CN105470094A - 离子光学装置及质谱仪 - Google Patents

离子光学装置及质谱仪 Download PDF

Info

Publication number
CN105470094A
CN105470094A CN201410448494.XA CN201410448494A CN105470094A CN 105470094 A CN105470094 A CN 105470094A CN 201410448494 A CN201410448494 A CN 201410448494A CN 105470094 A CN105470094 A CN 105470094A
Authority
CN
China
Prior art keywords
ion
electrode
array
electric field
electrod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410448494.XA
Other languages
English (en)
Other versions
CN105470094B (zh
Inventor
张小强
金峤
孙文剑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Simadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to CN201410448494.XA priority Critical patent/CN105470094B/zh
Priority to JP2017502983A priority patent/JP6376276B2/ja
Priority to PCT/CN2015/088841 priority patent/WO2016034125A1/en
Priority to US15/503,523 priority patent/US10014167B2/en
Publication of CN105470094A publication Critical patent/CN105470094A/zh
Application granted granted Critical
Publication of CN105470094B publication Critical patent/CN105470094B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/06Electron- or ion-optical arrangements
    • H01J49/062Ion guides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Ion mobility spectrometry
    • G01N27/623Ion mobility spectrometry combined with mass spectrometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

本发明提供的离子光学装置及质谱仪,包括:至少一平面绝缘基板,覆盖金属图案以构成包括多个单元电极的电极阵列,各单元电极根据第一方向排列以构成电极阵列的几何图案分布;相邻的且相互绝缘的单元电极施加有相位相异的射频电压以束缚离子;电极阵列中至少部分单元电极间施加有直流电压差,驱动入射电极阵列所生成电场的离子沿电极阵列作第一方向运动;通过几何图案分布形成对应电场分布来驱动各入射离子沿在基本正交于第一方向的第二方向运动,以实现离子偏转、聚焦或散焦,通过平面电极的几何结构和分布形成各种所需空间电场分布;在实现上,利用PCB或MEMS工艺来印刷各种平面几何形状的单元电极,具有低成本、高精度、高灵活性等优点。

