CN105542763A - 一种用碳量子点制备单一基质荧光膜的方法 - Google Patents

一种用碳量子点制备单一基质荧光膜的方法 Download PDF

Info

Publication number
CN105542763A
CN105542763A CN201610044192.5A CN201610044192A CN105542763A CN 105542763 A CN105542763 A CN 105542763A CN 201610044192 A CN201610044192 A CN 201610044192A CN 105542763 A CN105542763 A CN 105542763A
Authority
CN
China
Prior art keywords
carbon quantum
quantum dot
fluorescent screen
matrix fluorescent
conductive glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610044192.5A
Other languages
English (en)
Inventor
杨永珍
张峰
刘旭光
丁远飞
许并社
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201610044192.5A priority Critical patent/CN105542763A/zh
Publication of CN105542763A publication Critical patent/CN105542763A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种用碳量子点制备单一基质荧光膜的方法,是针对白光发光二极管实现白光的特点,以柠檬酸、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷为原料,经水热合成、滤膜过滤、透析、成膜,制成碳量子点单一基质荧光膜,并用以制备白光发光二极管,此制备方法工艺先进,数据精确翔实,制备的碳量子点单一基质荧光膜膜层厚度≤100nm,纯度达99.8%,膜层均匀,可用于发光二极管合成白光,是十分先进的用碳量子点制备单一基质荧光膜的方法。

