去除残留气体。利用机械泵、罗茨泵、分子泵等真空设备在200-300℃条件下对反应室预抽真空,至压强低于10-4Pa.
(3)嵌有碳量子点薄膜的制备。以甲烷为工作气体,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内于石英片或者单晶硅片上制备嵌有碳量子点的薄膜;具体制备工艺参数为:射频功率:60~300 W,沉积温度:150~200℃,沉积压强:90~150 Pa,甲烷流量:10~40 sccm,镀膜时间:20~60分钟。
该方法利用等离子增强化学气相沉积技术,在反应室中通入高纯甲烷气体,在射频电场的作用下,甲烷气体被分解,并进行一系列的化学反应最后在基板上生长一层嵌有碳量子点的薄膜。经过以上步骤,具有分散性好、纯度高、粒度小、荧光特性优良等特征的碳量子点便制备完成。
附图说明
图1为实施例1所制备的嵌有碳量子点薄膜的高分辨透射电子显微镜图片。
图2为实施例1所制备的嵌有碳量子点薄膜在400nm激发光激发下的荧光光谱。
具体实施方式
实施例1
一种嵌有碳量子点薄膜材料的制备方法包括以下步骤:
(1)清洗并干燥基板。先将石英片或者单晶硅片置于丙酮中超声清洗10分钟,之后利用去离子水对石英片或者单晶硅片超声冲洗5分钟,然后再置于无水乙醇中超声清洗10分钟,接着利用去离子水对石英片或者单晶硅片再次超声冲洗5分钟,最后用氮气吹干;
(2)反应室预抽真空,去除残留气体。利用机械泵、罗茨泵、分子泵等真空设备在200℃条件下对反应室预抽真空,至压强低于10-4 Pa;
(3)嵌有碳量子点薄膜的制备。以甲烷为反应气体,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内沉积碳量子点薄膜;具体制备工艺参数为:射频功率:100W,沉积温度:150 ℃,沉积压强:90 Pa,甲烷流量:10 sccm,镀膜时间:60分钟;
经过以上步骤,具有分散性好、纯度高、粒度小、荧光特性优良等特征的碳量子点便制备完成。
图1为实施例1所制备的嵌有碳量子点薄膜的透射电子显微镜图片(部分碳量子点已在图中标出)。图2为实施例1所制备的嵌有碳量子点薄膜用400 nm单色光激发时所形成光致发光光谱。
实施例2
一种嵌有碳量子点薄膜材料的制备方法包括以下步骤:
(1)清洗并干燥基板。先将石英片或者单晶硅片置于丙酮中超声清洗10分钟,之后利用去离子水对石英片或者单晶硅片超声冲洗5分钟,然后再置于无水乙醇中超声清洗10分钟,接着利用去离子水对石英片或者单晶硅片再次超声冲洗5分钟,最后用氮气吹干;
(2)反应室预抽真空,去除残留气体。利用机械泵、罗茨泵、分子泵等真空设备在220℃条件下对反应室预抽真空,至压强低于10-4 Pa.
(3)嵌有碳量子点薄膜的制备。以甲烷为反应气体,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内沉积碳量子点薄膜;具体制备工艺参数为:射频功率:200W,沉积温度:150℃,沉积压强:90 Pa,甲烷流量:20 sccm,镀膜时间:60分钟;
经过以上步骤,具有分散性好、纯度高、粒度小、荧光特性优良等特征的碳量子点便制备完成。
实施例3
一种嵌有碳量子点薄膜材料的制备方法包括以下步骤:
(1)清洗并干燥基板。先将石英片或者单晶硅片置于丙酮中超声清洗10分钟,之后利用去离子水对石英片或者单晶硅片超声冲洗5分钟,然后再置于无水乙醇中超声清洗10分钟,接着利用去离子水对石英片或者单晶硅片再次超声冲洗5分钟,最后用氮气吹干;
(2)反应室预抽真空,去除残留气体。利用机械泵、罗茨泵、分子泵等真空设备在240℃条件下对反应室预抽真空,至压强低于10-4 Pa.
(3)嵌有碳量子点薄膜的制备。以甲烷为反应气体,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内沉积碳量子点薄膜;具体制备工艺参数为:射频功率:200W,沉积温度:200℃,沉积压强:90 Pa,甲烷流量:20 sccm,镀膜时间:30分钟;
经过以上步骤,具有分散性好、纯度高、粒度小、荧光特性优良等特征的碳量子点便制备完成。
实施例4
一种嵌有碳量子点薄膜材料的制备方法包括以下步骤:
(1)清洗并干燥基板。先将石英片或者单晶硅片置于丙酮中超声清洗10分钟,之后利用去离子水对石英片或者单晶硅片超声冲洗5分钟,然后再置于无水乙醇中超声清洗10分钟,接着利用去离子水对石英片或者单晶硅片再次超声冲洗5分钟,最后用氮气吹干;
(2)反应室预抽真空,去除残留气体。利用机械泵、罗茨泵、分子泵等真空设备在260℃条件下对反应室预抽真空,至压强低于10-4 Pa.
(3)嵌有碳量子点薄膜的制备。以甲烷为反应气体,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内沉积碳量子点薄膜;具体制备工艺参数为:射频功率:200W,沉积温度:200℃,沉积压强:90 Pa,甲烷流量:30 sccm,镀膜时间:30分钟;
经过以上步骤,具有分散性好、纯度高、粒度小、荧光特性优良等特征的碳量子点便制备完成。
实施例5
一种嵌有碳量子点薄膜材料的制备方法包括以下步骤:
(1)清洗并干燥基板。先将石英片或者单晶硅片置于丙酮中超声清洗10分钟,之后利用去离子水对石英片或者单晶硅片超声冲洗5分钟,然后再置于无水乙醇中超声清洗10分钟,接着利用去离子水对石英片或者单晶硅片再次超声冲洗5分钟,最后用氮气吹干;
(2)反应室预抽真空,去除残留气体。利用机械泵、罗茨泵、分子泵等真空设备在280℃条件下对反应室预抽真空,至压强低于10-4 Pa.
(3)嵌有碳量子点薄膜的制备。以甲烷为反应气体,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内沉积碳量子点薄膜;具体制备工艺参数为:射频功率:300W,沉积温度:200℃,沉积压强:150 Pa,甲烷流量:30 sccm,镀膜时间:30分钟;
经过以上步骤,具有分散性好、纯度高、粒度小、荧光特性优良等特征的碳量子点便制备完成。
实施例6
一种嵌有碳量子点薄膜材料的制备方法包括以下步骤:
(1)清洗并干燥基板。先将石英片或者单晶硅片置于丙酮中超声清洗10分钟,之后利用去离子水对石英片或者单晶硅片超声冲洗5分钟,然后再置于无水乙醇中超声清洗10分钟,接着利用去离子水对石英片或者单晶硅片再次超声冲洗5分钟,最后用氮气吹干;
(2)反应室预抽真空,去除残留气体。利用机械泵、罗茨泵、分子泵等真空设备在300℃条件下对反应室预抽真空,至压强低于10-4 Pa.
(3)嵌有碳量子点薄膜的制备。以甲烷为反应气体,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内沉积碳量子点薄膜;具体制备工艺参数为:射频功率:300W,沉积温度:200℃,沉积压强:150 Pa,甲烷流量:40 sccm,镀膜时间:30分钟;
经过以上步骤,具有分散性好、纯度高、粒度小、荧光特性优良等特征的碳量子点便制备完成。
以上所述为本发明较佳实施例而已,但本发明不应该局限于该实施实例所公开的内容。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (1)