Description

离子光学装置及质谱仪
技术领域
本发明涉及质谱分析技术领域,特别是涉及一种用于质谱仪的离子光学装置及质谱仪。
背景技术
离子光学装置,主要用于质谱仪中作为离子传输或导引装置,以便把从离子源产生的离子导入到质量分析器。而电极阵列形式的离子光学装置,如美国专利US6107628,US8581181,以及中国专利CN201210203634等,由于设计和功能上的灵活性,在业内得到了广泛使用。
目前电极阵列的制作方式主要是直接制作分立的纯金屈电极器件,然后通过工装夹具以定位、固定。纯金屈电极制作的好处,一是加工精度可以很高,容易满足离子光学器件的需求,二是器件本身没有绝缘部分,所以不容易有电荷积累。但由于电极阵列数目较多,用这种工艺往往非常复杂、耗时,成本较高;还有就是会带来很大的电容,所以需要很大功率的电源。为了降低制作成本并减少电容,一种较好的方式是利用层叠式的印刷线路板(PCB),将印刷线路板的边缘镀上金屈镀层作为电极,未覆盖金屈镀层的印刷线路板作为绝缘层,然后将多片印刷线路板层叠起来组成电极阵列。尽管PCB工艺成熟,但多片叠加的方式需要工装用以定位,过程比较复杂。除去印刷线路板的边缘,线路板的表面也可以镀上电极以形成离子光学器件,如美国专利US6316768中,用PCB工艺制作飞行时间质谱仪的飞行腔、加速电极、反射镜电极等,又美国专利US7498569中利用PCB工艺制作平面型直线离子阱。
另外,近年来由于微纳加工技术,特别是微机电系统(MEMS)的迅速发展,很多人开始将其应用于离子光学器件,特别是离子阱的制作。尽管相比传统IC工艺中的PCB技术,微加工技术强调立体结构,但在目前的离子光学器件中,利用的主要还是绝缘层表面的平面金屈镀层作为电极使用,如美国专利US7217922,US7402799,US8213118和US8299443等。
尽管成熟的PCB工艺和迅速发展的MEMS工艺已有众多应用于离子光学器件的例子,但是目前为止,电极阵列本身的单元电极仅仅是作为一个电位施加点或面来使用,因此单元电极的形状是点状、直线状或矩形等简单的几何构型,如果要得到某种复杂的电位分布,需要众多的单元电极以及与之配套的电源系统,或仅能采用结构复杂的三维电极才能形成需要的对应空间电场分布。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种用于质谱仪中的离子光学装置,以解决现有技术中电极阵列较难实现较复杂电位分布、或即使能实现也结构复杂加工困难等技术问题。
为实现上述目标及其他相关目标,本发明提供一种离子光学装置,包括:至少一平面绝缘基板,覆盖金屈图案以构成电极阵列,其中,所述电极阵列包括多个单元电极,所述多个单元电极根据预定义离子导引方向而排列以构成所述电极阵列的几何图案分布,所述预定义离子导引方向定义为第一方向;其中,各个相邻的且相互绝缘的单元电极施加有相位相异的射频电压以束缚离子;电极阵列中至少部分单元电极间还施加有直流电压差,驱动入射离子沿所述第一方向运动,且通过所述电极阵列的几何图案分布所形成对应电场分布,该电场分布驱动所述入射离子沿基本正交于所述第一方向的第二方向运动,以实现离子偏转、聚焦或散焦。在实现上,可以利用PCB或MEMS工艺来印刷各种平面几何形状的单元电极具有低成本、高精度、高灵活性等优点。
可选的,所述电极阵列的至少部分单元电极的几何形状为一条折线或曲线,以形成与所述电极阵列的几何图案分布相对应的电场线分布。
可选的,所述离子光学装置包括:至少一对所述平面绝缘基板,设置成各自的单元电极在第二方向上一一相对,以于所述一对平面绝缘基板间形成电场分布使所述入射离子沿第二方向产生所述偏转、聚焦或散焦。
可选的,所述离子光学装置包括:至少两片边相接形成共用边、或至少三片边角相接形成共用角的所述平面绝缘基板,在所述平面绝缘基板上以共用边上一点或共用角为中心而向其靠近的方向上分布尺寸趋小的环状单元电极,以使所述入射离子向所述共用边上该点或共用角处聚焦。
可选的,所述离子光学装置包括:至少四片所述平面绝缘基板,环绕相接围成离子导引腔,在所述离子导引腔内表面沿所述第一方向间隔形成环形金屈电极的阵列;其中,至少两片平面绝缘基板上的至少部分环形金屈电极被一斜向绝缘条隔离成两段以形成第一单元电极及第二单元电极,使所述第一单元电极和第二单元电极均呈现沿所述预定义离子导引方向而长度递变,且在第一单元电极和第二单元电极间施加直流电压差,以驱动入射离子沿第二方向偏转的同时被聚焦。
可选的,所述的离子光学装置包括:至少四片所述平面绝缘基板,环绕相接围成离子导引腔;在所述离子导引腔内各个面上沿所述第一方向及第二方向均间隔设置多个单元电极,并在至少部分单元电极间施加不同直流电压,以形成对应电场分布驱动入射离子沿第二方向产生偏转、聚焦或散焦。
可选的,所述直流驱动电场可由射频电场所取代,所述射频电场在第二方向上产生强度不等的赝势垒,以驱动离子偏转、聚焦或散焦。
可选的,决定所述电极阵列的几何图案分布的参数包括:电极阵列中单元电极的长度、半径、曲率、及与所述第一方向的夹角中的一种或多种组合。
可选的,所述参数是沿所述第一方向逐渐变化的,以形成对应的电场分布。
可选的,所述平面绝缘基板为矩形。
可选的,所述平面绝缘基板为印刷线路板的基底,所述金屈镀层为印刷线路。
可选的,以形成所述直流或射频电场的至少部分电子元件位于所述印刷线路板上、
可选的,所述平面绝缘基板上未覆盖金屈图案的部分设有切槽或者覆盖有高电阻值的镀层。
可选的,所述平面绝缘基板和金屈图案由微纳加工工艺获得。
为实现上述目标及其他相关目标,本发明提供一种质谱仪,包括:所述离子光学装置,用于离子导引。
可选的,所述质谱仪,包括:与所述离子光学装置联用的质量分析器。
可选的,所述质谱仪,包括:与所述离子光学装置联用的离子迁移率分析器。