Description

一种用碳量子点制备单一基质荧光膜的方法
技术领域
本发明涉及一种用碳量子点制备单一基质荧光膜的方法,属光致发光材料制备及应用的技术领域。
背景技术
固态的发光二极管LED具有能效高、寿命长、能耗低的特点,是新一代发光光源。
白光发光二极管实现白光主要有三种形式,一种是蓝光芯片加黄色荧光粉,二是紫外芯片加红绿蓝荧光粉,三是紫外光芯片加单一基质荧光粉;常用的方法是蓝光芯片加黄色荧光粉,这一方法实现白光简单,但由于荧光粉在红光区域发射较弱,致使发光二极管显色指数低;紫外芯片和红绿蓝荧光粉合成白光,但由于复合的荧光粉存在严重的颜色重吸收问题,而导致器件效率的损失;稀土类荧光粉做单一基质荧光粉可做白光发光器件,但稀土类荧光粉价格昂贵,不利于大量推广;单一基质的半导体量子点也可做白光发光器件荧光粉,但由于含有有毒元素而限制了其广泛应用。
荧光碳量子点是一种尺寸≤10nm的量子点,具有优越的光学性质、低毒,且具有生物兼容性,高的化学惰性,是单一基质荧光膜的优选材料,此项技术还处于研究阶段。
发明内容
发明目的
本发明的目的是针对背景技术的状况,以柠檬酸,N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷为原料,经水热合成、滤膜过滤、透析袋透析、成膜,制成碳量子点单一基质荧光膜,以用于制备白光二极管。
技术方案
本发明使用的化学物质材料为:柠檬酸、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、去离子水、导电玻璃,其组合准备用量如下:以克、毫升、毫米为计量单位
制备方法如下:
(1)精选化学物质材料
对制备使用的化学物质材料要进行精选,并进行质量纯度控制:
柠檬酸:固态固体99.9%
N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷:液态液体99.9%
去离子水:液态液体99.9%
导电玻璃:固态固体
(2)水热合成制备碳量子点水溶液
①配制混合溶液
在聚四氟乙烯容器中,加入柠檬酸1.05g±0.001g、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷21.63mL±0.001mL、去离子水40mL±0.001mL,搅拌5min,使其溶解,成混合溶液;
②将装有混合溶液的聚四氟乙烯容器置于超声波分散仪中,进行超声分散,超声波频率60KHz,超声分散时间10min;
③超声分散后,将盛有混合溶液的聚四氟乙烯容器置于反应釜中,并密闭;
④将反应釜置于电加热炉中,进行加热,加热温度200℃±1℃、加热时间360min;
混合溶液在反应釜内,在水热合成过程中将发生化学反应,反应方程式如下:
式中:CDs:碳量子点
⑤冷却,水热合成后停止加热,混合溶液随加热炉反应釜冷却至25℃;
(3)过滤
将冷却后的混合溶液置于烧杯中,用注射器吸取溶液,用0.22mm的微孔滤膜进行过滤,留存滤液,弃掉滤膜及其上的沉淀物;
(4)透析
①将滤液置于纤维素透析袋内,并密闭;
②将盛有滤液的纤维素透析袋置于烧杯中,加入去离子水800mL,去离子水要淹没纤维素透析袋,在烧杯底部置放磁子搅拌器;
③将烧杯置于电加热器上,加热温度30℃±1℃,磁子搅拌器搅拌,加热搅拌时间9h;
④透析后,停止加热,停止搅拌,使纤维素透析袋内的滤液冷却至25℃;
(5)成膜
①预处理导电玻璃
将导电玻璃置于烧杯中,加入去离子水200mL,浸泡洗涤30min;
浸泡后,将导电玻璃取出,垂直吊装在不锈钢支架上,然后置于真空干燥箱中干燥,干燥温度80℃,真空度8Pa,干燥时间30min;
②将干燥后的导电玻璃平面置于石英板上,将纤维素透析袋内的滤液均匀置于导电玻璃上;
③真空干燥
将导电玻璃置于真空干燥箱中,进行干燥处理,干燥温度80℃,真空度6Pa,干燥时间120min;
干燥后为碳量子点单一基质荧光膜;
(6)检测、分析、表征
对制备的碳量子点单一基质荧光膜的形貌、色泽、纯度、化学物理性能、发光性能进行检测、分析、表征;
用透射电子显微镜进行形貌分析;
用荧光光谱仪和紫外可见分光光度计进行荧光性能分析;
用X射线衍射仪进行结构分析;
结论:碳量子点单一基质荧光膜为浅黄色薄膜,膜层厚度≤100nm,
产物纯度达99.8%;
(7)产物储存
将导电玻璃及其上的碳量子点单一基质荧光膜储存于棕色透明的玻璃容器内,密闭避光储存,要防晒、防潮、防酸碱盐侵蚀,储存温度20℃,相对湿度≤10%。
有益效果
本发明与背景技术相比具有明显的先进性,是针对白光发光二极管实现白光的特点,以柠檬酸、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷为原料,经水热合成,滤膜过滤、透析、成膜,制成碳量子点单一基质荧光膜,并用以制备白光二极管;此制备方法工艺先进,数据精确翔实,制备的碳量子点单一基质荧光膜膜层厚度≤100nm,纯度达99.8%,膜层均匀,可用于发光二极管合成白光,是十分先进的用碳量子点制备单一基质荧光膜的方法。
附图说明
图1、水热合成制备碳量子点溶液状态图
图2、发光二极管结构图
图3、碳量子点单一基质荧光膜形貌图
图4、碳量子点单一基质荧光膜X射线衍射图谱
图5、碳量子点单一基质荧光膜色坐标图
图中所示,附图标记清单如下:
1、加热炉,2、炉座,3、显示屏,4、指示灯,5、电源开关,6、加热温度控制器,7、反应釜,8、聚四氟乙烯容器,9、混合溶液,10、炉盖,11、釜盖,12、容器盖,13、工作台,14、发光二极管芯片座,15、固晶,16、第一导线,17、芯片,18、荧光粉,19、第一电极,20、第二电极,21、透镜,22、第二导线。
具体实施方式
以下结合附图对本发明做进一步说明:
图1所示,为制备碳量子点水热合成状态图,各部位置、连接关系要正确,按量配比,按序操作。
制备使用的化学物质的量值是按预先设置的范围确定的,以克、毫升、毫米为计量单位。
制备碳量子点水溶液是在反应釜内进行的,是在配制溶液、加热炉加热、水热合成过程中完成的;
加热炉为立式,加热炉1的下部为炉座2、上部为炉盖10,在加热炉1的内底部设有工作台13,在工作台13上部置放反应釜7,反应釜7上部为釜盖11,在反应釜7内置放聚四氟乙烯容器8,聚四氟乙烯容器8上部为容器盖12,在聚四氟乙烯容器8内为混合溶液9,并密闭;在炉座2上设有显示屏3、指示灯4、电源开关5、加热温度控制器6。
图2所示,为发光二极管结构图,发光二极管芯片座14为平面体,发光二极管芯片座14两侧设有第一电极19、第二电极20,发光二极管芯片座14上部为透镜21,透镜21内壁为荧光粉18,在发光二极管芯片座14上部为固晶15,固晶15上部为芯片17,在芯片17两侧设有第一导线16、第二导线22,第一导线16与第一电极19连接,第二导线22与第二电极20连接。
图3所示,为碳量子点单一基质荧光膜形貌图,碳量子点颗粒为球形,分散性好,无团聚现象,粒径分布范围较窄,粒径≦5nm。
图4所示,为碳量子点单一基质荧光膜X射线衍射图谱,图中所示,纵坐标为衍射强度、横坐标为衍射角2θ,碳量子点的馒头峰峰位在26°,表明制备的碳量子点中碳的石墨化程度较低,为无定形碳。
图5所示,为碳量子点单一基质荧光膜色坐标图,图中所示,色坐标为x=0.320,y=0.343,属白光区域。
实施例1
用碳量子点单一基质荧光膜制备白光发光二极管:
①配制单一基质碳量子点荧光膜水溶液
将导电玻璃及其上的荧光膜置于烧杯中,滴入去离子水8mL,然后置于加热器上,加热温度30℃,加热时间40min,使碳量子点单一基质荧光膜溶解,成荧光膜溶液;
②打开发光二极管芯片座14上的透镜21,将荧光膜溶液均匀滴入透镜内,滴入量为0.03mL;
③将滴入荧光膜溶液的透镜置于真空干燥箱中干燥,干燥温度80℃,真空度6Pa,干燥时间180min;
④干燥后,将发光二极管芯片座14上的透镜21封盖,并密闭,即完成了白光发光二极管的制备。

