CN105513738B - 一种热压氮化磁体的制备方法 - Google Patents

一种热压氮化磁体的制备方法 Download PDF

Info

Publication number
CN105513738B
CN105513738B CN201610057965.3A CN201610057965A CN105513738B CN 105513738 B CN105513738 B CN 105513738B CN 201610057965 A CN201610057965 A CN 201610057965A CN 105513738 B CN105513738 B CN 105513738B
Authority
CN
China
Prior art keywords
powder
magnet
minutes
hot pressing
iron boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610057965.3A
Other languages
English (en)
Other versions
CN105513738A (zh
Inventor
钟炳文
肖震
韩珩
解伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longyan Cercis Innovation Research Institute
Original Assignee
Longyan Cercis Innovation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longyan Cercis Innovation Research Institute filed Critical Longyan Cercis Innovation Research Institute
Priority to CN201610057965.3A priority Critical patent/CN105513738B/zh
Publication of CN105513738A publication Critical patent/CN105513738A/zh
Application granted granted Critical
Publication of CN105513738B publication Critical patent/CN105513738B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • B22F1/0003
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开一种热压氮化磁体的制备方法,将钕铁硼粉体和球磨后氮化粉体在隔绝氧气的条件下球磨混合,氮化粉体占总粉体0.5%‑3.5%;氮气条件下由模具真空热压450‑800℃,升温5‑15分钟,100‑300MP,保温1‑5分钟,然后20‑30分钟内降至室温得到各向同性的磁体;氮气条件下,将各向同性磁体放入不同内径的模具进行热变形,500‑850℃,升温5‑15分钟,保温0.5‑10min,压力30‑60MP,使磁体均匀变形,形变时间30‑90秒,预变形10‑30秒;20‑30分钟降到室温,脱模获得不同变形量的各向异性磁体。该磁体具有更好的磁性能、更高的使用温度可应用于永磁电机、传感器领域。