如上所述,本发明提供的离子光学装置及质谱仪,包括:至少一平面绝缘基板,覆盖金屈图案以构成包括多个单元电极的电极阵列,多个单元电极根据预定义离子导引方向即第一方向排列以构成电极阵列的几何图案分布;各个相邻的且相互绝缘的单元电极施加有相位相异的射频电压以束缚离子;电极阵列中至少部分单元电极间还施加有直流电压差,驱动入射所述电极阵列所生成电场的各离子沿电极阵列作第一方向运动;且通过所述几何图案分布形成对应电场分布,该电场分布来驱动所述各入射离子沿在基本正交于所述第一方向的第二方向运动,以实现离子偏转、聚焦或散焦。本发明通过平面电极的几何结构和分布形成各种所需要的空间电场分布。在一优选实施例中,仅使用两片PCB平板,可将离子在较宽气压范围内被有效聚焦;在另一优选实施例中,离子可被偏轴传输并聚焦以降低中性噪音。在实现上,利用PCB或MEMS工艺来印刷各种平面几何形状的单元电极具有低成本、高精度、高灵活性等优点。
附图说明
图1a显示为本发明的离子光学装置的一实施例的结构示意图。
图1b显示为根据图1实施例,用计算机模拟得到的离子轨迹图。
图1c显示为本发明的离子光学装置实现离子聚焦的一实施例的结构示意图。
图2a显示为本发明的离子光学装置实现离子聚焦的一实施例的结构示意图。
图2b显示为图2a的部分结构示意图。
图2c显示为图2a的截面结构示意图。
图3a显示为本发明的离子光学装置实现离子聚焦的一实施例的结构示意图。
图3b显示为本发明的离子光学装置实现离子聚焦的一实施例的截面结构示意图。
图3c显示为本发明的离子光学装置实现离子聚焦的一实施例的结构示意图。
图4a及4b显示为本发明的离子光学装置实现离子聚焦的实施例的结构示意图。
图4c显示为根据图4b实施例,用计算机模拟得到的离子轨迹图。
图5a显示为本发明的离子光学装置实现周期性聚焦散焦的一实施例的结构示意图。
图5b显示为本发明的离子光学装置实现周期性聚焦散焦的一实施例的结构示意图。
图6显示为本发明的离子光学装置实现离子包束缚的一实施例的结构示意图。
图7a显示为本发明的离子光学装置实现离子偏转的一实施例的结构示意图。
图7b显示为本发明的离子光学装置实现离子偏转的一实施例的结构示意图。
图8显示为图2b的实施例的一具体实现例的结构示意图。
图9a显示为本发明的离子光学装置的一实施例的结构示意图。
图9b显示为本发明的离子光学装置的一实施例的结构示意图。
图10显示为本发明的离子光学装置应用的质谱仪的一实施例的结构示意图。
图11a显示为本发明的离子光学装置整体结构的一实施例的结构示意图。
图11b显示为本发明的离子光学装置整体结构的一实施例的结构示意图。
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
本发明的离子光学装置,其改进点之一是通过在至少一平面绝缘基板上覆盖金屈图案构成电极阵列,并利用电极阵列的几何图案分布形成所需的电场分布以驱动离子向需要的方向或位置进行运动,而多片印有相配合金屈图案的绝缘基板组合后即可实现现有三维电极的电场分布效果,在一实施例中,所述覆盖金屈图案是可以通过PCB印刷方式实现,亦可是通过微纳加工工艺(MEMS)获得。
请参阅图1a,在该实施例中,所述离子光学装置包括:一片平面绝缘基板101,覆盖金屈图案以构成电极阵列,其中,所述电极阵列包括多个单元电极1011,所述多个单元电极1011排列形成所述电极阵列的几何图案分布,所述平面绝缘基板101可以是矩形或正方形等,其上的所述电极阵列的至少部分单元电极1011的几何形状可以为图示的折线形,进一步可选的,所述折线是中心对称的即两条折线段是相对连接点所在中心线左右对称的,并且,所述离子光学装置还可通过电源将相位相异的射频电压提供至各个相邻的且相互绝缘的单元电极1011以束缚离子,用来束缚离子并防止离子碰壁,在一实施例中,所述相位相异指的是相邻的单元电极上的射频电压可以是幅值相等而相位相反;并且,还通过电源对电极阵列中至少部分单元电极1011间施加有直流电压差,例如幅值从低至高或从高至低递变,在本实施例中,即例如沿z轴正向各单元电极1011所施加直流电压幅值递减,当离子按图示的箭头A方向入射至所述电极阵列的电场后,离子会从高电位的电极向低电位的电极运动,直至从另一侧出,从而实现离子导引;而入射电极阵列所形成电场的各离子会沿电极阵列作预定义离子导引方向运动,其中,此处及下文会将所述预定义离子导引方向定义为第一方向,所述预定义离子导引方向即预定义的离子导引轴的方向,若在中心对称的离子导引腔内即为其中心轴向,简称轴向,图示为z轴方向,而在本实施例中可以是在所述一片平面绝缘基板1011外沿电极阵列的离子导引方向;所述轴向的基本正交方向即可定义为径向,虽然在本实施例中所述的轴向及径向与圆柱体立方体等立体形状的轴向和径向定义有所不同,但是本领域技术人员应当可以根据说明书内容及附图来理解;所述单元电极1011构成的电极阵列通上直流电压后,通过其几何图案分布可以形成对应电场分布来驱动所述各离子在基本正交于所述第一方向的第二方向及的偏转、聚焦或散焦,本实施例提供的是偏转加聚焦的方式,当然亦可从中推导散焦的实现方式,后文将加以描述。
可选的,上述所有的单元电极1011结构和间距都可以是相同的,通过直流电场聚焦,而射频电场只用来束缚离子并防止离子碰壁,不会引起射频囚禁,避免了对低质量离子的歧视,而传统方案中,由于出口处的电极口径很小,或者电极间距很大,射频电压会形成四极离子阱而将低质量离子囚禁住,无法有效传输到下一级,而本发明的设计避免这一问题。
请一并参阅图1b,为对图1a中实施例的离子轨迹仿真结果,可以了解所述电场分布即图中各条电场线201的分布是和上述单元电极所构成的电极阵列的几何图案分布相类似的,是指向z轴正方向,同时指向y轴原点的聚焦电场;所述各离子在按图示z轴正方向进入电场后即由于所述电场分布的作用在y轴上运动至向图示中心线即z轴所在位置聚焦,其中,不在中心线位置的离子发生y轴上的偏转运动至所述中心线位置聚焦。
请参阅图1c,在本实施例中,采用上、下一对相同的绝缘基板101及102,且可平行设置并设置成各自的单元电极1011及1021在第二方向即图示的x方向上一一相对,相较于上一实施例,其优点在于离子是从上下两片之间穿过,可以更加有利于束缚离子,但图1a中的结构离子需例绝缘基板较近否则可能因外界作用而从电场逸出;本实施例中,在电压施加方式上,可以在上、下的电极阵列间施加一直流电压差(即每个相对的单元电极1011和1021之间施加直流电压差),使离子束偏向于其中一片,这样可以在x方向上也实现聚焦。