Claims (3)

1.一种用碳量子点制备单一基质荧光膜的方法,其特征在于:使用的化学物质材料为:柠檬酸、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷、去离子水、导电玻璃,其组合准备用量如下:以克、毫升、毫米为计量单位
制备方法如下:
(1)精选化学物质材料
对制备使用的化学物质材料要进行精选,并进行质量纯度控制:
柠檬酸:固态固体99.9%
N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷:液态液体99.9%
去离子水:液态液体99.9%
导电玻璃:固态固体
(2)水热合成制备碳量子点水溶液
①配制混合溶液
在聚四氟乙烯容器中,加入柠檬酸1.05g±0.001g、N-β-(氨乙基)-γ-氨丙基三甲氧基硅烷21.63mL±0.001mL、去离子水40mL±0.001mL,搅拌5min,使其溶解,成混合溶液;
②将装有混合溶液的聚四氟乙烯容器置于超声波分散仪中,进行超声分散,超声波频率60KHz,超声分散时间10min;
③超声分散后,将盛有混合溶液的聚四氟乙烯容器置于反应釜中,并密闭;
④将反应釜置于电加热炉中,进行加热,加热温度200℃±1℃、加热时间360min;
混合溶液在反应釜内,在水热合成过程中将发生化学反应,反应方程式如下:
式中:CDs:碳量子点
⑤冷却,水热合成后停止加热,混合溶液随加热炉反应釜冷却至25℃;
(3)过滤
将冷却后的混合溶液置于烧杯中,用注射器吸取溶液,用220μm的微孔滤膜进行过滤,留存滤液,弃掉滤膜及其上的沉淀物;
(4)透析
①将滤液置于纤维素透析袋内,并密闭;
②将盛有滤液的纤维素透析袋置于烧杯中,加入去离子水800mL,去离子水要淹没纤维素透析袋,在烧杯底部置放磁子搅拌器;
③将烧杯置于电加热器上,加热温度30℃±1℃,磁子搅拌器搅拌,加热搅拌时间9h;
④透析后,停止加热,停止搅拌,使纤维素透析袋内的滤液冷却至25℃;
(5)成膜
①预处理导电玻璃
将导电玻璃置于烧杯中,加入去离子水200mL,浸泡洗涤30min;
浸泡后,将导电玻璃取出,垂直吊装在不锈钢支架上,然后置于真空干燥箱中干燥,干燥温度80℃,真空度8Pa,干燥时间30min;
②将干燥后的导电玻璃平面置于石英板上,将纤维素透析袋内的滤液均匀置于导电玻璃上;
③真空干燥
将导电玻璃置于真空干燥箱中,进行干燥处理,干燥温度80℃,真空度6Pa,干燥时间120min;
干燥后为碳量子点单一基质荧光膜;
(6)检测、分析、表征
对制备的碳量子点单一基质荧光膜的形貌、色泽、纯度、化学物理性能、发光性能进行检测、分析、表征;
用透射电子显微镜进行形貌分析;
用荧光光谱仪和紫外可见分光光度计进行荧光性能分析;
用X射线衍射仪进行结构分析;
结论:碳量子点单一基质荧光膜为浅黄色薄膜,膜层厚度≤100nm,
产物纯度达99.8%;
(7)产物储存
将导电玻璃及其上的碳量子点单一基质荧光膜储存于棕色透明的玻璃容器内,密闭避光储存,要防晒、防潮、防酸碱盐侵蚀,储存温度20℃,相对湿度≤10%。
2.根据权利要求1所述的一种用碳量子点制备单一基质荧光膜的方法,其特征在于:制备碳量子点水溶液是在反应釜内进行的,是在配制溶液、加热炉加热、水热合成过程中完成的;
加热炉为立式,加热炉(1)的下部为炉座(2)、上部为炉盖(10),在加热炉(1)的内底部设有工作台(13),在工作台(13)上部置放反应釜(7),反应釜(7)上部为釜盖(11),在反应釜(7)内置放聚四氟乙烯容器(8),聚四氟乙烯容器(8)上部为容器盖(12),在聚四氟乙烯容器(8)内为混合溶液(9),并密闭;在炉座(2)上设有显示屏(3)、指示灯(4)、电源开关(5)、加热温度控制器(6)。
3.根据权利要求1所述的一种用碳量子点制备单一基质荧光膜的方法,其特征在于:用碳量子点单一基质荧光膜制备白光发光二极管:
①配制碳量子点单一基质荧光膜水溶液
将导电玻璃及其上的荧光膜置于烧杯中,滴入去离子水8mL,然后置于加热器上,加热温度30℃,加热时间40min,使碳量子点单一基质荧光膜溶解,成荧光膜溶液;
②打开发光二极管芯片座(14)上的透镜(21),将荧光膜溶液均匀滴入透镜(21)内,滴入量为0.03mL;
③将滴入荧光膜溶液的透镜置于真空干燥箱中干燥,干燥温度80℃,真空度6Pa,干燥时间180min;
④干燥后,将发光二极管芯片座(14)上的透镜(21)封盖,并密闭,即完成了白光发光二极管的制备。
CN201610044192.5A 2016-01-22 2016-01-22 一种用碳量子点制备单一基质荧光膜的方法 Pending CN105542763A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610044192.5A CN105542763A (zh) 2016-01-22 2016-01-22 一种用碳量子点制备单一基质荧光膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610044192.5A CN105542763A (zh) 2016-01-22 2016-01-22 一种用碳量子点制备单一基质荧光膜的方法