Description

一种热压氮化磁体的制备方法
技术领域
本发明涉及到稀土永磁合金,特别是掺杂氮化物的热压磁体,与其制备方法有关。
背景技术
钕铁硼稀土永磁材料自诞生以来,由于其具有极高的剩磁、高矫顽力和高磁能积等优点,已经广泛应用于航天航海、信息电子、能源交通、医疗卫生、音响音像、信息存储等领域。高性能Nd-Fe-B永磁材料的制备技术主要有粉末冶金工艺和热变形工艺两种。采用粉末冶金工艺制备的磁体的最大磁能积目前已达到4.76×105 T·(A/m),采用热压热变形工艺制备的磁体的最大磁能积也已达到4.352 ×105 T·(A/m)。
热压热变形法(Hot-press & Hot-deformation)由R. W. Lee等人于1985年首次提出的,过程主要分为两个阶段:热压(Hot-press)和热变形(Die-upset)。热压阶段将Nd-Fe-B粉末压成高密度、各向同性坯块。热变形阶段将Nd-Fe-B等轴晶转变为片状晶,片状晶的堆垛方式为垂直压缩方向,c轴(易磁化轴) 沿着压力方向排布,形成各向异性磁体,从而大幅度提高磁体的磁性能。与烧结工艺相比,热压热变形法制备的钕铁硼永磁材料具有以下独特优点:①工艺温度低(580~900 ℃);②工艺时间短(3~10 min);③无扩散;④晶粒小(粒径50~150 nm);⑤抗腐蚀特性强。
磁体中通过细化晶粒可以使磁体磁能积更高、磁体形状自由度好、尺寸精度高。稀土磁性材料细化晶粒的方式包括两种,一种是在钕铁硼中添加镝和铽,另一种是通过热压热变形工艺获得更细的磁畴。但镝和铽为重稀土元素,储量低,价格较高,而热压热变形工艺可以在不加入重稀土元素的情况下达到细化晶粒的效果。
在钕铁硼磁体的使用过程中,如果磁体使用温度较低,在使用环境温度较高达到磁体的使用温度时,磁体的磁性能将会有所下降,影响实际使用效果。在钕铁硼磁体的制备中,通常添加钴来提高磁体的使用温度。钴金属价格较贵,添加氮化物代替钴可以在提高使用温度的同时降低成本,通过添加氮化物来提高使用温度尚属首次。该磁体应用于永磁电机、传感器领域。
发明内容
本发明的目的在于提供一种热压氮化磁体的制备方法,使制备的新型稀土金属合金具有更好的磁性能、更高的使用温度。
为了达成上述目的,本发明的解决方案是:
一种热压氮化磁体的制备方法,步骤包括:
第一步,通过真空感应熔炼炉制备钕铁硼铸片,原料中成分:Nd30.3%、Pr0.1%、Co4%、Ga0.46%、B0.92%,余量为Fe,熔炼炉内真空度达到10-3Pa时充入氩气,熔炼后浇注在铜辊中进行甩带获得铸片,甩带速度30m/s;再通过气流磨制备成微米级的钕铁硼粉体,气流磨喷嘴空气压力0.5MP,分级轮转速为3000rpm,气流磨后获得钕铁硼粉体粒度20-60µm;
将一种或几种氮化粉末进行球磨,球磨罐内充入航空煤油,粉末在航空煤油中球磨5-24h,制备成含有纳米级别成分的氮化粉体,粉体粒度为200-400nm;
第二步,将钕铁硼粉体和球磨后氮化粉体在隔绝氧气的条件下再进行球磨(抽真空充保护气或航空煤油条件下),粉体充分混合,氮化粉体质量占粉体总质量的0.5%-3.5%;
第三步,将混合粉末填装进真空热压机模具,在氮气条件下,热压温度在450℃到800℃,升温时间在5分钟到15分钟,压力100MP-300MP,压制保温时间1分钟到5分钟,然后在20分钟到30分钟内降至室温,得到各向同性的磁体;
第四步,在氮气条件下,将各向同性磁体放入不同内径的模具进行热变形,控制热变形温度在500℃到850℃,室温到最高温升温时间为5分钟到15分钟,保温0.5分钟到10min,施加压力,压力达到30MP-60MP,使磁体均匀变形,形变时间控制在30秒到90秒,预变形完成后保温10秒到30秒;
第五步,然后在20分钟到30分钟内降温到室温,脱模获得不同变形量的各向异性磁体。
所述的氮化粉体是用于掺杂的氮化金属,包括氮化钛、氮化铝、氮化钒、氮化铌、氮化钕、氮化镝、氮化铽在内的一种或多种金属。
所述的氮化粉体通过球磨达到机械合金化的效果获得纳米晶的粉体。
所述的氮化粉体和钕铁硼粉体形成纳米晶复合相结构,该结构包括钕铁硼、钕铁氮、镝铁硼等一种或几种结构。
本发明的磁体可以应用于永磁电机、磁传感器等领域。
采用上述方案后,与现有技术相比,本发明的有益效果是通过掺杂氮化粉体和热变形的方式,使钕铁硼磁体获得更好的磁性能和更高的使用温度,而并不增加成本。
具体实施方式
实例1
通过真空感应熔炼炉制备钕铁硼铸片,原料中成分:Nd30.3%、Pr0.1%、Co4%、Ga0.46%、B0.92%,余量为Fe,熔炼炉内真空度达到10-3Pa时充入氩气,熔炼后浇注在铜辊中进行甩带获得铸片,甩带速度30m/s;再通过气流磨制备成微米级的钕铁硼粉体,气流磨喷嘴空气压力0.5MP,分级轮转速为3000rpm,气流磨后获得钕铁硼粉体粒度20-60µm;
将氮化镝粉末放在高能球磨机中球磨10小时,将球磨后的氮化镝粉末和钕铁硼磁体在隔绝氧气的条件下再进行球磨5h(抽真空充保护气或航空煤油条件下),粉体充分混合。氮化粉体质量占粉体总质量的1.5%。将混合粉末填装进真空热压机模具,在氮气条件下,热压温度在780℃,升温时间在6分钟,压力200MP,压制保温时间3分钟,然后在25分钟内降至室温,得到各向同性的磁体。在氮气条件下,将各向同性磁体放入不同内径的模具进行热变形,控制热变形温度在850℃,室温到最高温升温时间为5min,保温3min,缓慢施加压力,达到30MP,使磁体均匀变形,形变时间控制在30秒,预变形完成后保温25秒。然后在25分钟内降温到室温,脱模获得不同变形量的各向异性磁体。使用温度达到200℃,最大磁能积35MGOe。
实例2
通过真空感应熔炼炉制备钕铁硼铸片,原料中成分:Nd30.3%、Pr0.1%、Co4%、Ga0.46%、B0.92%,余量为Fe,熔炼炉内真空度达到10-3Pa时充入氩气,熔炼后浇注在铜辊中进行甩带获得铸片,甩带速度30m/s;再通过气流磨制备成微米级的钕铁硼粉体,气流磨喷嘴空气压力0.5MP,分级轮转速为3000rpm,气流磨后获得钕铁硼粉体粒度20-60µm;
将氮化钴粉末放在高能球磨机中球磨7小时,将球磨后的氮化钴粉末和钕铁硼磁体在隔绝氧气的条件下再进行球磨7h(抽真空充保护气或航空煤油条件下),粉体充分混合。氮化钴粉体质量占粉体总质量的1%。将混合粉末进行真空热压,在氮气条件下,热压温度在700℃,升温时间在6分钟,压力300MP,压制保温时间3分钟,然后在25分钟内降至室温。得到各向同性的磁体。在氮气条件下,将各向同性磁体放入不同内径的模具进行热变形,控制热变形温度在750℃,室温到最高温升温时间为5min,保温2min,开启液压系统,缓慢施加压力,达到50MP,使磁体均匀变形,形变时间控制在30秒,预变形完成后保温25秒。然后在25分钟内降温到室温,脱模获得不同变形量的各向异性磁体。使用温度达到180℃,最大磁能积38MGOe。