当然,若需要实现散焦,可在上述实施例中的离子出口处反向射入离子束,同时,相反地对上述各单元电极1011设置直流电位差,例如上一实施例是z轴正向电压幅值递减,则改成z轴正向递增,即进行与上述实施例相反方向的离子导引,从而可实现离子的散焦。
并且,虽然在上述实施例中,所展示的单元电极1011的形状是折线,但在其他实施例中,其形状亦可为弧线,或者每个单元电极可由两个分立的直线电极构成,亦能实现类似的电场分布。
再以一个例子来举例说明如何利用分立电极几何尺寸的逐渐变化形成与预定义离子导引方向即轴向基本正交的径向的聚焦电场;如图2a及2b所示,可采用至少四片所述平面绝缘基板201、202、203及204,环绕相接围成离子导引腔,其中,图2b简略标示了平面绝缘基板201(平面绝缘基板202的结构相类似);设第一方向即轴向为图示z轴正方向,可一并参考图2c显示为图2a在z轴的截面视图,整个离子导引腔从z轴方向看是设置成对角线与x轴一致的四边形,在所述离子导引腔内表面沿所述z轴(即轴向)间隔设置多个环形金屈电极所构成的电极阵列,在本实施例中,由于采用的是四片矩形的平面绝缘基板围成立方体状的离子导引腔,因此可形成的所述环形金屈电极为方环形,当然该形状仅为例示而非作为限制;请一并参阅图2b,显示的是带有斜向绝缘条2013及2023的下侧两片平面绝缘基板201及202,请参阅图2c,下侧的两片平面绝缘基板201及202上的环形金屈电极被所述斜向绝缘条隔离成两段,所述斜向绝缘条与所述轴向例如成0到90度之间的角度,优选为15到60度之间,从而使所述斜向绝缘条2013及2023两侧的各段间均呈现沿所述预定义离子导引方向即第一方向而长度递变;为方便描述,平面绝缘板201上斜向绝缘条2013将所述各环形金屈电极均隔离成下方的电极2011和上方的电极2012,且平面绝缘板202上斜向绝缘条2023将所述各环形金屈电极均隔离成下方的电极2021和上方的电极2022,电极2011和电极2021间相连形成第一单元电极,电极2012、2031、2041、2022电性相连形成第二单元电极,分别构成下方的第一电极阵列及上方的第二电极阵列;为了束缚离子,沿轴向相邻的电极之间施加幅值相同,相位相反的射频电压,可以在离子太过靠近电极阵列的时候将其弹开,第一电极阵列和第二电极阵列上分别施加沿所述轴向(即图示z轴正向)递减的直流电压以驱动离子沿第一方向运动,且至少部分环形金屈电极所隔离出的各个对应第一单元电极和第二单元电极间可施加直流电场而具有电压差,以形成对应电场分布驱动入射离子导引腔的离子在基本正交于轴向的径向即第二方向的偏转、聚焦或散焦,具体来说,例如第一电极阵列中的各第一单元电极的直流电压均大于下方的第二单元电极,那么离子就会在电场作用下向x轴负方向偏转,反之则向x轴正方向偏转;所述平面绝缘基板201及202和其上的电极段2011及2021之间是相对x轴向对称的,在一种实施例中,所述电子光学装置工作在典型的气压下,比如1torr到30torr之间。
具体来说,当来自上游离子源的离子进入在该离子光学装置沿轴向运动,由于上述电场在轴向的作用,离子在装置内沿z轴正方向传输,同时由于第一电极阵列与第二电极阵列之间的直流电压差,离子在径向上逐渐偏向x轴负方向,由于所述绝缘条与轴向之间存在一个夹角,也就是电极阵列的电极长度沿轴向逐渐减小,则离子在径向上逐渐被聚焦,然后传输进入下游的质量分析器或其他分析装置。
需说明的是,虽然在本实施例中提供的是离子聚焦功能实现,但本领域技术人员完全可以根据前述内容进行反向操作以实现离子散焦功能,例如反向入射离子并施加反向直流电压等,不再举例叙述。
图3a所示,是图2b实施例的一种简易实施方式;与上一实施例的差异在于,在本实施例中,是在所述离子导引腔内各个面(即各片平面绝缘板301的内表面)上均沿所述第一方方向(即轴向,图示z轴方向)及其正交方向间隔设置多个单元电极,也就是说,是用四片如图3a这样的平面绝缘基板301围接成上述离子导引腔,并且可选的,各个平面绝缘基板301上单元电极是在沿z轴同步设置,即与前实施例相类似位于同一环形上,只不过本实施例中所述环形上的单元电极均是分隔独立的;形成对应电场分布驱动入射离子导引腔的各离子在轴向运动时径向偏转、聚焦或散焦。以下以离子聚焦的实现来举例,如图3a所示,在xz平面上,每片平面绝缘基板301上至少包含2个电极,可选的是图示的包含3个电极,其中,沿z方向相邻的电极上施加的射频电压可以完全相同,而同时施加逐渐降低的直流电压以驱动离子沿z轴传输;而沿x方向相邻的单元电极间可以具有幅值相同且相位相反的射频电压,这样可形成如图3b所示的近似十二级场,同时施加不同的直流电压以在x和y方向上压缩、聚焦离子束。比如,如果要把离子束向xy平面的原点处(z轴向)压缩,可例如在单元电极3011和3012之间施加一直流压差,使得离子向单元电极3012靠近。相比于图2a的实施例,这里利用多级场结构以及径向的直流电场可得到近似层叠电极阵列的传输效果,但使用的电极个数更少,从而简化电路连接。如果要获得不同的传输效果,比如较好的径向聚焦,或者粗略的质量分离等,可使用级数更低的多级场,比如四级场。
在又一个实施例中,更简单地,如果只要求一维方向上的压缩或聚焦,可以只用相对的两片平面绝缘基板401,其xy平面的截面结构可如图3c所示,两侧的单元电极4011通有相同的直流电压,而单元电极4012相对两侧的单元电极4011有直流电压差,如此形成的直流电场,使离子会被会聚到y轴原点附近,形成沿x轴呈长条状的离子束分布即如图中虚线框所示。这样的分布可用于正交飞行时间质谱仪的加速电极的前级。更简单地,在一实施例中,通过射频电场来替代所述直流电场,以通过射频电场在第二方向上产生强度不等的赝势垒,以驱动离子偏转、聚焦或散焦;而以上述实施例为例,通常可使单元电极4011上的射频幅值大于单元电极4012上幅值,则会在单元电极4012附近产生更强的射频赝势垒,离子会在y方向上被聚焦到原点附近,调整射频的场强比值,可以控制离子被聚焦的程度。这样的方式相当于提供了沿z轴分布的圆环电极阵列或者椭圆环阵列,换言之,用平板的电极结构实现了空间三维的电场分布。
需说明的是,虽然在上述实施例中提供的是离子聚焦功能实现,但本领域技术人员完全可以根据前述内容进行反向操作以实现离子散焦功能,例如反向入射离子并施加反向直流电压等,不再举例叙述。