Publications (1)

Publication Number Publication Date
CN105542763A true CN105542763A (zh) 2016-05-04

Family

ID=55822335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610044192.5A Pending CN105542763A (zh) 2016-01-22 2016-01-22 一种用碳量子点制备单一基质荧光膜的方法

Country Status (1)

Country Link
CN (1) CN105542763A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892420A (zh) * 2017-02-22 2017-06-27 太原理工大学 一种高荧光量子产率的固态发光碳点的快速制备方法
CN106992240A (zh) * 2017-05-09 2017-07-28 太原理工大学 一种发橙红光的碳量子点基荧光薄膜的制备方法
CN107337194A (zh) * 2017-06-13 2017-11-10 温州大学 一种荧光可调碳点薄膜的制备方法及其在led上的应用
CN108285277A (zh) * 2018-01-30 2018-07-17 吕铁铮 一种太阳能光伏组件玻璃表面复合薄膜的制备方法
CN108659832A (zh) * 2018-04-13 2018-10-16 北京化工大学 一种有机硅烷修饰的荧光碳点的制备方法
CN109810698A (zh) * 2019-02-15 2019-05-28 东北林业大学 一种发光碳量子点及其制备方法和应用
CN110157412A (zh) * 2019-05-14 2019-08-23 西南大学 一种长寿命室温磷光材料及其制备方法
CN111100631A (zh) * 2019-11-29 2020-05-05 华南农业大学 一种多色发光固态硅点粉末及其制备方法多功能应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066188A (zh) * 2013-01-28 2013-04-24 山东大学 一种蓝光激发碳点发光的白光led及其制备方法
CN103078047A (zh) * 2013-01-28 2013-05-01 山东大学 一种硅烷功能化碳点激发的白光led及其制备方法
CN104910905A (zh) * 2015-06-12 2015-09-16 太原理工大学 一种发白光的单基质碳点荧光粉的制备方法
CN105244427A (zh) * 2015-10-08 2016-01-13 五邑大学 一种新型白光led荧光膜以及基于荧光膜的led

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066188A (zh) * 2013-01-28 2013-04-24 山东大学 一种蓝光激发碳点发光的白光led及其制备方法
CN103078047A (zh) * 2013-01-28 2013-05-01 山东大学 一种硅烷功能化碳点激发的白光led及其制备方法
CN104910905A (zh) * 2015-06-12 2015-09-16 太原理工大学 一种发白光的单基质碳点荧光粉的制备方法
CN105244427A (zh) * 2015-10-08 2016-01-13 五邑大学 一种新型白光led荧光膜以及基于荧光膜的led