Claims (4)

1.一种热压氮化磁体的制备方法,其特征在于步骤包括:
第一步,通过真空感应熔炼炉制备钕铁硼铸片,原料中成分:Nd30.3%、Pr0.1%、Co4%、Ga0.46%、B0.92%,余量为Fe,熔炼炉内真空度达到10-3Pa时充入氩气,熔炼后浇注在铜辊中进行甩带获得铸片,甩带速度30m/s;再通过气流磨制备成微米级的钕铁硼粉体,气流磨喷嘴空气压力0.5MP,分级轮转速为3000rpm,气流磨后获得钕铁硼粉体粒度20-60µm;
将一种或几种氮化粉末进行球磨,球磨罐内充入航空煤油,粉末在航空煤油中球磨5-24h,制备成含有纳米级别成分的氮化粉体,粉体粒度为200-400nm;
所述的氮化粉体是用于掺杂的氮化金属,包括氮化钛、氮化铝、氮化钒、氮化铌、氮化钕、氮化镝、氮化铽在内的一种或多种金属;
第二步,将钕铁硼粉体和球磨后氮化粉体在隔绝氧气的条件下再进行球磨,粉体充分混合,氮化粉体质量占粉体总质量的0.5%-3.5%;
第三步,将混合粉末填装进真空热压机模具,在氮气条件下,热压温度在450℃到800℃,升温时间在5分钟到15分钟,压力100MP-300MP,压制保温时间1分钟到5分钟,然后在20分钟到30分钟内降至室温,得到各向同性的磁体;
第四步,在氮气条件下,将各向同性磁体放入不同内径的模具进行热变形,控制热变形温度在500℃到850℃,室温到最高温升温时间为5分钟到15分钟,保温0.5分钟到10min,施加压力,压力达到30MP-60MP,使磁体均匀变形,形变时间控制在30秒到90秒,预变形完成后保温10秒到30秒;
第五步,然后在20分钟到30分钟内降温到室温,脱模获得不同变形量的各向异性磁体。
2.如权利要求1所述的一种热压氮化磁体的制备方法,其特征在于:第一步,所述的氮化粉体通过球磨达到机械合金化的效果获得纳米晶的粉体。
3.如权利要求1所述的一种热压氮化磁体的制备方法,其特征在于:第二步,隔绝氧气的条件是:抽真空充保护气或航空煤油条件。
4.如权利要求1所述的一种热压氮化磁体的制备方法,其特征在于:第二步,所述的氮化粉体和钕铁硼粉体形成纳米晶复合相结构,该结构包括钕铁硼、钕铁氮和镝铁硼的一种或几种结构。
CN201610057965.3A 2016-01-28 2016-01-28 一种热压氮化磁体的制备方法 Expired - Fee Related CN105513738B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610057965.3A CN105513738B (zh) 2016-01-28 2016-01-28 一种热压氮化磁体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610057965.3A CN105513738B (zh) 2016-01-28 2016-01-28 一种热压氮化磁体的制备方法