由于立体式阵列的电场实现方式并非仅限于上述实施例,因此以下再以多个实施例说明其他利用多块上述绝缘基板上平面电极结构组成立体式阵列的电场分布:
如图4a至4c所示,所述离子光学装置可以包括三片边角相接形成共用角的所述平面绝缘基板,在所述三绝缘基板上以共用角为心而向其靠近的方向上间隔形成尺寸趋小的单元电极,以使所述各离子向所述共用角处聚焦;具体来说,在一实施例中,如图4a所示,是采用效果较好的三片平面绝缘基板501、502及503来边角相接构成一共用角,当然此仅为例示,根据本发明的精神,从上述实施例的技术方案中去掉一片,而仅以两片边相接的平面绝缘基板亦可实现类似的效果,所述平面绝缘基板上以共用边为中心而向其靠近的方向上分布尺寸趋小的单元电极,因此并非是以图示的三片为限。
所述三片平面绝缘基板501、502及503相互结合形成一立体角式结构,每片基板上分布金屈的条状电极作为单元电极5011、5021及5031,在本实施例中所述条状电极为直线,但在其他实施例中亦可如上所述为折线或曲线等,本领域技术人员可以结合本发明的原理加以变化;每片平面绝缘基板501、502及503上的条状电极的间隔都是相同,且各块平面绝缘基板501、502及503上距离共用角504相同距离的条状电极都是电性相连,由于本实施例中平面绝缘基板有三块,因此相连的条状电极构成三角形电极(亦可将电性相连的单元电极5011、5021、5031所形成的三角形电极看做是一个整体的“单元电极”),且是越靠近所述共用角504则三角形电极的面积越小,即各条单元电极5011、5021及5031的长度越短;而若是两片平面绝缘基板,可以想象是一折线电极,且越靠近所述共用角则尺寸越小;可选的,为了使该装置更好的束缚离子束,可如前所述在相邻的单元电极(例如相邻的单元电极5011之间、相邻的单元电极5021、或相邻的单元电极5031)之间施加幅值相等且相位相反的射频电压,可以在离子太过靠近电极阵列的时候将其弹开;且在电极阵列上施加逐渐降低的直流电压,将形成指向该共用角504的聚焦电场,可选的,如图4b所示,可在图4a图示的左面及顶面增加两片带有如图示间隔条纹电极阵列的平面绝缘基板505及506,从而将该围成一长方体形的离子导引腔,所述左面及顶面的平面绝缘基板505及506上的条纹电极都与所述长方体轴向平行或垂直,并可做成和其他平面上条纹电极的间隔相同,以与其它平面绝缘基板上的条状电极电性连接,从而形成更加立体的电场分布;当离子沿图示箭头E方向入射,将会被电场分布引导、聚焦至所述共用角,从最小的三角形的单元电极处离开,所述共用角504处可以通过例如引出透镜等连接或直接连接下一级装置如离子分析装置等,离子沿F方向进入下一级装置。
如图4c给出了该实施方式中利用计算机仿真得到的离子轨迹,是从平面绝缘基板501的角度去观察的;从与图示y轴负方向方向看去,沿E方向进入的发散离子束,被该装置很好的聚焦,然后从共用角处经例如引出透镜等离开。
需说明的是,虽然在上述实施例中提供的是离子聚焦功能实现,但本领域技术人员完全可以根据前述内容进行反向操作以实现离子散焦功能,例如反向入射离子并施加反向直流电压等,不再举例叙述。
以下图5a及5b展示的两个实施例是关于利用电极阵列的几何图案分布实现离子周期性聚焦或散焦:
如图5a所示,又提供一实施例,结合上述原理,在该实施例中,所述单元电极6011及6012不再均是同向设置,即例如两段折线形状的单元电极6011及6012的开口不再朝向同方向,而是有部分相对设置,其作用在于,使得各入射离子可以聚焦、散焦切换或者交替进行。
再请参阅图5b,是一种更加优选用于离子聚焦与散焦周期性交替的电极阵列的设置方式;在该实施例中,该方式中,使用具有更加灵活多变的几何形状的单元电极,来实现复杂的功能;所述绝缘平面基板701上单元电极包括两类,凹面电极7012及凸面电极7011,沿图示x正方向各电极7011及7012的直流电位逐渐降低。阵列中的凸面电极7012和凹面电极7011交错排列,可形成周期性的聚焦和散焦电场,使得离子在沿图示x轴正向传输的过程中,被周期性的聚焦和散焦,形成图示轨迹C。这种周期性电场用途较多,如在较高的真空下,可用于调整离子束的相空间分布,比如实现类似Einzel透镜的功能。而在一定气压下,可用于代替射频电场来束缚离子,在一些实施例中,还可作为离子迁移管使用。
所述电极阵列的几何图案分布还可用于形成束缚离子包,如图6所示,在一实施例中,平面绝缘基板801上的单元电极可以包括以下类型:网格电极8011及网格电极内的块状电极8012;在网格电极8011与块状电极8012之间施加一直流电压差(例如网格电极的直流电压高于所述块状电极8012),可在每个网格内形成一个直流势垒“小坑”,离子进入平面绝缘基板801上方后,将被束缚在一个个的小坑里,同时可在网格电极8011与块状电极8012间施加射频电压以防止离子打到电极表面。利用这些被分隔束缚的离子包,可做多种形式的离子操控,比如离子存储,离子粗筛,离子反应等。
以下再以图7a及图7b展示利用电极阵列的几何图案分布实现离子在基本正交于其运动的轴向的径向上偏转的:
在一实施例中,如图4a所示,该方式用以说明实现离子径向偏转的一种方式:电极阵列分布在平面绝缘基板901上,为了使沿y轴负方向入射的离子束转向x轴正方向,电极阵列可沿此方向逐渐分布并施加逐渐降低的直流电位,为了使转角处电场较为均匀,如图所示,转角处的单元电极9011形状可为梯形,从而使离子运动轨迹如D所示。离子的径向偏转在质谱仪中用途非常广泛,比如可通过偏转降低中性噪音,或减小仪器尺寸,或用于循环结构以实现某些特殊目的。
在一实施例中,如图4b所示,展示了如何将两束离子束汇合并偏转。只需在平面绝缘基板1001上镀上如图所示的电极阵列,其中单元电极1001a的几何形状为弧形,利用该弧形半径或者弧度大小的逐渐变化,或者弧形的方向逐渐变化,可形成如图所示的离子束汇合、偏转等功能。通过这种方式可在质谱仪中进行离子反应,或通过多路引入提高分析通量。
综上,决定所述电极阵列的几何图案分布的参数包括:电极阵列的长度、半径、曲率、及与所述预定义离子导引方向的夹角中的一种或多种组合,本领域技术人员可结合本发明所提供的上述实施方式及教示结合实际环境加以变化,而非以上述实施方式为限。