1.一种固态荧光碳量子点的制备方法,以甲烷气体为工作气体制备碳量子点薄膜,其特征在于,包括如下步骤:
(1)清洗并干燥基板,将石英片或者单晶硅片置于丙酮中超声清洗后去离子水超声冲洗,然后再置于无水乙醇中超声清洗后用去离子水超声冲洗,最后用氮气吹干;
(2)反应室预抽真空,高温条件下对反应室预抽真空,所述的反应室内温度控制为200-300℃,压强低于10-4Pa;
(3)嵌有碳量子点薄膜的制备,以甲烷为工作气体,甲烷的纯度大于99.995%,采用等离子体增强化学气相沉积技术在步骤(2)中的反应室内于石英片或者单晶硅片上制备嵌有碳量子点的薄膜,等离子体增强化学气相沉积的工艺参数为:射频功率:100 W,沉积温度:150℃,沉积压强:90 Pa,甲烷流量:10 sccm,镀膜时间:60分钟。
CN201711165336.3A 2017-11-21 2017-11-21 一种固态荧光碳量子点的制备方法 Active CN107916411B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711165336.3A CN107916411B (zh) 2017-11-21 2017-11-21 一种固态荧光碳量子点的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711165336.3A CN107916411B (zh) 2017-11-21 2017-11-21 一种固态荧光碳量子点的制备方法