Publications (2)

Publication Number Publication Date
CN105513738A CN105513738A (zh) 2016-04-20
CN105513738B true CN105513738B (zh) 2017-10-10

Family

ID=55721645

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610057965.3A Expired - Fee Related CN105513738B (zh) 2016-01-28 2016-01-28 一种热压氮化磁体的制备方法

Country Status (1)

Country Link
CN (1) CN105513738B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158209A (zh) * 2016-08-29 2016-11-23 京磁材料科技股份有限公司 一种改性钕铁硼磁体及其制备方法
CN106920615B (zh) * 2017-03-08 2018-10-26 江苏南方永磁科技有限公司 一种烧结钕铁硼材料及制备方法
CN110483068A (zh) * 2019-08-05 2019-11-22 无锡斯贝尔磁性材料有限公司 一种锰锌铁氧体粉料的调湿方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055779A (zh) * 2007-03-08 2007-10-17 上海交通大学 晶界添加氧化物或氮化物提高钕铁硼永磁材料性能的方法
CN104103415A (zh) * 2014-07-09 2014-10-15 北京工业大学 一种氢化镝纳米粉末掺杂制备各向异性NdFeB稀土永磁体的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870914B2 (ja) * 2012-12-25 2016-03-01 トヨタ自動車株式会社 希土類磁石の製造方法
CN105206414A (zh) * 2015-10-21 2015-12-30 龙岩紫荆创新研究院 一种掺杂铈的钕铁硼热变形磁体的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101055779A (zh) * 2007-03-08 2007-10-17 上海交通大学 晶界添加氧化物或氮化物提高钕铁硼永磁材料性能的方法
CN104103415A (zh) * 2014-07-09 2014-10-15 北京工业大学 一种氢化镝纳米粉末掺杂制备各向异性NdFeB稀土永磁体的方法

Also Published As

Publication number Publication date
CN105513738A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
CN102959648B (zh) R-t-b系稀土类永久磁铁、电动机、汽车、发电机、风力发电装置
CN106448986B (zh) 一种各向异性纳米晶稀土永磁体及其制备方法
KR101687981B1 (ko) 희토류 영구자석 분말, 그것을 포함한 접착성 자성체 및 접착성 자성체를 응용한 소자
CN105741995A (zh) 一种高性能烧结钕铁硼永磁体及其制备方法
CN102903472A (zh) 一种烧结钕铁硼磁体及其制备方法
CN103928204A (zh) 一种低稀土含量的各向异性纳米晶NdFeB致密磁体及其制备方法
CN103151161B (zh) 热变形磁体定向破碎制备各向异性钕铁硼磁粉的方法
CN106710765A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN105513738B (zh) 一种热压氮化磁体的制备方法
CN107170543B (zh) Sm-Co基合金块状磁体的制备方法
CN103545079A (zh) 双主相含钇永磁磁体及其制备方法
CN104332300A (zh) 一种烧结钕铁硼磁体的方法
CN104599802B (zh) 稀土永磁材料及其制备方法
CN104637667B (zh) 一种防氧化的柔性粘贴NdFeB磁条及其制备方法
CN102403078B (zh) 一种各向异性稀土永磁合金材料及其磁粉制备方法
JPH0366105A (ja) 希土類系異方性粉末および希土類系異方性磁石
CN105006327A (zh) 一种高性能含钆铸片磁体及其制备方法
CN112216460A (zh) 纳米晶钕铁硼磁体及其制备方法
CN112652433A (zh) 一种各向异性复合磁体及其制备方法
CN104766717A (zh) 一种提高烧结钕铁硼永磁体磁性能的方法
WO2023280259A1 (zh) 一种耐腐蚀、高性能钕铁硼烧结磁体及其制备方法和用途
CN105070447A (zh) 一种高性能含钬铸片磁体及其制备方法
CN103258609B (zh) 各向异性纳米复相稀土永磁材料的制备方法
CN105070448A (zh) 一种高性能含铈铸片磁体及其制备方法
CN113539664B (zh) 一种Sm基各向异性复合磁体的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171010

Termination date: 20200128

CF01 Termination of patent right due to non-payment of annual fee