以下将结合图2a中的实施例,来说明本发明的离子光学装置的具体加工工艺、改进方式以及一些变化例。
图8是对应图2b具体实现的实施例,在具体实现上,采用印刷线路板(PCB)来制作平面绝缘基板及其上的电极阵列。四片平面绝缘基板1101、1102、1103及1104可以是传统PCB工艺可采用的任意基材,比如FR4,PTFE,或者陶瓷等。而电极阵列用金屈镀层印刷方式制成,传统PCB的所有工艺,比如沉金、电镀、蚀刻、阻焊等,都可以用于该过程,在以下实施例中,四片平面绝缘基板(1101~1104)即印刷线路板围成一个长方体形的离子导引腔,金屈镀层位于腔的内表面。金屈镀层构成上方的第一电极阵列和下方的第二电极阵列并组合形成总的电极阵列,电极阵列上所施加的电压如前所述,而提供该电极阵列所需电压的电子元件1105,比如电容、电阻等,位于离子导引腔的外侧,并可直接分布于平面绝缘基板1101及1103的另外一面。电子元件1106经印刷线路通过平面绝缘基板上的通孔与电极进行电性连接;而如果处于不同平面的单元电极,例如1102a和1103a,由于相互之间需要电学连接,则可以通过焊接方式直接进行连接,但这种方式可能对电极形状造成破坏。为了避免破坏,可以将电极1103a延伸至基板1102的背面,与背面预先布好的线路1106焊接,再通过所在平面绝缘基板1102上面的通孔与单元电极1102a连接。
由于电极阵列的单元电极数目较多,因此焊点也较多,图中焊点G应电极数量会有多个并沿平行于离子导引腔轴向通过排线分布,这样光靠焊点连接就可以使得整个装置具有一定的应力而不至于变形。当然,也可以再增加固定和定位装置,使得该离子传输装置更牢固,更不易产生形变。采用这样的实施方式,整个装置成本较低,且易于大规模生产,而且由于电极都分布于表面,电极厚度很小,因而整个装置的电容也大大降低,在施加射频电压时不需要大功率的电源。
另外,如图9a所示,为用微纳加工工艺形成的立体结构的电极截面图。对微纳加工工艺的具体讨论不在本专利范围内。但通常的该加工工艺内涵所包括的内容,应用于本发明的离子光学装置中时并无限制。举例来说,如图9a所示,电极镀层1201a和平面绝缘基板1201,可用光刻法形成。
需说明的是,在上述实施例中,间隔分布的电极镀层1201a的间隔为平面绝缘基板1201的绝缘层,但是由于电极上通有射频电压之后,静电电荷易于绝缘层堆积,再请见图9a,其中,在间隔的绝缘层的部分设置了切槽1201b,可通过用干法、湿法腐蚀等方法形成。电极间存在切槽1201b,则可以有效避免静电电荷在绝缘层上的积累,因为电极上射频电压的存在会阻止电荷进入较深的绝缘切槽1201b内。通常认为静电积累对离子光学器件的影响是负面的。为了消除静电积累,除了上述切槽1201b外,还可以进行表面处理,比如通过镀上高阻膜来替代,也可以采用在电极周围包覆一层介电材料的方式。
需注意的是这些消除静电电荷的方法可同样适用于上述印刷线路板工艺制作本发明的离子光学装置中。
图9b是该实施方式的另外一种改进方式,相比于图2a,在本实施例中省略斜向绝缘层,而采用分立的绝缘基板1301和1302,这样的好处是增加了装置的通透性,从而使得装置里面的气流更加均匀,避免涡流,从而有利离子传输。可选的,可以在任意的绝缘部分,比如各电极1301a之间,划出多条通槽1301b以形成更加通透的结构。
如图10所示,本发明的离子光学装置可用作为质谱仪2的质量分析器的前级作为离子导引,可选的,所述离子分析器还可包括:离子迁移率分析器;在该实施例中,离子源21(例如电喷雾离子源等)产生的离子,经过真空接口毛细管22进入位于真空腔体23内的离子光学装置24,由于该离子光学装置24如前所述的特性,离子沿轴向运动,然后径向偏轴传输并聚焦,通过真空接口231进入下一级装置25,以待分析。沿离子光学装置1004的轴向方向,有一真空抽口232,可将中性成分(主要是未经完全去溶剂的液滴以及气体)抽走以降低仪器的噪音。因此本发明的离子光学装置24不仅可以将离子束进行聚焦以提高离子的信号强度,还可以降低从上一级带来的噪音干扰,从而提高仪器的灵敏度。值得一提的是,相比于离子漏斗中的圆环层叠结构等,本发明实施例中所提供的矩形及其组合的长方体状的阵列结构可在靠近离子出口处提供更强的射频势垒,因此对低质量的离子有更强的束缚作用,从而减少了质谱仪中经常困扰领域人员的低质量离子歧视问题。
当然,所述离子光学装置并非限定于围成上述长方体形状,请参阅图11a及图11b。如图11a所示,所述离子光学装置24a可以是由六片基板组成的结构,入口截面为中心对称的六边形,其轴向即六边形的中心轴方向,通常可用于射频多级场的情况;而图11b类似于上述图11的原理,用于离子的偏轴传输,使用本发明提到的离子光学装置24b,可使得制作过程大大简化。
可选的,在上述各实施例中,本发明中环绕围成离子导引腔的平面绝缘基板的相接边都与轴线平行,从而形成沿轴向延伸的离子光学装置,并在径向上聚焦或偏转离子,相比于现有技术中的非平行结构,本专利中的装置在加工、组装以及电路连接上更加简易。
综上所述,本发明提供的离子光学装置及质谱仪,包括:至少一平面绝缘基板,覆盖金屈图案以构成包括多个单元电极的电极阵列,多个单元电极根据预定义离子导引方向即第一方向排列以构成电极阵列的几何图案分布;各个相邻的且相互绝缘的单元电极施加有相位相异的射频电压以束缚离子;电极阵列中至少部分单元电极间还施加有直流电压差,驱动入射所述电极阵列所生成电场的各离子沿电极阵列作第一方向运动;且通过所述几何图案分布形成对应电场分布,该电场分布来驱动所述各入射离子沿在基本正交于所述第一方向的第二方向运动,以实现离子偏转、聚焦或散焦。本发明通过平面电极的几何结构和分布形成各种所需要的空间电场分布。在一优选实施例中,仅使用两片PCB平板,可将离子在较宽气压范围内被有效聚焦;在另一优选实施例中,离子可被偏轴传输并聚焦以降低中性噪音。在实现上,利用PCB或MEMS工艺来印刷各种平面几何形状的单元电极具有低成本、高精度、高灵活性等优点。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所屈技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (17)