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892420A (zh) * 2017-02-22 2017-06-27 太原理工大学 一种高荧光量子产率的固态发光碳点的快速制备方法
CN106992240A (zh) * 2017-05-09 2017-07-28 太原理工大学 一种发橙红光的碳量子点基荧光薄膜的制备方法
CN106992240B (zh) * 2017-05-09 2018-12-11 太原理工大学 一种发橙红光的碳量子点基荧光薄膜的制备方法
CN107337194A (zh) * 2017-06-13 2017-11-10 温州大学 一种荧光可调碳点薄膜的制备方法及其在led上的应用
CN108285277A (zh) * 2018-01-30 2018-07-17 吕铁铮 一种太阳能光伏组件玻璃表面复合薄膜的制备方法
CN108659832A (zh) * 2018-04-13 2018-10-16 北京化工大学 一种有机硅烷修饰的荧光碳点的制备方法
CN109810698A (zh) * 2019-02-15 2019-05-28 东北林业大学 一种发光碳量子点及其制备方法和应用
CN110157412A (zh) * 2019-05-14 2019-08-23 西南大学 一种长寿命室温磷光材料及其制备方法
CN110157412B (zh) * 2019-05-14 2022-03-18 西南大学 一种长寿命室温磷光材料及其制备方法
CN111100631A (zh) * 2019-11-29 2020-05-05 华南农业大学 一种多色发光固态硅点粉末及其制备方法多功能应用

Similar Documents

Publication Publication Date Title
CN105542763A (zh) 一种用碳量子点制备单一基质荧光膜的方法
Wang et al. Facile microwave synthesis of carbon dots powder with enhanced solid-state fluorescence and its applications in rapid fingerprints detection and white-light-emitting diodes
Kaczmarek et al. Enhanced luminescence in Ln3+-doped Y2WO6 (Sm, Eu, Dy) 3D microstructures through Gd3+ codoping
CN104830328B (zh) 一种单基质碳量子点白光荧光粉的制备方法
CN106992240B (zh) 一种发橙红光的碳量子点基荧光薄膜的制备方法
CN104910905B (zh) 一种发白光的单基质碳点荧光粉的制备方法
CN102827599B (zh) 一种红绿蓝共混白光荧光粉的制备方法
CN103834397A (zh) 一种水溶性荧光碳点的制备方法
CN106675550A (zh) 一种钙钛矿量子点凝胶及其制备方法
CN109652071A (zh) 一种红光发射碳量子点及其家用微波制备方法
He et al. Luminescence properties of Eu3+/CDs/PVA composite applied in light conversion film
Wang et al. Tremendous acceleration of plant growth by applying a new sunlight converter Sr4Al14− xGaxO25: Mn4+ breaking parity forbidden transition
CN102276158A (zh) 一种偏钒酸盐纳米晶/聚合物复合荧光膜的制备方法
Ugemuge et al. Synthesis and luminescence study of silicate-based phosphors for energy-saving light-emitting diodes
Xu et al. Solid‐State, Hectogram‐Scale Preparation of Red Carbon Dots as Phosphor for Energy‐Transfer‐Induced High‐Quality White LEDs with CRI of 97
CN105018073B (zh) 一种含有两种配体的Eu配合物红色发光晶体材料及其制备方法
Qin et al. Silica-coupled carbon nanodots: multicolor fluorescence governed by the surface structure for fingerprint recognition and WLED devices
Hao et al. Hybrid polymer thin films with a lanthanide–zeolite A host–guest system: coordination bonding assembly and photo-integration
CN106008989B (zh) 一种发暖白光的铕‑铽聚合物荧光粉的制备方法
Yu et al. Multi-color carbon dots from cis-butenedioic acid and urea and highly luminescent carbon dots@ Ca (OH) 2 hybrid phosphors with excellent thermal stability for white light-emitting diodes
Yang et al. Recent advances in light-conversion phosphors for plant growth and strategies for the modulation of photoluminescence properties
Dai et al. Novel Cr3+‐Doped Garnet Phosphor with Broadband Efficient Far‐Red Emission for Photochrome Matching Plant‐Lighting
Hai et al. Perovskite-based nanostructures for fluorescence afterglow anticounterfeiting
CN107760305A (zh) 一种掺铈钇铝石榴石球形荧光粉体的制备方法
CN116426164A (zh) 一种水致变色的铜基钙钛矿材料的防伪应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160504

RJ01 Rejection of invention patent application after publication