Publications (2)

Publication Number Publication Date
CN107916411A CN107916411A (zh) 2018-04-17
CN107916411B true CN107916411B (zh) 2019-12-03

Family

ID=61896746

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711165336.3A Active CN107916411B (zh) 2017-11-21 2017-11-21 一种固态荧光碳量子点的制备方法

Country Status (1)

Country Link
CN (1) CN107916411B (zh)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551934B (zh) * 2015-12-10 2017-12-08 三峡大学 一种含硅量子点碳硅基薄膜材料制备方法

Also Published As

Publication number Publication date
CN107916411A (zh) 2018-04-17

Similar Documents

Publication Publication Date Title
Chen et al. Catalytic growth and characterization of gallium nitride nanowires
CN102102220B (zh) 金刚石(111)面上的石墨烯制备方法
CN107557858A (zh) 基于Ⅱa型天然金刚石的同质外延生长单晶金刚石的方法
CN109097741A (zh) 一种CsPbBr3薄膜的制备方法
CN102807210B (zh) 一种由生物质衍生碳质中间相制备石墨烯的方法
CN104762607A (zh) 一种单颗粒层纳米金刚石薄膜及其制备方法
CN105668555A (zh) 一种制备三维石墨烯的方法
CN102024637B (zh) 用以制备氧化锌纳米柱阵列场发射组件的方法
Gao et al. Anodic etching of GaN based film with a strong phase-separated InGaN/GaN layer: Mechanism and properties
CN101245491A (zh) 在纳米棒的氧化锌上生长无支撑的氮化镓纳米晶的方法
CN110010449B (zh) 一种高效制备一维碳纳米管/二维过渡金属硫族化合物异质结的方法
WO2014032467A1 (zh) 一种制备低应力GaN薄膜的方法
CN106409653B (zh) 硅纳米线阵列的制备方法
CN107916411B (zh) 一种固态荧光碳量子点的制备方法
CN101299513A (zh) 电场诱导光抽运硅基氧化锌薄膜随机激光器及其制备方法
CN104242053A (zh) 一种ZnO单模紫外激光的实现与增强方法
CN103101907B (zh) 石墨烯、石墨烯制备方法及应用
KR101301443B1 (ko) 가시광 발광특성을 갖는 그래핀 및 그 제조방법
CN106498364A (zh) 一种含碳化硅纳米粒子薄膜材料的制备方法
CN104637758A (zh) 含镍金属基底上直接生长碳纳米管场发射阴极的方法
CN108910868B (zh) 一种在绝缘衬底上制备石墨烯枝晶的方法
Zhang et al. Subnanometer-thick 2D GaN film with a large bandgap synthesized by plasma enhanced chemical vapor deposition
CN106226283A (zh) 一种拉曼增强衬底的制作方法
CN108219784B (zh) 一种酸辅助醛酮合成碳量子点的方法
KR101272995B1 (ko) 그래핀 성장방법 및 그래핀의 결정크기 조절방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20180417

Assignee: Henan Chaomei Building Materials Co.,Ltd.

Assignor: CHINA THREE GORGES University

Contract record no.: X2024980000728

Denomination of invention: A method for preparing solid-state fluorescent carbon quantum dots

Granted publication date: 20191203

License type: Common License

Record date: 20240116

EE01 Entry into force of recordation of patent licensing contract