1.一种离子光学装置,其特征在于,包括:
至少一平面绝缘基板,覆盖金屈图案以构成电极阵列,其中,所述电极阵列包括多个单元电极,所述多个单元电极根据预定义离子导引方向而排列以构成所述电极阵列的几何图案分布,所述预定义离子导引方向定义为第一方向;
其中,各个相邻的且相互绝缘的单元电极施加有相位相异的射频电压以束缚离子;电极阵列中至少部分单元电极间还施加有直流电压差,驱动入射离子沿所述第一方向运动,且通过所述电极阵列的几何图案分布所形成对应电场分布,该电场分布驱动所述入射离子沿基本正交于所述第一方向的第二方向运动,以实现离子偏转、聚焦或散焦。
2.根据权利要求1所述的离子光学装置,其特征在于,所述电极阵列的至少部分单元电极的几何形状为一条折线或曲线,以形成与所述电极阵列的几何图案分布相对应的电场线分布。
3.根据权利要求1所述的离子光学装置,其特征在于,包括:至少一对所述平面绝缘基板,设置成各自的单元电极在第二方向上一一相对,以于所述一对平面绝缘基板间形成电场分布使所述入射离子沿第二方向产生所述偏转、聚焦或散焦。
4.根据权利要求1所述的离子光学装置,其特征在于,包括:至少两片边相接形成共用边、或至少三片边角相接形成共用角的所述平面绝缘基板,在所述平面绝缘基板上以共用边上一点或共用角为中心而向其靠近的方向上分布尺寸趋小的环状单元电极,以使所述入射离子向所述共用边上该点或共用角处聚焦。
5.根据权利要求1所述的离子光学装置,其特征在于,包括:至少四片所述平面绝缘基板,环绕相接围成离子导引腔,在所述离子导引腔内表面沿所述第一方向间隔形成环形金屈电极的阵列;其中,至少两片平面绝缘基板上的至少部分环形金屈电极被一斜向绝缘条隔离成两段以形成第一单元电极及第二单元电极,使所述第一单元电极和第二单元电极均呈现沿所述预定义离子导引方向而长度递变,且在第一单元电极和第二单元电极间施加直流电压差,以驱动入射离子沿第二方向偏转的同时被聚焦。
6.根据权利要求1所述的离子光学装置,其特征在于,包括:至少四片所述平面绝缘基板,环绕相接围成离子导引腔;在所述离子导引腔内各个面上沿所述第一方向及第二方向均间隔设置多个单元电极,并在至少部分单元电极间施加不同直流电压,以形成对应电场分布驱动入射离子沿第二方向产生偏转、聚焦或散焦。
7.根据权利要求6所述的离子光学装置,其特征在于,所述直流驱动电场可由射频电场所取代,所述射频电场在第二方向上产生强度不等的赝势垒,以驱动离子偏转、聚焦或散焦。
8.根据权利要求1所述的离子光学装置,其特征在于,决定所述电极阵列的几何图案分布的参数包括:电极阵列中单元电极的长度、半径、曲率、及与所述第一方向的夹角中的一种或多种组合。
9.根据权利要求8所述的离子光学装置,其特征在于,所述参数是沿所述第一方向逐渐变化的,以形成对应的电场分布。
10.根据权利要求1所述的离子光学装置,其特征在于,所述平面绝缘基板为矩形。
11.根据权利要求1所述的离子光学装置,所述平面绝缘基板为印刷线路板的基底,所述金屈镀层为印刷线路。
12.根据权利要求1所述的离子光学装置,用以形成所述直流或射频电场的至少部分电子元件位于所述印刷线路板上。
13.根据权利要求1所述的离子光学装置,所述平面绝缘基板上未覆盖金屈图案的部分设有切槽或者覆盖有高电阻值的镀层。
14.根据权利要求1所述的离子光学装置,所述平面绝缘基板和金屈图案由微纳加工工艺获得。
15.一种质谱仪,其特征在于,包括:如权利要求1所述的离子光学装置,用于离子导引。
16.根据权利要求15所述的质谱仪,其特征在于,包括:与所述离子光学装置联用的质量分析器。
17.根据权利要求15所述的质谱仪,其特征在于,包括:与所述离子光学装置联用的离子迁移率分析器。
CN201410448494.XA 2014-09-04 2014-09-04 离子光学装置及质谱仪 Active CN105470094B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201410448494.XA CN105470094B (zh) 2014-09-04 2014-09-04 离子光学装置及质谱仪
JP2017502983A JP6376276B2 (ja) 2014-09-04 2015-09-02 イオン光学装置および質量分析装置
PCT/CN2015/088841 WO2016034125A1 (en) 2014-09-04 2015-09-02 Ion optical apparatus and mass spectrometer
US15/503,523 US10014167B2 (en) 2014-09-04 2015-09-02 Ion optical apparatus and mass spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410448494.XA CN105470094B (zh) 2014-09-04 2014-09-04 离子光学装置及质谱仪

Publications (2)

Publication Number Publication Date
CN105470094A true CN105470094A (zh) 2016-04-06
CN105470094B CN105470094B (zh) 2018-03-09

Family

ID=55439144

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410448494.XA Active CN105470094B (zh) 2014-09-04 2014-09-04 离子光学装置及质谱仪

Country Status (4)

Country Link
US (1) US10014167B2 (zh)
JP (1) JP6376276B2 (zh)
CN (1) CN105470094B (zh)
WO (1) WO2016034125A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665806A (zh) * 2016-07-28 2018-02-06 株式会社岛津制作所 质谱仪、离子光学装置及对质谱仪中离子操作的方法
CN109243960A (zh) * 2017-07-10 2019-01-18 株式会社岛津制作所 一种质子转移反应质谱仪
CN111683451A (zh) * 2020-06-22 2020-09-18 北京卫星环境工程研究所 用于中高层大气原位探测载荷的微型带电粒子加速装置
CN111912895A (zh) * 2019-05-09 2020-11-10 岛津分析技术研发(上海)有限公司 真空下的质谱成像装置及方法
JP2022056371A (ja) * 2020-09-29 2022-04-08 株式会社島津製作所 イオンガイド装置及びイオンガイド方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224194B2 (en) 2016-09-08 2019-03-05 Battelle Memorial Institute Device to manipulate ions of same or different polarities
GB2558221B (en) 2016-12-22 2022-07-20 Micromass Ltd Ion mobility separation exit transmission control
US10332723B1 (en) 2017-12-20 2019-06-25 Battelle Memorial Institute Ion focusing device
GB2602188B (en) 2018-05-31 2023-01-11 Micromass Ltd Mass spectrometer
GB201808892D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Mass spectrometer
GB201808936D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808912D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808894D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Mass spectrometer
GB201808890D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
GB201808949D0 (en) 2018-05-31 2018-07-18 Micromass Ltd Bench-top time of flight mass spectrometer
WO2019229463A1 (en) 2018-05-31 2019-12-05 Micromass Uk Limited Mass spectrometer having fragmentation region
US10840077B2 (en) 2018-06-05 2020-11-17 Trace Matters Scientific Llc Reconfigureable sequentially-packed ion (SPION) transfer device
US10720315B2 (en) 2018-06-05 2020-07-21 Trace Matters Scientific Llc Reconfigurable sequentially-packed ion (SPION) transfer device
DE102018113331B4 (de) * 2018-06-05 2023-06-15 Gottfried Wilhelm Leibniz Universität Hannover Ionenmobilitätsspektrometer
US11219393B2 (en) 2018-07-12 2022-01-11 Trace Matters Scientific Llc Mass spectrometry system and method for analyzing biological samples
US10460920B1 (en) 2018-06-26 2019-10-29 Battelle Memorial Institute Flexible ion conduit
CN109712864B (zh) * 2018-12-05 2021-07-20 上海裕达实业有限公司 简化质谱仪
CA3122913A1 (en) * 2018-12-13 2020-06-18 Perkinelmer Health Sciences Canada, Inc. Mass spectrometer components including programmable elements and devices and systems using them
GB2595876B (en) * 2020-06-09 2024-02-07 Microsaic Systems Plc Mass spectrometry ion funnel
GB202102365D0 (en) 2021-02-19 2021-04-07 Thermo Electron Mfg Limited High pressure ion optical devices
GB202102368D0 (en) 2021-02-19 2021-04-07 Thermo Electron Mfg Limited High pressure ion optical devices
GB202102367D0 (en) 2021-02-19 2021-04-07 Thermo Electron Mfg Limited High pressure ion optical devices
CN113420882B (zh) * 2021-06-17 2023-08-22 南方科技大学 离子阱装置以及离子阱装置的鞍点移动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585081A (zh) * 2004-06-04 2005-02-23 复旦大学 用印刷电路板构建的离子阱质量分析仪
CN101022076A (zh) * 2007-03-21 2007-08-22 上海华质生物技术有限公司 电极板
WO2007136373A1 (en) * 2006-05-22 2007-11-29 Shimadzu Corporation Parallel plate electrode arrangement apparatus and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051832A (en) * 1996-08-20 2000-04-18 Graseby Dynamics Limited Drift chambers
US6157031A (en) * 1997-09-17 2000-12-05 California Institute Of Technology Quadropole mass analyzer with linear ion trap
GB2384908B (en) * 2002-02-05 2005-05-04 Microsaic Systems Ltd Mass spectrometry
US7498570B2 (en) * 2004-08-02 2009-03-03 Owistone Ltd. Ion mobility spectrometer
JP4635722B2 (ja) 2005-05-30 2011-02-23 オムロン株式会社 四重極電極ユニット、電極構造物及びその製造方法
GB2451239B (en) * 2007-07-23 2009-07-08 Microsaic Systems Ltd Microengineered electrode assembly
US8431887B2 (en) * 2009-03-31 2013-04-30 Agilent Technologies, Inc. Central lens for cylindrical geometry time-of-flight mass spectrometer
WO2013098612A1 (en) 2011-12-30 2013-07-04 Dh Technologies Development Pte. Ltd. Ion optical elements
US9053915B2 (en) * 2012-09-25 2015-06-09 Agilent Technologies, Inc. Radio frequency (RF) ion guide for improved performance in mass spectrometers at high pressure
US9373492B2 (en) * 2013-03-14 2016-06-21 The University Of North Carolina At Chapel Hill Microscale mass spectrometry systems, devices and related methods
US8835839B1 (en) 2013-04-08 2014-09-16 Battelle Memorial Institute Ion manipulation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1585081A (zh) * 2004-06-04 2005-02-23 复旦大学 用印刷电路板构建的离子阱质量分析仪
WO2007136373A1 (en) * 2006-05-22 2007-11-29 Shimadzu Corporation Parallel plate electrode arrangement apparatus and method
CN101022076A (zh) * 2007-03-21 2007-08-22 上海华质生物技术有限公司 电极板

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107665806A (zh) * 2016-07-28 2018-02-06 株式会社岛津制作所 质谱仪、离子光学装置及对质谱仪中离子操作的方法
CN107665806B (zh) * 2016-07-28 2019-11-26 株式会社岛津制作所 质谱仪、离子光学装置及对质谱仪中离子操作的方法
US10741379B2 (en) 2016-07-28 2020-08-11 Shimadzu Corporation Mass spectrometer, ion optical device, and method for ion manipulation in mass spectrometer using trap with concentric ring electrodes
CN109243960A (zh) * 2017-07-10 2019-01-18 株式会社岛津制作所 一种质子转移反应质谱仪
US10636641B2 (en) 2017-07-10 2020-04-28 Shimadzu Corporation Proton transfer reaction mass spectrometer
CN109243960B (zh) * 2017-07-10 2020-11-17 株式会社岛津制作所 一种质子转移反应质谱仪
CN111912895A (zh) * 2019-05-09 2020-11-10 岛津分析技术研发(上海)有限公司 真空下的质谱成像装置及方法
CN111683451A (zh) * 2020-06-22 2020-09-18 北京卫星环境工程研究所 用于中高层大气原位探测载荷的微型带电粒子加速装置
JP2022056371A (ja) * 2020-09-29 2022-04-08 株式会社島津製作所 イオンガイド装置及びイオンガイド方法
JP7251585B2 (ja) 2020-09-29 2023-04-04 株式会社島津製作所 イオンガイド装置及びイオンガイド方法

Also Published As

Publication number Publication date
JP2018503931A (ja) 2018-02-08
US10014167B2 (en) 2018-07-03
WO2016034125A1 (en) 2016-03-10
US20170236698A1 (en) 2017-08-17
JP6376276B2 (ja) 2018-08-22
CN105470094B (zh) 2018-03-09

Similar Documents

Publication Publication Date Title
CN105470094A (zh) 离子光学装置及质谱仪
JP7020775B2 (ja) 静電多極デバイス、静電多極配置、および静電多極デバイスを製造する方法
US11232928B2 (en) Multi-beam inspection apparatus
TWI783596B (zh) 使用帶電粒子束之設備
CN105161393A (zh) 电子光学排布结构、多电子分束检验系统和方法
JP7427794B2 (ja) 荷電粒子操作デバイス
JP2022515361A (ja) プログラム可能要素を含む質量分析計のコンポーネントおよびそれらを使用するデバイスおよびシステム
CN115362525A (zh) 孔径组件、射束操纵器单元、操纵带电粒子束的方法以及带电粒子投射装置
WO2013103468A1 (en) Radio frequency (rf) ion guide for improved performance in mass spectrometers at high pressure
US20230124558A1 (en) Beam manipulator in charged particle-beam exposure apparatus
TW202147370A (zh) 透鏡設計
TWI835224B (zh) 帶電粒子光學裝置
US9666407B2 (en) Electrostatic quadrupole deflector for microcolumn
TW202336794A (zh) 帶電粒子束設備中之射束操縱器
TWI824604B (zh) 帶電粒子光學裝置、帶電粒子設備及方法
TW202316468A (zh) 帶電粒子光學裝置
TW202347397A (zh) 帶電粒子光學裝置及方法
KR101667771B1 (ko) 초소형 컬럼용 정전 4중극 디플렉터
TW202341211A (zh) 電子光學器件、補償子光束特性之變化的方法
TW202410107A (zh) 電子光學組件
TW202312211A (zh) 帶電粒子裝置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant